
Vol.:(0123456789)1 3

Evolving Systems (2020) 11:637–646 
https://doi.org/10.1007/s12530-019-09306-4

ORIGINAL PAPER

Power spectrum and dynamic time warping for DNA sequences 
classification

Abdesselem Dakhli1 · Chokri Ben Amar2

Received: 13 August 2018 / Accepted: 29 September 2019 / Published online: 22 October 2019 
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Similarity and alignment and are often used to classify DNA sequences. We have developed a new classifier to classify DNA 
sequence. First, our approach is used to extract the features of DNA strands. Second, the goal of our approach is to classify 
DNA strands according to the similarity elaborated by the alignment. Frequently, the performance of the classification of 
DNA sequences depends on the method that allows to extract the characteristics and calculation of the genomic similarity. 
Particularly, our approach consists of three different methods for improving the classification of the DNA sequences. This 
paper presents a new approach of classification of DNA sequence based on dynamic time warping (DTW) method. First, the 
binary indicator is used to code each nucleotide and the power spectrum is used to extract the characteristics. Secondly, the 
DNA sequence similarity matrix is evaluated by the dynamic temporal Warping. Third, pairwise comparison is used to clas-
sify DNA strands. Our approach solves the complex problem of presentation and structure of different groups of organisms. 
The experimental results of our classifier obtained are compared with other approaches based on the alignment and similarity 
of the DNA sequences. These results showed that our approach outperformed other approaches in terms of classification and 
running time. Here is a summary of the main contributions of this article: (1) Convert nucleotides from DNA sequences by 
applying binary coding. (2) Using power spectrum our approach extracts the characteristics of DNA sequences. (3) Elabo-
rate the similarity matrix of the DNA strand signal by the Dynamic Time Warping method. (4) Use pairwise comparison 
to classify DNA sequences. The approach developed is efficient to solve the problems of classification of DNA sequences.

Keywords  DNA sequences · Power spectrum · Dynamic time warping · Binary · Pairwise comparison · Discrete Fourier 
transform

1  Introduction

Bioinformatics studies the classification of DNA strands as a 
fundamental problem in modern genomics. Methods for clas-
sifying DNA sequences can be divided into three major types.

The first category is the feature-based classification, 
which converts a DNA sequence into vector functionality 
and then uses classical classification methods to classify 

the DNA sequences. The second type is the classification 
based on the distance between the DNA strands. Similar-
ity was used to group the DNA sequences. The similarity 
assessment is done using a distance function that computes 
the identity between the sequences. The third category uses 
statistical methods and models to classify DNA strands, for 
example Hidden Markov Model (HMM) (Xing et al. 2010; 
Stranneheim et al. 2010; Muller and Koonin 2003; Kawulok 
and Deorowicz 2015; Ames et al. 2013; Wood and Salzberg 
2014; Xu and Jackson 2019). Following our study, we will 
draw up some representative methods that concern the three 
categories mentioned.

This paper presents a new approach of classification of 
DNA sequence based on dynamic time warping (DTW) 
method.

In this study, we compare our approach with other meth-
ods using similarity and alignment to classify DNA strands, 
such as Carma, Megan, MetaPhyler and Mg-Rast. In the next 
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work, we will compare our approach with classifiers that 
use short subsequences (k-mers) to classify DNA sequences, 
such as CoMeta, LMAT and Kraken.

The general objective of our work is to build a classifier 
to classify DNA sequences. This classifier is based on binary 
coding, power spectrum and DTW method.

The main contributions of our approach consist at the 
beginning, the use of binary coding to convert the DNA 
sequences. Next, our approach extracts the characteristics 
of the DNA sequences by applying the power spectrum 
method, elaborates the matrix similarity of the DNA strand 
signal by the DTW method. Finally, pairwise comparison 
is used to classify DNA sequences. The approach devel-
oped is effective in solving the problems of classifying DNA 
sequences.

The approach to be developed contains three phases. The 
first phase is used to encode the DNA strands, which con-
sists of two substeps; binary coding and signal processing 
of DNA. The second phase makes it possible to calculate 
the similarity matrix of the genomic signal. The third phase 
exploits the classification of DNA strands using the pairwise 
comparison. In this study, the DTW method is applied to 
solve the similarity of the DNA strands. Our approach uses 
Power Spectrum (PS) to build Feature Extraction and Time 
Warping algorithm and pair wise comparison to group DNA 
sequences.

This study is organized as follows: Sect. 1 provides a 
review of the literature of major research. Section 2 outlines 
our method to develop. Section 3 presents the experimental 
results of our approach. Section 4 concludes with a conclu-
sion and discussion.

2 � Background

The classification of DNA sequences has been treated by 
several works. H. Stranneheim et al. proposed an approach 
classifies DNA sequences (FACS) in a precise and fast man-
ner. This approach is used to classify the DNA sequences 
(Stranneheim et al. 2010). It allows classifying the DNA in 
a precise and a fast way. It was validated using a synthetic 
metagenome of DNA sequences. The metagenome database 
was applied to show that the approach achieves a precision 
comparable to BLAT but is at least 21 times faster in the 
classification of DNA strands.

The Principal Component Analysis (PCA) was applied 
by Muller and Koonin (Muller and Koonin 2003) in 2003 
to group a DNA database. These are converted into docu-
ment vectors that represent the content of their word; the 
PCA then develops groups of DNA strands distributed by 
Gauss. The approach is used to classify multiple sets of 
DNA sequence data. This approach is powerful for group-
ing exons and introns with up to 96% accuracy.

There are other approaches that use short subsequences 
(k-mers) to classify DNA sequences. For example, the meth-
ods CoMeta (Classification of metagenomes) (Kawulok and 
Deorowicz 2015), LMAT (Livermore Metagenomics Analy-
sis Toolkit) (Ames et al. 2013), Kraken (Wood and Salz-
berg 2014) and Machine learning (Xu and Jackson 2019; Lo 
Bosco and Di Gangi 2017) to classify DNA strands in a fast 
manner unlike BLAST-based approaches, where each refer-
ence DNA strand is compared with the query containing the 
unknown DNA sequence. The results obtained prove that the 
performance of this approach depends on the k value of the 
short subsequences (k-mers) so the limit of the performance 
of this approach depends on the length of the sub-sequences 
and the DNA database. The Kraken, LMAT and CoMeta 
programs use the k-mer counting principle. The complexity 
of these programs depends on k-mer count, DNA sequence 
size, and the size of the DNA database. In Kraken, such a 
bias would create many large search ranges, which would 
require more time to discover.

The Wavelet Neural Networks (WNN) (Dakhli and Bel-
lil 2016) was used to classify DNA Sequence Classification 
applying the Genetic Algorithms and the Least Trimmed 
Square. The experimental results are showed that the WNN 
model outperformed the other models in terms of both the 
clustering results and the running time.

The artificial intelligence (Xu and Jackson 2019) was 
applied to classify the Nucleotide sequence data correspond-
ing to the length of 822 bp, collected from the Immuno Poly-
morphism Database, were compressed to 2-dimensional rep-
resentation and were plotted. Profiles of the two-dimensional 
plots indicate that the alleles can be classified as clusters are 
formed. The two-dimensional plot of HLA-A DNAs gives a 
clear outlook for characterizing the various alleles.

Similarly, there are other alignment-based approachs to 
classify the DNA strands. These approaches are Carma, 
Megan, MetaPhyler and Mg-Rast (Bazinet and Cummings 
2012; Liu 2010). They use alignment and similarity to clas-
sify the DNA strands.

CARMA is an approach that classifies the taxonomy of 
unassembled and assembled DNA strands that has been 
adjusted to work with HMMER3 and BLAST homology 
searches. This approach shows low taxonomic predictions 
(at the same sensitivity) as other BLAST methods (Bazi-
net and Cummings 2012; Liu 2010). The classification effi-
ciency of CARMA was verified on short DNA with known 
taxonomic origins. This method permits a low classification 
rate when the DNA strands to be classified have a long size.

The MEGAN program (Bazinet and Cummings 2012; Liu 
2010) uses the lowest common ancestor (LCA) method. This 
program is based on the Basic Local Alignment Search Tool 
(BLAST). All BLAST hits with a score close to the best hit are 
ranked. The DNA strands are then grouped together by calcu-
lating the LCA of all database sequences. This method selects 
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DNA strands with ambiguous occurrences at higher taxonomic 
levels to improve classification performance (Miyake et al. 
2018). This method gives a low classification rate when the 
DNA strands to be grouped have a significant length.

The MetaPhyler program is applied to group the small 
strands of DNA. The marker genes are applied as a taxo-
nomic reference. The results demonstrate that MetaPhyler 
outperforms other methods commonly used in this context 
(CARMA, Megan and PhymmBL) (Bazinet and Cummings 
2012; Liu 2010).

The MG-RAST program groups the input DNA strands 
containing genes encoding particular proteins(GEPs), and each 
gives a specific taxon. All DNA fragments of queries from a 
random sample do not contain GEPs), so this program typi-
cally has fewer overall strands than other methods.

3 � Methods

The approach to be developed in this study classifies DNA 
sequences. This approach is based on the DTW algorithm and 
the Power Spectrum (PS-DTW). The PS is applied to construct 
the features extraction of the DNA sequence and DTW is used 
to group the features extraction of the DNA.

3.1 � The alphabet representation of a DNA

The strand of DNA is composed by the following nucleotides: 
A, C, G and T. Each strand can be biologically presented by an 
alphabetic representation constituting a chain of letters A, C, G 
and T. Assume X = {× 0, x1, x2,…, xm}. Where xi ∈ {A, C, T, 
G} and m indicates the size of a DNA sequence.

3.2 � The genomic signal of a DNA sequence

Our approach attempts to classify the DNA strands of the spe-
cies. The nucleotides in each DNA sequence are respectively: 
Adenine (A), Cytosine (C), Guanine (G) and Thymine (T), 
where each organism is defined by its DNA sequence (bai 
Arniker et al. 2012; Mavromatis et al. 2007).

Binary coding transforms the DNA strand into a genomic 
signal. The latter is used to obtain the signal spectrum of the 
DNA strand by setting 0 or 1 for no or the existence of a spe-
cific nucleotide (A, C, T, G) at the DNA strands (bai Arniker 
et al. 2012; Lei et al. 2012). For a DNA sequence x [7] = [A 
A A C G T T], the following coding is obtained: x [7] = [1000 
10001000 0100 0010 0001 0001]. The codification obtained 
from a DNA strand can be processed using mathematical mod-
els, for example the discrete Fourier transform (DFT) is used 
to obtain a complex number f (x):

(1)f (x) =

N−1∑

n=0

Xe(n) e
−j�n∕N , k = 0, 1, 2,… ,N − 1.

We apply a Power Spectrum (PS) approach to analyze 
and treat the periodicity of DNA strand components. This 
approach uses periodic nucleotide distributions of DNA 
sequences to evaluate power spectra at particular and well-
defined periodicities. The amplitude of a PS gives the 
power of a signal on periodic positions. The PS minimizes 
the background noise that appears very high in the Fourier 
power spectrum and eliminates spectral leakage, unlike for 
DFT. Thus, PS captures the invisible periodicities in the 
sequences. Applying a sliding window, PS develops a pre-
cise location of the periodic parts in the DNA strands. We 
use the PS to discover the hidden intervals in the elements 
of DNA strands.

This function is easier to apply with the power spectrum 
sequence than with the original discrete TF. The SP for the 
frequencies k = 0, 1, 2,…, N−1 is given as follows,

SP [k] was represented by Fig. 1.

3.3 � The dynamic time warping (DTW)

The deformation of dynamic time is primarily designed 
to analyze and process speech (Legrand et al. 2008). The 
same word has the same importance (the signal has the same 
form) in the speech of different people, but its timing and 
deviation are precise to each person. The DTW approach 
can adjust the offset and timing of signals (Skutkova et al. 
2013). This property can be used for DNA processing if the 
DNA strand is in the form of a genomic signal. The DTW 
is a general version of the dynamic programming method 
that determines exactly the pairwise biological sequence 
alignment problem. The nucleotide position, amplitude and 
cumulative phase of signals are obtained by the transforma-
tion of the time variable. The word of a spoken language is 

(2)SP[k] = |f (x)|2
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Fig. 1   Signal from a DNA strand obtained by PS
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considered a similar pattern of sequences, most often simi-
larly patterned strands of DNA. The nucleotide positions of 
DNA strands are dynamic; consequently, it is required for 
using the dynamic programming systems, such as, DTW. 
This system aligns the sample values according to the 
minimization of the similarity between the pairs of strand 
samples. Stretching of one or both signals is performed by 
repeating the selected samples. The criterion of comparison 
and iteration of the samples is achieved by the accumulated 
distances.

In this article (Skutkova et al. 2013), we use the DTW 
with warung paths pruned. We have adjusted and used the 
traditional DTW method to discover and remove cells in the 
DTW matrix that are guaranteed not to lead to alignments 
that will lead to the optimal path. The DTW algorithm match 
path theory with global constraints is theoretically shown 
for our pruning strategy, which is useful for minimizing and 
reducing the time complexity and computational cost.

The cumulative values of the distance are made using the 
distances in pairs for each pair of samples according to (3).

Where dis is a distance value in pairs and Dis is the cumula-
tive distance. The value of the cumulative distance Dis (i, 
k) is achieved by the distance dis (i, k) and minimum from 
the previous values of the cumulative deviations. This set 
of accumulated distances for each pair of samples forms 
a table. The buckling of the result series is recovered as a 
function of the decrease of the return path from the upper 
right terminal to the lower left terminal.

The final step required for the comparison of DNA strand 
signals is the comparison of the size and position of the 
strand signals by DTW. The use of DTW on all DNA strand 
signals has been performed in the realization of the dendro-
grams using a cluster analysis.

The resemblance of two matched DNA strand signals 
is assessed by their normalized Euclidean distance to the 
length of the aligned signals. The resemblance matrix for the 
cluster analysis is based on the similarity values evaluated 
for each pair of signals corresponding to the DTW.

3.4 � Proposed algorithmic approach

In this part, we develop a procedure for grouping DNA 
strands into classes. The details of our procedure are as 
follows:

Phase 1: Partition the DNA database into two sets of data 
(Learning and Training DNA Set).
Phase 2: Use binary coding to encode symbolic DNA 
strands into a digital signal.

(3)
Dis(i, k) = min{Dis(i − 1, k − 1),

Dis(i − 1, k),Dis(i, k − 1)} + dis(i, k)

Phase 3: Use the discrete Fourier Transform to compute 
the DNA strand signal.
Phase 4: Convert the digital signal using the Power Spec-
trum Signal Processing.
Phase 5: Apply the DTW to develop the similarity matrix.
Phase 6: Classify the DNA sequence using the similarity 
matrix and the pair-wise comparison (a distance is com-
puted between every pair of DNA strands).
Phase 7: Construct of the dendrogram tree.

The following function uses the DTW method to generate 
the DNA sequences similarity matrix.

function  [MatrixDTW]=ComputMatrixDTW(Seq1, Seq1)

% DNA sequence signal Seq1

% DNA sequence signal Seq2

n= length(Seq1);

m= length (Seq2);

MatrixDTW (0,0)=0;

for I=1:n

MatrixDTW (I,1)= MatrixDTW (I-1,1)+c(I,1);

end

for J=1:m

MatrixDTW (1,J)= MatrixDTW (1,J-1)+c(1,J);

end

for I=1:n

for K=1:m

MatrixDTW (I,K)= c(I,K)+min(MatrixDTW (I-1,K), MatrixDTW (I,K-1), MatrixDTW (I-1,K-1))

end

end

end

To find the best comparison between two DNA strands, 
we must discover the path through the grid P = p1,…, pw,…, 
pj.

pw = (iw,kw) which minimizes the total distance between 
them. P is called a warping function.

The classification technique to be developed in our work 
is based on the alignment and the similarity of the DNA 
strands. During the learning phase, our approach converts 
the DNA strands applying binary coding and Power Spec-
trum. In this phase, our approach is applied to distinguish 
between different groups (classes) using examples of the 
DNA strands in the training base. Indeed, our system designs 
a template for each learning strand so each sequence will be 
known by a signal. Then, our procedure elaborates a simi-
larity matrix applying the DTW algorithm which allows 
seeking an optimal pairing between each pair of temporal 
signals of DNA strands. So, this algorithm first develops a 
nonlinear comparison in the search among all the possible 
alignments, that which reduces the cumulative cost function. 
Our approach groups the DNA strands in the following way: 
at each step, we gather in a class the two strands that have a 
minimal distance (Figs. 2, 3). 
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The classification technique to be developed in our work 
is based on the alignment and the similarity of DNA strands. 
During the test phase, a new strand is classified using opti-
mal matching between this sequence and the grouped 
sequences. Assignment this strand in a group is based on 
the similarity function. So, the sequence is assigned in a 
class where the distance is minimal between this sequence 
and the other sequences within the same class.

To justify the effectiveness of our developed classifier, 
several assessment measures must be applied, including the 
accuracy, sensitivity, precision and clustering rates of the 
DNA strands.

These evaluation criteria are applied to compare our clas-
sifier with other competitive classifiers that use the compari-
son principle to group DNA strands together, for example, 
Carma, Megan, MetaPhyler and Mg-Rast.

The Precision can be defined as the percentage of cor-
rectly ranked instances. The Accuracy (4) is the most intui-
tive measure of performance and it is clearly a relation 
between the exactly predicted observation and the set of 
observations.

Where FN, TP, FP, and TN indicate the number of false 
negatives, true positives, false positives, and true negatives, 
respectively.

The sensitivity (5) is the capability of a test to discover 
a true positive.

(4)Accuracy =
(TP + TN)

(TP + TN + FP + FN)

(5)Sensitivity =
TP

TP + FN

(6)Pr ecision =
TP

TP + FP

The precision (6) indicates the ratio of the positive pre-
dicted positive observations to the total predicted positive 
observations.

4 � Results

This paper uses three datasets PhyloPythia 961 bp, Meta-
PHYLER 300 bp and FACS 269 bp. Each dataset was ran-
domly selected from Harvard Dataverse (https​://datav​erse.
harva​rd.edu/datav​erse/harva​rd). The DNA sequence sizes 
in the three databases are respectively 269 bp, 300 bp and 
961 bp. Similarly our approach was simulated on two other 
databases (16S-AMP-trimmed.fa.zip and 16S-SG-reads.
fa.zip) to further validate our classifier (Fiannaca et al. 
2018; https​://githu​b.com/IcarP​A-TBlab​/Metag​enomi​cDC/
tree/maste​r/data).

The description of the databases used found in Table 1.
Numerical values of accuracy prove the efficiency and 

performance of our approach. It specifies the correct clas-
sification of DNA strands. We compare the PS-DTW (our 
approach) and the four alignment models, i.e., Carma, 
Megan, MetaPhyler and Mg-Rast. Our approach for all the 
DNA strands datasets (FACS269 bp, MetaPHYLER 300 bp 
and PhyloPythia 961 bp) has high accuracy, which is, respec-
tively, 51.5%, 97.3% and 71.8%. For strands of size 300 bp 
and 961 bp the accuracy of our approach is higher than that 
obtained by the other models at all the DNA strands datasets. 
It is clear that the performance of our approach.

The results obtained (Fig. 4) show the degree of relation-
ship between the organisms and thus make it possible to 
understand their evolutionary history. Class 1 groups strands 
(1, 4, 5, 12,…). This grouping shows well the biological 
relation which exists between the organisms which are iden-
tified by their DNA strands. From these results it is found 
that there are common biological characteristics between 
the species.

Fig. 2   The similarity matrix 
using dynamic time warping 
(DTW)

https://dataverse.harvard.edu/dataverse/harvard
https://dataverse.harvard.edu/dataverse/harvard
https://github.com/IcarPA-TBlab/MetagenomicDC/tree/master/data
https://github.com/IcarPA-TBlab/MetagenomicDC/tree/master/data
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The grouped DNA strands have a biological resemblance 
according to Fig. 5. This similarity can affirm a similar bio-
logical role within the cells of living beings. The groupings 
developed are very positive and prove that the proposed 
approach can be successfully applied to solve the problem 
of grouping DNA strands.

The DNA resemblance can biologically improve the 
current family of DNA strands that are unable to directly 
affect the considerable volume of these strands. We use 
another dataset of the DNA sequence of the FACS database 
to improve and verify the performance of our approach for 
large sequential datasets.

The instability of a test is its ability to correctly solve 
cases of DNA sequences. To evaluate it, we will develop the 
percentage of true positives in the case of DNA sequences 
In terms of unified accuracy and sensitivity, our approach 
surpassed all other classifiers, producing a 95.3% sensitivity 
for the MetaPHYLER dataset (Table 4).

The results obtained prove that our approach (PS-DTW) 
is efficient for classifying a DNA database. It can access a 
very good precision. Our classifier is experienced on empiri-
cal databases, exposing that accuracy exceeds other tech-
niques in terms of percentage of correct classification of 
organisms. The results obtained (Tables 2, 3, 4 and 5) show 

Fig. 3   Proposed approach
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the good distribution of DNA in the classes obtained. Dur-
ing the test phase our classifier produces good classification 
rates.

Our approach shortens the running time for all the DNA 
strands datasets also improves the classification accuracy 
of the strands of DNA. Table 6 and Fig. 6 show the CPU 
runtime of all the methods on the four databases of the DNA 
strands (FACS269 bp, MetaPHYLER 300 bp and PhyloPy-
thia 961 bp). The CPU run time PS-DTW was much shorter 
than the other models. The CPU run time can affect the 
time complexity of the Computation of Correspondence 
between the DNA strands. Thus, the complexity of the mod-
els (Carma, Megan, MetaPhy-ler and Mg-Rast) are higher 
than the our approach. The execution time of the processor 
grows comparatively with the size of the DNA sequence. 
The results show that the length of DNA strand prolongs the 
runtime of the models. The size of the DNA strands has an 
influence on the execution time; the classification of DNA 
strands of size equal to 961 bp requires a run time of 21 min 
(Figs. 7, 8).

Numerical values of accuracy prove the efficiency and 
performance of our approach. It specifies the correct clas-
sification of DNA sequences. We compare the PS-DTW (our 
approach) and the three algorithms, i.e., CNN (Convolu-
tional Neural Networks), DBN (Deep belief network) and 
RDP (Ribosomal Database Project) (Fiannaca et al. 2018; 
https​://githu​b.com/IcarP​A-TBlab​/Metag​enomi​cDC/tree/
maste​r/data). Our approach for all the DNA datasets (SG 
and AMP) has high accuracy, which is respectively 91% 
and 95%.

Table 1   Description of each dataset

DNA databases

FACS (https​://datav​erse.
harva​rd.edu/datav​erse/
harva​rd)

MetaPHYLER (https​://
datav​erse.harva​rd.edu/
datav​erse/harva​rd)

PhyloPythia (https​://
datav​erse.harva​rd.edu/
datav​erse/harva​rd)

SG (Fiannaca et al. 
2018; https​://githu​
b.com/IcarP​A-TBlab​/
Metag​enomi​cDC/tree/
maste​r/data)

AMP (Fiannaca et al. 
2018; https​://githu​b.com/
IcarP​A-TBlab​/Metag​
enomi​cDC/tree/maste​
r/data)

Sizes 269 bp 300 bp 961 bp 400 bp 300 bp
Number of 

sequences
105 73 25 100 90

Training 60 40 15 80 70
Test 45 33 10 20 20

Fig. 4   Graphical representation of DNA groups of FACS database 
containing 60 sequences

Fig. 5   Alignement of DNA groups of class 1

https://github.com/IcarPA-TBlab/MetagenomicDC/tree/master/data
https://github.com/IcarPA-TBlab/MetagenomicDC/tree/master/data
https://dataverse.harvard.edu/dataverse/harvard
https://dataverse.harvard.edu/dataverse/harvard
https://dataverse.harvard.edu/dataverse/harvard
https://dataverse.harvard.edu/dataverse/harvard
https://dataverse.harvard.edu/dataverse/harvard
https://dataverse.harvard.edu/dataverse/harvard
https://dataverse.harvard.edu/dataverse/harvard
https://dataverse.harvard.edu/dataverse/harvard
https://dataverse.harvard.edu/dataverse/harvard
https://github.com/IcarPA-TBlab/MetagenomicDC/tree/master/data
https://github.com/IcarPA-TBlab/MetagenomicDC/tree/master/data
https://github.com/IcarPA-TBlab/MetagenomicDC/tree/master/data
https://github.com/IcarPA-TBlab/MetagenomicDC/tree/master/data
https://github.com/IcarPA-TBlab/MetagenomicDC/tree/master/data
https://github.com/IcarPA-TBlab/MetagenomicDC/tree/master/data
https://github.com/IcarPA-TBlab/MetagenomicDC/tree/master/data
https://github.com/IcarPA-TBlab/MetagenomicDC/tree/master/data
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5 � Conclusion

In this paper, a classifier has been developed to group the 
DNA strands. To obtain a signal for each DNA sequence, 
the binary coding, the Power Spectrum and the Fourier 
Transform were used. In our approach, we achieve very 
good prediction accuracy. To validate our classifier, we 
applied empirical data sets. The results obtained show that 
the accuracy of our approach surpasses the other models in 

Table 2   Percentage of sequence 
classified of each method on all 
datasets

DNA databases

FACS 269 bp MetaPHYLER 
300 bp

Phy-
loPythia 
961 bp

Approaches Classification accuracy (%)

(PS-DTW) our 
approach

51.5 97.3 71.8

Bazinet and Cummings (2012) Carma 29.0 93.6 61.3
Megan 48.4 88.2 62.2
MetaPhyler 0.2 80.9 0.6
Mg-Rast 27.1 29.8 70.5

Table 3   The classification results of our approach for all databases of 
DNA sequences

Bold values in the “classification” column to present the results 
obtained by the proposed approach

DNA databases Size (bp) #Class Classification 
accuracy (%)

FACS 269  60 51.5
MetaPHYLER 300 124 97.3
PhyloPythia 961 210 71.8

Table 4   Sensitivity of each 
method on all datasets

DNA databases

FACS269 bp MetaPHYLER 
300 bp

Phy-
loPythia 
961 bp

Approaches Sensitivity (%)

(PS-DTW) our 
approach

50.6 95.3 71.5

Bazinet and Cummings (2012) Carma 26.7 93.4 59.8
Megan 42.5 87.9 61.0
MetaPhyler 0.1 80.7 0.5
Mg-Rast 25.0 29.7 67.2

Table 5   Precision of each 
method on all datasets

DNA databases

FACS269 bp MetaPHYLER 
300 bp

Phy-
loPythia 
961 bp

Approaches Precision (%)

(PS-DTW) our 
approach

95.5 99.9 98.9

Bazinet and Cummings (2012) Carma 92.0 99.7 97.4
Megan 78.1 99.7 98.1
MetaPhyler 84.0 99.7 83.8
Mg-Rast 92.4 99.8 95.3
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terms of the percentage of correct recognition of the DNA 
sequence. Our developed classifier outperformed the other 
models (Carma, Megan, MetaPhyler and Mg-Rast) in terms 
of execution time and classification results. This approach 
uses biological information to group species into different 
groups. The classification obtained gives us knowledge 
about the evolution of species during history. These results 
were obtained due to two competences presented as follows:

•	 The efficiency of the binary conversion and the PS 
approach to reach the signal of DNA strands.

•	 The competency of the DTW algorithm and the pair-
wise comparison technique. Using these two means our 
approach builds a suit number of data groups applying 
the DNA strands characteristics.
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