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Abstract
The ever-increasing human population, building constructions, and technology usages have currently caused electric con-
sumption to grow significantly. Accordingly, some of the efficient tools for more and more energy saving and development are 
efficient energy management and forecasting energy consumption for buildings. Additionally, efficient energy management 
and smart restructuring can improve energy performance in different areas. Given that electricity is the main form of energy 
that is consumed in residential buildings, forecasting the electrical energy consumption in a building will bring significant 
benefits to the building and business owners. All these means call for precise energy forecast to make the best decisions. In 
recent years, artificial intelligence, generally, and machine learning methods, in some areas, have been employed to forecast 
building energy consumption and efficiency. The present study aims to predict energy consumption with higher accuracy 
and lower run time. We optimize the parameters of a support vector machine (SVM) using a multi-verse optimizer (MVO) 
without the grid search algorithm, due to the development consequence of residential energy predicting models. This paper 
presented the MVO-SVM approach for predicting energy consumption in residential buildings. The proposed approach 
examined a UCI repository dataset. Based on the experimental results MVO can effectively decrease the number of features 
while preserving a great predicting precision.

Keywords  Support vector machine · Energy consumption forecast · Multi-verse optimizer · Cross-validation · Data science

1  Introduction

As we all know energy plays an important role in the mod-
ern world so that it ensures human convenience and devel-
opment of the countries. Currently, the causes of electric 
consumption rapid growth include hugely increased human 
population, buildings and technology application (Amasy-
ali and El-Gohary 2018). Statistical reports (World Energy 

Trilemma Index 2018) indicate that the pattern of popula-
tion growth continually rises in many developed countries. 
The growing pattern of the human population leads to the 
increased building energy consumption that is more obvi-
ous in the industrial field. Faced with population growth 
as well as the demand for energy needed for human sur-
vival, many challenges will arise for expanded or developing 
countries. Yet, to reduce pollution, carbon emission, and 
greenhouse effect, environmental themes must be consid-
ered in the development process. A significant change in 
human energy consumption, more environment-friendly 
products, and identifying are required to reach reduced 
greenhouse gases. According to Global Energy Statistical 
Yearbook 2018 (World Power Consumption 2019), due 
to electrification of energy uses, electricity consumption 
increases faster compared to other types of energy. Asia 
experienced most electricity consumption increase in 2017. 
As in 2016, despite an industrial recovery and widespread 
energy efficiency improvements, more than half the world 
electricity consumption rebound is related to the electricity 
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consumption growth in China. Also, Electricity consump-
tion has considerably augmented in Iran and Egypt. Gener-
ally, this is an impression that countries are associated with 
increasing energy consumption, as shown in Fig. 1.

Nowadays, due to matters like fuel depletion, environ-
mental impact, and carbon dioxide emission, energy con-
sumption forecasting has become a significant issue. In addi-
tion, energy consumption forecasting also plays an important 
role in improving energy performance, saving energy, and 
reducing the serious environmental impact. It can be briefly 
mentioned that estimating energy demand of the building 
is conducive for the optimal control of the building energy 
infrastructure planning. In addition, forecasting also con-
tributes considerably in decision-making and future plan-
ning based on the accurate forecasting (Alobaidi et al. 2018). 
Some of the many factors effective in energy consumption 
forecasting in a typical building are outside air temperatures, 
electrical devices inside the building, Heating, Ventilation 
and Air Conditioning (HVAC), geographical location of the 
building and how the building is used (residential, office, 
classroom, etc.). The HVAC is considerably important for 
residential buildings because it improves home air quality 
in terms of temperature and humidity. The common loads in 
commercial and industrial buildings include lighting, Sur-
veillance Cameras, and air-conditioning system. Further-
more, other devices like computers, printers, televisions, fax 
machines, etc. also consume energy. However, the most elec-
trical energy consumption is related to the air-conditioning 
system generally. It should be noted that the geographical 
location of a building also contributes to the electric energy 
consumption, and changes the forecasting analysis. Geo-
graphical differences lead to different usages of electrical 
equipment. Several factors are effective in a country’s elec-
trical usages that weather condition, the surrounding tem-
perature of the country, and seasons are among them. In a 
hot weather, the cooling system will consume a lot of energy 
(Wei et al. 2018). It is clear that in temperate regions, the 
cooling system uses less electricity. In addition to tempera-
ture, some other factors also impress the electricity demand 
that among them humidity, wind speed, cloudiness, rainfalls 

and solar radiation can be mentioned. Furthermore, the dif-
ferent working hours of various buildings can be mentioned 
in terms of time-scale. As an example, the electricity usage 
duration is usually 24 h in industrial buildings. However, 
some industrial buildings operate within working hours 
(Nikolaou et al. 2015). For office buildings, the operating 
time is typically set with the specified time interval. In a 
residential place, the maximum electricity usage is in the 
evening. However, this electrical energy usage also depends 
on several conditions, such as holidays, seasons travel, 
natural disasters, and others. Currently, many forecasting 
models have been presented using several methods to solve 
forecasting complexities and to reach maximum forecasting 
accuracy. There are several popular ways to forecast build-
ing energy consumption, divided into four main categories 
namely engineering calculation, simulation model based, 
statistical modelling and Artificial intelligence method 
(Song et al. 2017; Seyedzadeh et al. 2018). The engineer-
ing methodologies use physical laws to understand building 
energy consumption in whole or sub-system levels. These 
methodologies have complex calculations for different build-
ing components and their inputs are internal and external 
details. In a simulation model methodology, software and 
computer models are employed for performance simulation 
with predefined conditions. Computer simulation makes a 
system which uses a computer to simulate a mathematical 
model (Nowotarski et al. 2018). In fact, computer simulation 
has many applications including weather forecasting, price 
forecasting on financial markets, simulation of electrical 
circuits, etc. Finally, in a statistical method, mathematical 
formulas, models and techniques are employed for raw data 
analysis. Generally, statistical methods extract information 
from data and create different ways to determine the output 
accuracy. Also, in a statistical method, building historical 
data are used and regression is frequently employed to model 
the energy consumption in buildings. Artificial Intelligence 
(AI) is a wide science field that uses learning, reasoning, 
and self-modification to solve problems (Wang et al. 2018). 
Similarly, AI methods provide the ability to learn from 
data using a computer algorithm. Artificial intelligence is 

Fig. 1   Electricity consumption 
over 1990–2017, breakdown by 
country (Accessed 2 Jan 2019)
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a broader concept of machines being able to carry out tasks 
in a smart way. Machine learning (ML) is a widespread 
application of artificial intelligence that uses statistical tech-
niques to give computer systems the ability to learn from 
data. Among these methods, the most suitable implemented 
method in forecasting is the ML method, called support vec-
tor machine (SVM). Particularly, an SVM includes super-
vised learning models with associated learning algorithms 
that analyses data used for classification and regression anal-
ysis. SVM, artificial neural networks (ANN), decision trees, 
and other statistical algorithms are the most commonly-used 
supervised machine learning algorithms for model training. 
SVM is a kernel-based machine learning algorithm, which 
can be used for both regression and classification (Paudel 
et al. 2017). A predictive modeling method that can be used 
in several sciences including machine learning, data mining 
and statistics is decision tree. This method gives the regres-
sion and classification models a tree structure in which class 
labels are indicated by leaves and conjunctions of features 
are represented by branches. However, using this modeling 
approach in prediction problems causes important disadvan-
tages. One of these disadvantages is the numerical input 
attribute that can make trees complex and lead to unsta-
ble situations in the learning process. Furthermore, a small 
change in input data can make tress completely different. 
One of the computational and mathematical models that has 
been inspired by biological nervous system is the artificial 
neural network (ANN). By taking advantage of ANNs, many 
algorithms can be developed to model and solve a lot of 
problems including prediction problems. One of the impor-
tant disadvantages of Neural Networks is their black box 
nature. In other words, it is hard to realize what happens in 
the underlying process that comes up with a certain predic-
tion. So, most organizations do not take advantage of the 
neural network because they cannot explain the reasons for 
their decision to customers. In this research, the reason for 
using the SVM method is the robustness that it adds to the 
model to deal with overfitting. In addition, small changes 
do not impress boundary significantly and, accordingly, do 
not make considerable differences. Finally, a comparison 
between the four main categories mentioned above is given 
in Table 1.

The rest of paper is organized as follows. Section 2 out-
lines an overview of some related work. Section 3 presents 
the methodologies. Section 4 presents the proposed MVO-
SVM approach to forecasting energy demand. Section 5 pre-
dicts the energy consumption and compares the predictions 
with predictions from other works. The final section sum-
marizes the main findings and concludes the proposed work.

2 � Related work

There are copious methods to forecast energy demand. 
Currently, the energy demand forecasting studies can be 
generally divided into two categories, namely, the white 
box model and the black box model (Guo et al. 2018). The 
first category is based on the physical method and needs 
copious detailed features. The second one mainly involves 
learning methods including neural networks, multiple linear 
regression, etc. Limanond et al. (2011) employed the log-
linear regression model to forecast the transportation energy 
demand in Thailand. Szoplik (2015) forecasted natural gas 
consumption in Szczecin using artificial neural networks 
(ANNs). A weighted support vector regression (SVR) was 
used by Zhang et al. (2016) to predict building energy usage. 
It should be noted that linear regression, random forest, and 
support vector regression (SVR) algorithms are employed to 
forecast energy demand at the city scale. A building energy 
prediction model was presented by Jain et al. (2014) in 
which they use an SVR for multi-family residential build-
ings. Muralitharan (2018) presented an energy demand 
forecasting model using a neural network optimized by 
genetic and particle swarm optimization (PSO) algorithms. 
An electricity price forecasting model was developed by 
Yang et al. (2017) in which wavelet and extreme learning 
machine (ELM) methods are used. The area in which the 
ELM method has been frequently employed is image and 
pattern classification. Another application of ELM is the 
short-term wind speed prediction model in which error cor-
rection is also used. Therefore, ELM method is used in the 
current study to develop some models for studying its poten-
tial in the energy demand prediction field. Two electric load 
forecasting models were developed by Yang et al. (2017) 
based on ANN and SVR. In fact, they extract features based 

Table 1   Comparison between 
forecasting methods

Methods Model complexity Easy to use Running speed Inputs needed Accuracy

Engineering calculation Fairly high No Low Detailed Fairly high
Simulation model based High Yes Low Detailed Fair
Statistical Fair Yes Fairly high Historical data Fair
Artificial intelligence
 SVM Fairly high No Low Historical data High
 ANN High No High Historical data Fairly high
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on a periodic characteristic to perform the principal compo-
nent analysis and factor analysis on them. In summary, they 
develop two electric load forecasting models byANN and 
SVR to assess the forecasting efficiency of each forecasting 
model by k-fold cross-validation and compare the prediction 
outcome with the real electric load. A clustering method was 
presented by Moon et al. (2017) that is based on a k-shape 
algorithm. This method is a relatively novel method to detect 
shape patterns in time-series data. In fact, in this method, 
clustering is done for each individual building based on its 
hourly consumption. In the current study, as an innovation, 
a new k-shape algorithm is employed to detect building-
energy usage patterns at different levels; then, the clustering 
result is utilized to reach an improved forecasting accuracy. 
The experimental results indicate that the proposed method 
can detect building energy usage patterns in different time 
scales effectively. Furthermore, the results prove that utiliz-
ing the results of the proposed clustering method consider-
ably increase the forecasting accuracy of the SVR model.

One of the greatest challenges that all methods face 
with is the choice of feature variables. It should be noted 
that one of the important factors for the performance of 
energy demand prediction models is the selection of fea-
ture variables. In some of these models, only the outdoor 
temperature is used in meteorological parameters. In heat-
ing energy demand forecasting, these models do not take 
into account the effects of other meteorological parameters 
such as indoor temperature. But successful energy demand 
prediction models are established by vital meteorological 
parameters such as operating parameters, time, and indoor 
temperature. According to the related works, many studies 
have been conducted on energy demand and consumption 
forecasting—as shown in Table 2.

The most frequently-used supervised machine learning 
algorithms for model training are SVM, ANN, decision 
trees, and other statistical algorithms. As a kernel-based 

machine learning algorithm, SVM can be employed for 
both regression and classification (Pratama et al. 2014). 
This algorithm is very effective in solving non-linear prob-
lems that even have a relatively small amount of training 
data. SVM transforms the non-linearity between features xi 
(e.g., current temperature and current solar flux) and target 
y (e.g., cooling energy consumption) using linear mapping 
in two steps to solve a non-linear problem. In the first step, 
it projects the non-linear problem into a high-dimensional 
space and specifies a function f(x) which fits best in the 
high-dimensional space. In the second step, it uses a ker-
nel function to transform the complex nonlinear map into 
a linear problem. With a closer look at the results of the 
studies, it can be found that hybrid models of energy con-
sumption forecasting are mostly used to obtain an improved 
forecasting accuracy from the existing model (Iglesias et al. 
2012). The results of the previous researches show that a 
hybrid model outperforms single and batch models in terms 
of accuracy. The main goal of both the accuracy of predict-
ability and suitability for using these models is to help users 
in energy management planning. The performance analy-
ses performed using mean absolute error (MAE) analysis 
and mean absolute percentage error (MAPE) showed that 
a hybrid model had less error than a single model. A con-
ventional approach to select SVM parameters is to use an 
exhaustive grid search algorithm. It should be noted that 
this method requires a large number of evaluations and, 
thus, its running time is so very long. Also, feature selec-
tion is used to select the features that are not irrelevant, so, 
it leads to decreased training time and less complex clas-
sification methods. Another advantage of feature selection 
is that it occasionally improves the accuracy of prediction 
and increase the comprehensibility and generalization of the 
model. However, selecting the best subset from various pos-
sible subsets extends the search space significantly and make 
feature selection an NP-hard problem. Fortunately, there are 

Table 2   Studies on energy forecast

Authors Methods Forecast energy type

Limanond et al. (2011) Log-linear regression models and feed-forward neural network models Natural gas
Szoplik. (2015) Artificial neural networks-MLP (multilayer perceptron model) Natural gas
Zhang et al. (2016) Partial least square regression (PLSR) Transportation energy consumption
Jain et al. (2014) Support vector regression (SVR) Residential buildings

Energy consumption
Muralitharan et al. (2018) Neural Network based Genetic Algorithm (NNGA) and d Neural 

Network based Particle Swarm Optimization (NNPSO)
Electricity, gas and water (Pecan Street Inc.)

Yang et al. (2017) Hybrid approach-the kernel extreme learning machine (KELM) based 
on self-adapting particle swarm optimization and an auto regressive 
moving average (ARMA)

Electricity price forecasting

Moon et al. (2017) Artificial neural network, support vector regression Power consumption
Yang et al. (2017) Clustering method based on k-shape algorithm, SVR Building energy usage
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other effective solutions that have been presented by dif-
ferent researchers. Metaheuristic algorithms are among the 
best-known approaches that are used when the complexity 
of problem increase and search space becomes wider. In the 
current study, we attempt to present and discuss a robust 
multi-verse-optimizer-based method to select best feature 
subset and optimize SVM parameters to predict the electri-
cal energy consumption of residential buildings accurately 
in the shortest possible time. The main contribution of this 
study is that it proposes a novel hybrid model based on SVM 
to forecast the building electrical energy consumption.

3 � Methodology

Basically, the majority of learning prediction methods con-
sists of four principal steps. These principal steps are data 
collection, data pre-processing, model training, and model 
testing. A lot of learning algorithms and prediction models 
are employed with these steps to forecast the energy con-
sumption of buildings. Usually, hybrid models use two or 
more machine learning techniques. Compared to the other 
methods, these models are more robust because they fre-
quently present the advantages of the incorporated tech-
niques and increase the accuracy of forecasting. This section 
presents the methods used in a particular area of study.

4 � Support vector machine

The support vector machine (SVM) which was proposed by 
Vladimir Naumovich Vapnik is a kind of statistical learning 
method (Vapnik 1999). SVM have special benefits for data 
types with very high dimensions relative to the observations. 
So far, SVM has been extensively employed in numerous 
analyses including regression, classification, and nonlinear 
function approximation. Support vector regression which 
is used in the regression problem as an SVM application 
is suitable for a finite sample regression. It also has an out-
standing generalization capability in the regression. SVM 
algorithm fits a boundary to a region of points which are 
called a hyperplane. Furthermore, the SVM tries to find the 
optimal hyperplane which separates two classes by maximiz-
ing the distance between the margin of the hyperplane and 
the data points in the dataset. In other words, given labelled 
training data while the algorithm output is an optimal 
hyperplane which categorizes new examples. A training set 
T =

{
(xi, yi)|i = 1, 2,… , l

}
 , where the xi ∈ Rn are the input 

variables and yi ∈ Rn is the corresponding output value. As 
mentioned earlier, solving non-linear problems is one of the 
significant benefits of SVM algorithm (Wang and Pardalos 
2014). In SVR, the support vectors are separated from the 
other training observations by a discriminating loss function. 

This function does not penalize residuals less than a toler-
ance. ε is set for this purpose and determines a margin of 
tolerance in which errors are not penalized. In other words, ε 
defines a tube around the regression function to ignore errors 
inside. In addition, the value of the ε shows how closely the 
function fit the data. However, in the case that all training 
points fit within a tube of width 2ε, the algorithm outputs 
the function in the middle of the flattest tube which encloses 
them. The total perceived error is zero in this condition. The 
basic idea of the SVM attempts to find a hypothesis with not 
only a small structural risk, but also a reduced complexity. 
An inductive principle for model selection to learn from 
finite training data sets is structural risk minimization (SRM) 
(Vapnik 1992). SRM describes a general model of capacity 
control and provides a trade-off between hypothesis space 
complexity and the quality of fitting the training data. We 
can formulate the regression problem as an optimization 
problem as follows.

where � is the vector of feature weights, two parameters 
�i, �

∗
i
 capture the magnitude of residuals beyond the pre-

scribed tolerance ε and serve to guarantee a solution for all 
ε (illustrated in Fig. 2). C is a regularization term that deter-
mines the degree of the linear penalty applied to the residual 
excess �∗

i
 . The basic idea of the support vector regression 

machine is to select the appropriate nonlinear mapping, 
map the input variables of the low-dimensional space to the 
high-dimensional feature space. SVR often employs the ker-
nel trick that implicitly maps the input space into a higher 
dimensional feature space using a kernel function (Bai et al. 

(1)min

�
1

2
‖�2‖ + C

1

l

n�
i=1

(�i + �∗
i
)

�
,

Fig. 2   Parameters of SVR (adapted from de Jesús Rubio et al. 2018 
and Gong et al. 2018)
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2018; de Jesús Rubio et al. 2018; Gong et al. 2018; de Jesús 
Rubio 2009, 2017; Cheng et al. 2018; Qiu et al. 2018).

One of the important factors in SVM forecasting per-
formance is the selection of the kernel function and kernel 
parameters. A kernel function including the linear kernel, 
the polynomial kernel, the Gaussian kernel, and the RBF 
kernel is shown as K(xi, xj) . The most used kernel function is 
the RBF kernel function. So, the RBF kernel function is used 
in this study, as given in Eq. (2). Intuitively, the influence 
radius for each data point is defined by � . It worth noting 
that in the RBF implementation, the parameters C, ε and 
� are user-defined variables with a significant influence on 
the SVR result (Vapnik 2013). The grid search method and 
the population intelligent optimization algorithm are among 
the most frequently parameter optimization methods. The 
MVO algorithm outperforms other algorithms in terms of 
optimization results. Accordingly, we take advantage from 
MVO algorithm in this study is to optimize the parameters 
of the SVM model.

4.1 � Multi‑verse optimizer (MVO)

The multi-verse optimizer (MVO) (Mirjalili et al. 2016) is 
inspired from three cosmology concepts, namely, white hole, 
black hole, and wormhole. In fact, the multi-verse theory is 
a state-of-the-art and well-known theory among the physi-
cists. According to this theory, the number of big bangs is 
more than one and each causes the birth of a universe. The 
term multi-verse means there are other universes plus the 
universe we live in. According to this theory, each of the 
universes has different physical laws. As for MVO algo-
rithm, three main concepts of the multi-verse theory can be 
chosen: white holes, black holes, and wormholes. Physicists 
believe a white hole may be the primary part for the birth 
of a universe. On the other hand, they believe that black 
holes, which have been frequently observed, have a com-
pletely different behaviour compared to white wholes. Black 
holes that have an extremely high gravitational force attract 
everything including light beams. Finally, wormholes con-
nect different parts of a universe together. The wormholes in 
this theory are like space travel tunnels in which objects are 
able to travel instantly within a universe. In the modelling of 
this method, an inflation rate is considered for each world. 
As seen in other population-based algorithms, these algo-
rithms divide the search process into two phases: exploration 
versus exploitation. The role of white hole and black hole 
concepts in MVO is to explore search spaces. According to 
MVO assumptions, each solution is analogous to a universe; 
furthermore, each variable in the solution is an object in 
that universe. Moreover, an inflation rate is assigned to each 

(2)KRBF(xi, xj) = exp
(
−𝛾

‖‖‖xj − x2
i

‖‖‖
)
, where 𝛾 > 0.

solution that is proportional to the solution’s corresponding 
fitness function value.

Accordingly, each variable in the optimization problem is 
an object in the universe. In the optimization process, these 
objects comply with the following rules.

1.	 The higher the inflation rate, the higher the probability 
of having white holes and the lower the probability of 
having black holes.

2.	 When a universe has a high inflation rate it sends objects 
through white holes, and when a universe has a low 
inflation rate it receives objects through black holes.

3.	 No matter the inflation rate is high or low, the objects 
of all universes may experience random movements 
towards the best universe by wormholes.

Given the rules listed above, the possibility to move 
objects from a universe with a high inflation rate to a uni-
verse with low inflation rate is always high. This ensures the 
improved average inflation rates of the whole universes over 
the iterations. In summary, MVO is a step-by-step approach 
to solve problems, as described below.

Step 1. Initialize the universe U, the maximum number of 
iterations Max-iteration, the variable interval [lb, ub], and 
the universe position.

Step 2. Set upa universe through the roulette wheel selec-
tion mechanism to choose a white hole according to the uni-
verse inflation rate.

Step 3. Update the wormhole existence probability (WEP) 
and travel distance rate (TDR), and do a boundary check. 
Two main mentioned coefficients are to define the prob-
ability of wormhole existence in universes. To emphasize 
exploitation as the progress of the optimization process, the 
linearly should increase over the iterations. TDR is also used 
to define the distance rate (variation) which an object can 
be teleported by a wormhole around the best universe found 
so far. Unlike the WEP, TDR increases over the iterations 
to have a more accurate exploitation/local search around the 
best found universe.

where Max and Min are the maximum and minimum values 
of WEP respectively. Moreover, I is the current iteration, L 

(3)U =

⎡⎢⎢⎣

x1
1

⋯ xd
1

⋮ ⋱ ⋮

x1
n

⋯ xd
n

⎤⎥⎥⎦

(4)WEP = min + I ⋅
(
max −min

L

)
,

(5)TDR = 1 −
l1∕p

l1∕p
,
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is the maximum number of iterations, and p is the exploi-
tation accuracy. In the process of working MVO, the val-
ues of these two above-mentioned coefficients will cause 
exploration or exploitation so that a Low WEP and a High 
TDR implies exploration and avoid local optima, while 
exploitation is supported by a High WEP and a Low TD. 
MVO should trade-off these two opposing forces in order 
to ensure an effective and efficient search. It is clear that 
in each iteration, the fitness values of different universes, 
WEPs, and TDRs are different. In the universe with the larg-
est fitness value, the exploration ability should be enhanced, 
the WEP should decrease, and the TDR should increase. 
Otherwise, the WEP and TDR should decrease and increase 
respectively.

Step 4. Calculate the universe’s current inflation rate. 
In the case that the inflation rate of the universe is better 
than the current inflation rate of that, the current inflation 
rate is updated. Otherwise, we should maintain the current 
universe.

Step 5. Update the universe position based on the follow-
ing equation

(6)x
j

i
=

⎧⎪⎨⎪⎩

�
Xj + TDR ×

��
ubj − lbj

�
× r4 + lbj

�
r3 < 0.5

Xj − TDR ×
��
ubj − lbj

�
× r4 + lbj

�
r3 ≥ 0.5

r2 < WEP

x
j

i
r2 ≥ WEP

,

et al. 2018; Wong 2015). k-fold cross-validation is used to 
split the shuffled data into k groups, the estimator is then 
trained on k-1 groups and then tested on the kth group so 
that k different possibilities can be distinguished to choose 
which group should be the kth partition. Therefore, you get 
k results of all k possibilities of your estimator.

In fact, k-fold cross validation is a method used to esti-
mate the skill of the model on new data. The main single 
parameter called k refers to the number of groups that a 
given data sample should be split into. After choosing a 
specific value for k, it may be used in place of k in the refer-
ence to the model, such as k = 5 becoming fivefold cross-
validation. It should be noted that the selection of k value 
for your data sample must be done attentively. A badly cho-
sen value for k may provide incorrect information of the 
model, the results like a score with a high variance or a high 
bias. More precisely, four factors can be mentioned that are 
effective in using k-fold cross-validation, namely, the num-
ber of folds (k), the number of instances in a fold, the level 
of averaging (fold or data set), and the repetition of cross-
validation. The average of the k accuracies obtained from 

where Xj shows the j th parameter of the best universe 
formed so far. Also,lbj and ubj specify the lower and upper 
bounds of j th variable respectively;xj

i
 is the j th parameter of 

i th universe; and r2, r3, r4 are the random numbers drawn 
from the interval of [0, 1].

Step 6. Termination criterion. The algorithm stops when 
the termination criterion is realized and the corresponding 
result is considered as output. Otherwise, after increasing the 
number of iterations by 1, the algorithm returns to Step 2.

4.2 � K‑fold cross validation

One of the indispensable tasks to forecast the class values 
of new instances is classification. Among the methods to 
evaluate the performance of classification algorithms, k-fold 
cross validation is a considerably popular one (Fushiki 
2011). Most of the time, cross-validation (CV) is usually 
employed to compare and select a model for a certain predic-
tive modelling problem because of its simplicity and practi-
cality; furthermore, it results in skill estimates which have a 
lower bias compared to other methods. To study the impact 
of this randomness mechanism, bias and variance meas-
ures are used. In fact, bias represents the expected differ-
ence between an accuracy estimate and actual accuracy, and 
variance represents an accuracy estimate variability (Rohani 

k-fold cross-validation is used to evaluate the classification 
algorithm performance.

5 � Proposed MVO‑SVM approach

As mentioned earlier, in this section we use the MVO pop-
ulation-based algorithm to optimize the parameters of the 
SVM (Faris et al. 2018). In the algorithm, a vector of real 
numbers is resulted by encoding individuals (universes). The 
number of elements in each vector is equal to the number 
of the features in the dataset plus two elements to represent 
SVM parameters—the Cost (C) and Gamma ( � ). The steps 
of the optimization are as follows (as shown in Fig. 3):

Step 1 (data normalization): to remove the effect of some 
features which have different range values on the learning 
process, the values of all features should be mapped into the 
same scale. Therefore, an equal weight is given to all fea-
tures. Then, all features are normalized to fall in the interval 
[0, 1].

Step 2 (separate a data set): separating the normalized 
data into training and testing sets is an important part of 
the characteristics of the model. Furthermore, by employ-
ing k-folds cross-validation, the training part is split again 
into a number of smaller parts. So, the SVM is trained k 
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times and the average evaluation should be employed again. 
The training data and validation data are respectively used 
to estimate the model and to select the final model. As for 
the testing set, the final model is used to test and compare it 
with other models.

Step 3 (parameters initialization): initialize the param-
eters of the maximum number of iterations (Max_iteration), 
the universe number, and the range of C, �.

Step 4 (universe position initialization): initialize the uni-
verse position. Each universe in the MVO algorithm rep-
resents a set of (C, � , f1,… , fn ) initialized according to the 
parameter range in the previous (Step 3).

Step 5 (function notation and evaluation): calculate the 
fitness of the universe and sort it. Then, select a white hole 
via roulette mechanism. The normalized mean square error 
(NMSE) is used as the evaluation criterion in this study to 
detect the suitable parameters of the SVM model (Poli and 
Cirillo 1993; Andonovski et al. 2016). In fact, to estimate the 
overall deviations between predicted and measured values, 
NMSE is employed. The NMSE value is always non-nega-
tive and if the value of NMSE is closer to zero, the error rate 
will be lower. In general, NMSE indicates the most notable 
differences among the models. In fact, a model with a very 
low NMSE has a good performance. However, a high NMSE 
value does not presently mean that the model is quite wrong. 
It worth noting that the determination of each universe’s 
NMSE value is done by the fitness function (de Jesús Rubio 
et al. 2018; Gong et al. 2018; de Jesús Rubio 2009, 2017; 
Cheng et al. 2018; Qiu et al. 2018).

(7)NMSE =
n − 1

n
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where f represents the model value, and the indices m and 
p indicates the measured and predicted values, respectively. 
The average value of the associated variable is shown with 
a ‘tilde’ above it, and the total number of training records 
is shown by n.

Step 6. Update the WEP and TDR based on the Eqs. (4) 
and (5).

Step 7. In the case that the fitness of the universe outper-
forms the current fitness of that, update the current fitness 
of the universe. Otherwise, maintain the current universe.

Step 8. Update the universe position and discover the 
optimal individual in the optimal universe.

Step 9. Termination criterion. The algorithm stops when 
the termination criterion is realized and the corresponding 
result is considered as output. Otherwise, after increasing the 
number of iterations by 1, the algorithm returns to Step 5.

The process described to optimize SVM parameters using 
the MVO algorithm considers primary features for residen-
tial building energy consumption include the temperature in 
rooms, number of residents, solar flux, humidity in rooms 
area, humidity outside the building, and the temperature out-
side as feature of SVM. At last, the architectures, as shown 
in Fig. 4, illustrate the steps of the MVO-SVM approach as 
follows:

6 � Results and discussion

To forecasting the energy consumption patterns in the 
building, the proposed model was evaluated and exam-
ined based on the selected dataset from the UCI repository 
(UCI Machine Learning Repository 2019). The data for 
4.5 months were collected at 10 min. The house temperature, 
humidity conditions, and wind speed were monitored with 
a wireless sensor network. Each wireless node transmitted 
the temperature and humidity conditions which collected 
from the nearest airport weather station (Chievres Airport, 
Belgium) and downloaded from a public dataset (Candanedo 
et al. 2017).

The experiments of the present study executed on a per-
sonal machine with an Intel Core i5-2.20 GHz CPU and 
16 GB RAM, as well as all approaches implemented by 
Python using Scikit-Learn libraries.

In this section, the GA-SVM (Shi et al. 2010), and PSO-
SVM (Zhang et al. 2012; Han and Bian 2018) considered 
as two approaches of forecasting energy consumption, and 
these approaches compared to MVO-SVM with k-fold 
cross-validation. According to the above mentioned, the 
SVM objective function used two parameters which define 
by the user, such as the regularization term C and the radial 
basis function (RBF) with a value for γ, which identifies the 
radius of influence in each support vector. To limit overfit-
ting, k-folds cross-validation executed in each combination 

.

.

.

k-fold

Test Train

Test Train on (k-1) split

Fig. 3   An illustrated example of k-folds cross validation
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of C and γ. Therefore, to achieve a learning model which 
have a better performance, requires suitable values for two 
mentioned parameters, additionally, to achieve these values 
utilize population-based methods. Table 3 reported the ini-
tial parameters of MVO, GA, and PSO algorithms. In all 
algorithms, the number of universes, individuals and swarm 
size are similar and equal to 100. In addition, with setting a 
lower value for maximum iteration, running the algorithm 
with the small number of iterations leads to decrease the 
computation time in the metaheuristic algorithms. Accord-
ingly, for the maximum iterations in these algorithms, the 
value equals to 60.

The initial values for these parameters are selected based 
on the best available result which achieved by these meth-
ods. As the advancement in the optimization process in the 

MVO algorithm, the probability of wormhole existence 
emphasizes exploitation. The value of this probability set-
ting according to three parameters include current iteration, 
minimum, and maximum of wormhole existence rate. In 
addition, choosing the roulette wheel method and setting 
the suitable rates for genetic operators leads to a suitable 
convergence process and achieve better results, provided that 
the parameters of the GA algorithm were considered. In the 
PSO algorithm, the suitable value selected for the inertia 
weight and acceleration which verified to have the advantage 
of channel assignment in three aspects such as convergence 
rate, convergence speed, and the independence in the quality 
of the initial solution (Gandomi et al. 2013; Angelov 2014; 
Angelov and Kasabov 2005).

Fig. 4   MVO-SVM flow chart
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Data pre-processing and 
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Selected Parameters and Features 
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In the present study, the cross-validation of proposed 
comparison approach is equal to 10, therefore, SVM is 
trained ten times, wherein each time SVM is trained using 
different ninefolds, and the fitness function returns a fitness 
value based on the tenth testing fold. The results represented 
that compared to GA and PSO, the MVO algorithm reached 
the highest average accuracy rates in introduced Dataset. 
The MVO-SVM model has the best accuracy for forecast-
ing residential buildings primary energy consumption, for 
this reason, the mean and standard deviation of R-squared 
is considered to compare the predictive accuracies of the 
models (Cameron and Windmeijer 1997; Troy et al. 2007; 
Angelov et al. 2004).

where n is the number of data points, ŷi is the predicted 
value, yi is a real value in the testing set and ȳi is mean of real 
values. It is clear that R2 finds a value close to one, which 
indicates that it is a perfect fit if the real and estimated value 
were closed together. However, R2 finds a value close to 
zero, if there is a large distance between the real and esti-
mated values. Based on Table 4, the obtained results indi-
cating that the AMVO-SVM rolling cross-validation model 
has more promising results in terms of R-squared, therefore, 
the training and testing set achieved higher values than the 

(8)R2 = 1 −

∑n

1
(ŷi − ȳi)

2

∑n

1
(yi − ȳi)

2
,

other optimization methods, respectively. In addition, The 
MVO-SVM with rolling cross-validation model produced a 
higher R-squared (93.65%) value in the testing set and has 
a better fit estimation compared to that of the other models. 
Results presented that the prediction process in the MVO 
algorithm is more accurate than the PSO-SVM and GA-
SVM algorithms.

The predictive accuracy can significantly improve, when 
using cross-validation, as well as prediction accuracy was 
improved with MVO, which is a population-based approach. 
In this study, three algorithms are evaluated with selected 
datasets, accordingly, Table 4 and Fig. 5 indicated the aver-
age of the accuracy rate and the number of selected features 
with the standard deviation.

In the present study, other measures of standard evalua-
tion were used to evaluate the prediction model, coefficient 
of variation (CV), mean squared error (MSE), and R-squared 
measures commonly used in the energy consumption pre-
diction models. Generally, the CV has been used for two 
reasons. First, it is a measure of performance which is sug-
gested to evaluate the energy consumption prediction mod-
els. Next, it normalizes the prediction error with the average 
energy consumption and provides a unitless measure which 
is more convenient for comparison purposes (Edwards et al. 
2012). The CV metric is defined by:

(9)CV =

�
1

N−1

∑N

i=1
(yi − ŷi)

2

ȳ
× 100,

Table 3   Initial parameters of the MVO, GA, PSO

Algorithm Parameter Value

MVO Min wormhole existence rate 0.2
Max wormhole existence rate 1
Iterations 60
Universes 100

GA Crossover rate 0.8
Mutation rate 0.1
elitist  ratio 0.1
Selection mechanism Roulette wheel
Population size 100
Generations 60

PSO Acceleration constants [1.5, 1.7]
Inertia weight 1
Generations 60
Number of particles 100

Table 4   Comparison of results 
from various estimation energy 
consumption models based on 
the SVM approach

Algorithms Whole set R2 (%) Training set R2 Testing set R2

AVG (%) Std (%) AVG (%) Std (%)

MVO-SVM k-fold cross-validation 93.65 99.48 0.021 88.98 5.24
PSO-SVM k-fold cross-validation 87.98 99.52 0.065 72.84 24.89
GA-SVM k-fold cross-validation 79.75 99.53 0.052 59.77 30.92

Fig. 5   Convergence curves of MVO, GA, PSO in optimizing SVM 
and feature selection
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Where N is total number of observation, ŷi is the predicted 
value, yi is the observed value and ȳ is the mean of observed 
values.

In this study, in order to optimize the SVM parameters, 
MVO was compared with the gird search. In addition, for 
a fair comparison, MVO only utilized for parameters opti-
mization due to the grid search does not have the feature 
selection part, also tenfolds cross-validation used in both 
techniques. Figure 6 indicates that the result of the compari-
son which the MVO-SVM model noticeability performed 
better than the gird search model in daily temporal intervals. 
Generally, this section conducted that the performance of 
SVM was improved by the MVO algorithm, and based on 
the high exploitation of MVO. More accurate results of the 
were MVO-based SVM was achieved, and a for more accu-
rate SVM, the parameters must be tuned accurately.

The results concluded that the MVO-SVM rolling cross-
validation model to predicting energy consumption in resi-
dential building has better suitability and predictive ability. 
In addition, features selected by the multiverse algorithm for 
residential energy consumption are the temperature in the 
room, the number of inhabitants, the solar flux, the humid-
ity in the room area, the and the outside temperature as the 
SVM feature. The global search modified with the MVO 
algorithm and cross-validation regarded to achieve better 
learning model. Finally, this modification achieved based on 
a balance between exploration and exploitation.

7 � Conclusions and future work

Forecasting the residential buildings’ energy consumption 
is very crucial for policymakers so that a precise predic-
tion helps to implement energy policies properly. It should 
be noted that energy consumption is one of the most sub-
stantial research areas in today’s world. Different models 
have different goals, cover different areas, involve different 
datasets, and take advantage of different features for fore-
casting. This study presents a considerable step in the area 
of energy forecasting for residential buildings. As a future 
work, we propose predicting residential energy by additional 
machine learning approach. Further, in order to select a bet-
ter subset of features, we suggest applying another feature 
selection approach. It is important to present other metrics 
which accurately leads to model performance. State-of-the-
art technologies including Big Data and Internet of Things 
have a special place in building energy usages where mas-
sive data obtained from sensors and energy meters require 
greatly efficient data processing systems. It is obvious that 
traditional methods of energy prediction cannot meet the 
needs of modern data mining development. As a result, intel-
ligent models are almost necessary to answer this demand 
in industry, and it seems that further investigation of using 
artificial intelligent in building sector emphasizing on indus-
trial data is an inevitable task. This study presented an MVO 
algorithm to optimize the SVM parameters and used the 
k-fold cross-validation to enhance its performance. The 
proposed approach is evaluated using PSO and GA algo-
rithms. The results indicate that the MVO-SVM algorithm 

Fig. 6   Daily forecasting results for whole building (predicted by MVO-SVM and grid search)
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outperforms others in terms of accuracy. Furthermore, the 
improved MVO-SVM algorithm has better exploration and 
exploitation abilities than MVO-SVM algorithm.
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