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Abstract
Adaptive neuro-fuzzy inference system (ANFIS) is a hybrid of two soft computing methods of the artificial neural network 
(ANN) and fuzzy logic. Fuzzy logic has the advantage to change the qualitative aspects of human knowledge and insights 
into the process of precise quantitative analysis. However, it does not have a defined method that can be used as a guide in the 
process of transformation and human thought into rule-based fuzzy inference system (FIS). The fuzzy system cannot learn 
or adapt itself to the new environment, while the ANN is ambiguous to the user. By combining these two methods, the ANN 
becomes more transparent, and the fuzzy system takes on the ability of learning. With this combination, a more effective 
model in the medical domain could be built. In this paper, the ANFIS trained with corrected particle swarm optimization 
(CPSO), is proposed to classify the brain–computer interface (BCI) motor imagery mental tasks based on electroencephalog-
raphy signals. The dataset is used in this paper, is BCI competition IV dataset. For evaluating the proposed method in order 
to obtain more classification rate, it is compared to the conventional ANFIS and the ANFIS trained by other evolutionary 
algorithms (EAs) such as genetic algorithm, particle swarm optimization, differential evolution, and biogeography-based 
optimization (BBO) that are more closely to the CPSO algorithm than the other EAs. The results showed that the ANFIS 
prediction trained by CPSO algorithm has more performance compared to conventional ANFIS prediction and ANFIS 
trained by other EAs.

Keywords  Brain–computer interface · Neural networks · Adaptive neuro-fuzzy inference system · Particle swarm 
optimization

1  Introduction

Although brain–computer interface (BCI) systems are not 
usable in comparison with other control devices, for peo-
ple who are motorically disabled, BCI systems are the most 
important means of communicating with the external world 
(Schalk et al. 2004). Devices creating a bridge between peo-
ple and the environment using brain signals are called BCI-
based systems. After several decades of research and many 
of the improvements, particularly over the last few years, we 

are still far from having the daily use of the BCI systems. 
Most of these systems are used for medical purposes. BCI 
systems have an interesting feature: these systems are the 
only human-known tools which require no muscle move-
ments; therefore, brain and computer systems are benefi-
cial for those who have lost their ability to control muscles 
(Wolpaw et al. 2002). For patients suffering from locked-in 
syndrome, BCI systems are the most critical manner of com-
municating with the outside world, which enhances their 
autonomy about the environment (Moore 2003). Many stud-
ies have been conducted, considering the importance of the 
issue. In this area, researchers have been used the methods of 
machine learning and signal processing in order to enhance 
the efficiency of the BCI systems. Pfurtscheller et al. (1998) 
proposed an adaptive autoregressive (AAR) algorithm for 
classification of electroencephalography (EEG) signals. 
Lemm et al. (2004) conducted the probabilistic modeling 
of sensorimotor µ rhythms for hand movement imaginary 
classification. Zhou et al. (2008) classified the mental task 
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features using linear discriminant analysis (LDA) and sup-
port vector machines (SVM). Ma et al. (2016) used of parti-
cle swarm optimization (PSO) algorithm for optimizing the 
performance of SVM classifier. Subasi and Ercelebi (2005) 
applied neural networks for EEG signal classification and we 
classify EEG signal using neural networks trained by hybrid 
population physic based algorithm in (Afrakhteh et al. 2018). 
The concept of EFS is intended in the twentieth century 
(Angelov and Buswell 2001; Angelov and Plamen 2013; 
Kasabov and Song 2002) to address the needs of flexible, 
yet robust and interpretable systems for the advanced indus-
try, independent systems, and intelligent systems. Technical 
systems that claim to be smart are far from real intelligence. 
One of the main reasons is that information cannot be fixed, 
but is evolving. As human beings, during their life, learn 
from the experience and shape of the new laws, and accord-
ingly their actions are adapted, overlooked and replaced by 
new laws, systems are also being evolve and should adapt 
themselves to different circumstances. In general, evolving 
fuzzy systems (EFS) can be of different type, e.g. of the 
so called Zadeh–Mamdani type (Zadeh 1973; Mamdani 
and Assilian 1975). The original TS type fuzzy system as 
described above is multi-input–single-output (MISO). EFS 
can also use multi-input–multi-output (MIMO) TS fuzzy 
systems which can be described in (Angelov et al. 2004a, b). 
Fuzzy rule-based classifiers with rules that are evolved from 
streaming data are called evolving fuzzy classifiers (EFC) 
(Angelov and Zhou 2008). Edwin Lughofer (2013) discussed 
achievements and open issues in the interpretability of EFS. 
Angelov et al. (2011) proposed a new real-time approach 
based on three modern techniques for automatic detection, 
object identification, and tracking in video streams, respec-
tively. The novelty detection and object identification were 
based on the newly proposed recursive density estimation 
(RDE) method. Then evolving Takagi–Sugeno (eTS)-type 
fuzzy system was proposed for tracking. Precup et al. (2018) 
suggested a set of evolving Takagi–Sugeno–Kang (TSK) 
fuzzy models that characterize the finger dynamics of the 
human hand in the framework of myoelectric (ME) con-
trol of prosthetic hands. A novel evolving fuzzy ensemble 
classifier, namely Parsimonious Ensemble (pENsemble), is 
proposed in Pratama et al. (2018). pENsemble differs from 
existing architectures in the fact that it is built upon an evolv-
ing classifier from data streams, termed Parsimonious Clas-
sifier (pClass). A new on-line evolving clustering approach 
for streaming data was proposed in Baruah and Angelov 
(2012). The approach was based on the concept that local 
mean of samples within a region has the highest density and 
the gradient of the density points towards the local mean. In 
Angelov and Kasabov (2005), a new computational model 
for intelligent systems is presented based on data integra-
tion. This approach was also suitable for the integration of 
new data and other existing models into models that can be 

incrementally adapted to future incoming data. The mecha-
nism for rule-base evolution, one of the central points of the 
algorithm together with the recursive clustering and modi-
fied recursive least squares (RLS) estimation, was studied in 
Angelov et al. (2004). In Angelov (2014), the new typicality 
and eccentricity based data analytics (TEDA) was proposed 
which was based on the spatially-aware concepts of eccen-
tricity and typicality which represent the density and prox-
imity in the data space. A new online evolving clustering 
approach for streaming data was proposed in Baruah and 
Angelov (2014). This approach efficiently estimated cluster 
centers based on the evolution of Takagi–Sugeno models.

The adaptive neuro-fuzzy interface system (ANFIS) is 
included of two approaches of neural networks and fuzzy. 
If we combine these two intelligent approaches, it will be 
achieving good reasoning in quality and quantity. In other 
words, we have fuzzy reasoning and network calculation. 
Various techniques have been proposed for the learning pro-
cess that some of the most important ones are mentioned, to 
develop the ANFIS model. Mascioli et al. (1997) proposed 
a method that combines min–max and the ANFIS model 
to obtain an optimal set of fuzzy rules. Jang and Mizutani 
(1996) used the non-linear least square (LS) to train and 
determine the parameters of the ANFIS model. Also, in Jang 
(1993), gradient descent, LS, and sequential LS were used 
to update the model parameters in order to train the ANFIS 
model. The disadvantages of these methods are their high 
complexity and stuck in local traps. In this work, the ANFIS 
classifier is proposed which is trained using evolutionary 
algorithms (EAs). In other words, in the process of ANFIS 
training, instead of using the back propagation (BP) pro-
cess, EAs such as PSO (Eberhart and Kennedy 1995), GA 
(Holland 1992), differential evolution (DE) (Storn and Price 
1997) and biogeography-based optimization (BBO) (Simon 
2008) are used and we use an EA based approach to update 
the ANFIS model. In PSO algorithm, in order to improve 
the exploration power of each particle, to avoid premature 
convergence and to fall into local traps, we put much impor-
tance in low iteration for personal experience, and in higher 
repetitions, the importance of this experience is reduced, and 
we give more value to the experience of the global. So, we 
introduce new version of PSO algorithm is called CPSO. In 
order to investigate the efficiency of the algorithm, we apply 
this algorithm to a set of benchmark functions with known 
global optimum. The graphical results showed that the 
CPSO algorithm is superior to the rest of the algorithms in 
finding the global optimum. Then, we use CPSO to optimize 
the ANFIS parameters. Finally, this CPSO-trained ANFIS 
used as the proposed classifier of the identification problem.

The structure of the paper is as follows. In Sect. 2, the 
main structure of the BCI system is prepared. In Sect. 3, 
the typical common spatial pattern (CSP) for feature extrac-
tion is introduced. Section 4 discusses ANFIS networks 
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and describes the theory that governs them. In Sect. 5, the 
proposed method is presented. In Sect. 6, the results are 
discussed in detail. Finally, the conclusion of this paper is 
prepared in Sect. 7.

2 � Main structure of BCI system

The main structure of EEG-based BCI system is shown in 
Fig. 1 and includes four part as follows (Wessel 2006): input 
of the BCI system that includes brain measurements, pre-
processing on obtained signals from the previous step, fea-
ture translation process that is decomposed to two parts; fea-
ture extraction and classification, and output of the system 
that is classified signal for controlling the external device. 
In the pre-processing stage, EEG signals of each channel 
are sampled at 100 Hz. Then, these signals are filtered by 
a band-pass finite impulse response (FIR) filter with zero 
phase and the passband range of 8–30 Hz (Ramoser et al. 
2000). This frequency band has been selected because: 
firstly, it includes frequency bands of µ (8–13 Hz) and � 
(14–30 Hz); secondly, the frequency of artifacts caused by 
eye movements and muscle movements is outside of this 
range. These artifacts and the 50 Hz electricity noise power 
will be removed by this filter (Jasper and Penfield 1949). The 
type of filter is used in this paper, is the third order Butter-
worth one. The reason for using this type is the smoothness 
of its response compared to the other common filters such 
as Chebyshev or Bessel.

In the next step, the obtained signals are given to the fea-
ture extraction stage. In this stage, the CSP method is used 
for feature generation. Finally, the obtained features are given 
to the classification stage to control the external device. In 
this paper, the data set 1, and the calibration data part of BCI 
competition IV are used (http://www.bbci.de/compe​titio​n/iv/). 
This is a two-class dataset. The recording was made using 
Brain Amp MR plus amplifiers and an Ag/AgCl electrode cap. 
Signals were measured from 59 EEG positions that were most 
densely distributed over sensorimotor areas. This dataset has 
been recorded from seven subjects (Blankertz et al. 2007). 
The locations of EEG electrodes are shown in Fig. 2 which is 

plotted using EEGLAB toolbox in MATLAB. In this figure 
‘F’, ‘P’, ‘O’ and ‘C’ indicate the frontal, parietal, occipital, and 
central parts of the head, respectively. In the next section, the 
feature extraction algorithm is described in detail.

3 � CSP method for feature extraction

The main goal of the CSP is to design a filter that maximizes 
the variance of the filtered signals of one class, while mini-
mizing the variance of filtered signals from another class 
(Ramoser et al. 2000a, b; Lotte and Guan 2010; Arvaneh et al. 
2011). Thus, the spatial filter V is obtained when the following 
function is maximized (Arvaneh et al. 2011):

In this case, T represents the transposed matrix and Ci 
represents covariance matrix of the i-th class data obtained 
from the following equation:

(1)J(v) =
vTC1v

vTC2v
.

Fig. 1   Main structure of the 
BCI system

49 of 59 electrode locations shown

AF3 AF4 

F5  F3  F1  Fz  F2  F4  F6  

FC5 FC3 FC1 FCz FC2 FC4 FC6 

T7  C5  C3  C1  Cz  C2  C4  C6  T8  
CCP5 CCP3 CCP1 CCP2 CCP4 CCP6

CP5 CP3 CP1 CPz CP2 CP4 CP6 

P5  P3  P1  Pz  P2  P4  P6  

PO1 PO2 

O1  O2  

Channel locations

Fig. 2   Channel location of the EEG electrode for recording data 
(extracted from EEG-lab)

http://www.bbci.de/competition/iv/
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where matrix Xi is the matrix of i-th class data. The data 
samples of each channel (electrode) are in one row per 
experiment. Finally, the average covariance matrix of differ-
ent tests for class i is achieved (Simon 2008). This problem 
can be solved by generalized eigenvalue problem. However, 
it can be also solved by two times of standard eigenvalue 
problem. First, we decompose the total covariance matrix 
as follows:

where U is a set of eigenvectors, and E is a diagonal matrix 
of eigenvalues. Next, we compute P ∶=

√
E−1UT , then we 

have:

It should be noted that Ĉ1 + Ĉ2 = I . Thus, any orthogonal 
matrices F satisfies FT (Ĉ1 + Ĉ2)F = I . Finally, it is decom-
posed as:

where F is a set of eigenvectors and Λ is a diagonal matrix 
of eigenvalues. A set of CSP filters is obtained as:

So, we have:

where �1 ≥ �2 ≥ ⋯ ≥ �ch . Therefore, first CSP filter v1 pro-
vides maximum variance of class 1, and last CSP filter vch 
provides maximum variance of class 2. We select first and 
last m filters to use as:

So, the filtered signal is given by:

(2)Ci =
Xi.X

T
i

trace (Xi.X
T
i
)
,

(3)C1 + C2 = UEUT ,

(4)Ĉ1 = PC1P
T ,

(5)Ĉ2 = PC2P
T .

(6)Ĉ1 = FΛFT ,

(7)V = PTF.

(8)VTC1 V = Λ =

⎡⎢⎢⎢⎣

�1

⋱

�ch

⎤⎥⎥⎥⎦
,

(9)VTC2 V = I − Λ =

⎡
⎢⎢⎢⎣

1 − �1

⋱

1 − �ch

⎤⎥⎥⎥⎦
,

(10)Vcsp =
(
v1 ⋯ vm vch−m+1 ⋯ vch

)
∈ R2m×ch.

(11)y(t) = Vcsp x(t) = (y1(t) ⋯ y2m(t) )
T .

After the features are extracted, these features must be 
applied to the classifier. Because in the classification phase, 
ANFIS is used, we will state the ANFIS theory in the next 
section.

4 � Adaptive neuro‑fuzzy inference system

ANFIS systems are highly suggested for non-linear mod-
eling systems, and their performance accuracy is related to 
the parameters of the initial structure of these systems. It 
includes the number of input variables, the number of mem-
bership functions, the type of these functions, the type of the 
membership functions, the rule number of the fuzzy system 
and the parameters related to the training of these systems, 
including the method of training and the initial conditions. 
The correct choice of these parameters is a matter which 
depends on the experience of the designer and the appli-
cation of the ANFIS system because there are no general 
practical rules for this purpose.

Fuzzy logic can convert the qualitative aspects of human 
knowledge and insight into the process of detailed quantita-
tive analysis. However, it is not a standard method that can 
be used as a guide in the process of personal conversion 
and be thinking to a fuzzy interface system (FIS), and also 
spent much time to adapt the membership functions (Cheng 
et al. 2005). ANN has a higher ability to learn and adapt 
to its environment. The primary goal of ANFIS is to opti-
mize the parameters of the equivalent fuzzy logic system by 
employing a learning algorithm to the input–output dataset. 
An adaptive network is an example of a feed-forward neu-
ral networks with multiple layers. In the learning process, 
these networks often use a supervised learning algorithm. 
Also, the adaptive network has the architecture character-
istics that consists of some adaptive nodes interconnected 
directly without any weight values between them. There are 
several types of FIS, namely Takagi–Sugeno, Mamdani, 
and Tsukamoto. A FIS of Takagi–Sugeno model was found 
to be widely used in the application of the ANFIS method 
(Eberhart and Kennedy 1995). As seen in Fig. 3, the ANFIS 
architecture has five layers that are discussed in detail. The 
name of layer 1 is the fuzzification layer, where signals are 
obtained and transformed to the next layer.

In Fig. 3, for simplicity, it is assumed that there are two 
inputs x and y, and one output f. Two “If-Then” rules were 
used for Takagi–Sugeno model, as follows:

where A1, A2, B1, and B2 are the membership functions of 
each input x and y in “if part,” while m1, n1, r1, m2, n2, and 

(12)

Rule 1 ∶ if x is A1 and y is B1 Then f1 = m1x + n1y + r1

Rule 2 ∶ if x is A2 and y is B2 Then f2 = m2x + n2y + r2,
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r2 are linear parameters in “then part” of Takagi–Sugeno 
fuzzy inference model.

The outputs of layer1 are:

where Ai , Bi are the membership functions of each input x 
and y. �Ai , �Bi are the membership degrees that are calcu-
lated for this function. For the Gaussian membership func-
tion �Ai is calculated as follows:

In here, ai and ci are sigma and central parameters of the 
membership function, respectively. These parameters are 
the membership parameters that can change the member-
ship function. The parameters in this layer are typically 
referred to as the premise parameters.

The name of layer 2 is the rule layer. In this layer, 
the circle nodes are labeled as Π. The output node is the 
result of multiplying of the signal coming into the node 
and delivered to the next node. Each node in this layer 
represents the firing strength for each rule. The output of 
this layer is calculated as follows:

The name of the third layer is the normalization layer. 
The output of this layer is calculated as follows:

Layer 4 is named as defuzzification layer. Each node in 
this layer is an adaptive node to an output. The output of 
this layer is calculated by:

(13)
O1i = �Ai(x), i = 1, 2

O1i = �Bi−2(x), i = 3, 4,

(14)�Ai = exp

[
−

(
x − ci

2 ai

)2
]
.

(15)O2i = wi = �Ai(x) ∗ �Bi(y).

(16)O3i = wi =
wi∑
i wi

.

(17)O4i = wi fi = wi (mi x + ni y + ri),

where the mi x + ni y + r is a parameter in the node. Finally, 
in layer 5, which is named as summation layer, computes 
the total output using the summation of its inputs from the 
previous layer:

The ANFIS network has a set of parameters that we need 
to determine the best structure for this network to achieve 
optimal performance. Therefore, in the next section, a pro-
posed method is presented for determining the optimal 
structure.

5 � Proposed method

Try, and error methods and information categorization 
methods do not always guarantee the best structure. ANFIS 
has two parameter types that have to be updated. These are 
premise parameters and consequent parameters. Premise 
parameters belong to the gauss membership function that is 
given as {ai,ci} in Eq. (14). The total number of the prem-
ise parameters is equal to the sum of the parameters in all 
membership functions. Consequent parameters are the ones 
that are used in defuzzification layer, shown in Eq. (17) as 
{mi, ni, ri}. So, in this paper, an optimization method for 
these parameters based on EAs is used for this purpose, 
and its performance accuracy is examined. In neural net-
works, training is the process of calculating the weights of 
the neuron-connecting branches. In ANFIS systems, training 
and mathematical techniques are similar to neural networks, 
but the goal is to determine the parameters associated with 
membership functions. The form of the membership func-
tions in the if-part and the parameters in the then-part, which 
are the same parameters of the output functions, are evalu-
ated as the weights for identification. The accuracy of the 
trained ANFIS system depends on the structural parameters 
and parameters related to the training of these systems. In 
this paper, an ANFIS system trained by EAs such as CPSO 
is proposed in order to optimize the classification accuracy. 
The process of this method is shown in Fig. 4. As is evident, 
the proposed method is based on four steps:

Step 1: Initialization of ANFIS system parameters.
Step 2: The ANFIS system estimates the outputs based on 

features extracted from the feature extraction step.
Step 3: The outputs are compared with the target values, and 

the error is obtained. However, this error is not excellent. So, 
in order to optimize it, the learning process should be done.

Step 4: Using CPSO, some parameters are set to minimize 
this error or to arrive at an acceptable error.

The steps of 2–4 will be repeated until we reach the stop 
criteria and convergence condition.

(18)O5i =
∑

i
wi fi.

Fig. 3   A basic structure of ANFIS (Jang 1993)
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In the following, we introduce an improved CPSO algo-
rithm for ANFIS training.

5.1 � Corrected particle swarm optimization (CPSO) 
algorithm for training the ANFIS system

5.1.1 � Particle swarm optimization algorithm

PSO is a population-based stochastic optimization technique 
developed by Eberhart and Kennedy in 1995, inspired by the 
social behavior of birds (Holland 1992). This method uses 
the number of particles (candidate solutions) in the search 
space to find the best solution. All particles travel towards 
the best particle (best solution) that are on their way. PSO 
is initialized with a group of random particles (solutions) 
and then searches for optima by updating generations. In 
each iteration, each particle is updated by following two best 
values. The first one is the best solution (fitness) that has 
achieved so far (the fitness value is also stored), which is 
called pbest. Another best value that is tracked by the parti-
cle swarm optimizer is the best value in the population. This 
best value is a global best and called gbest. After finding the 
two best values, the particle updates its velocity and posi-
tions with the following Eqs. (19) and (20):

where vt
i
 is the particle velocity, � t

i
 is the current position of a 

particle, pbest, and gbest are defined as stated before, rand () 
is a random number in (0, 1) and c1 and c2 are learning fac-
tors. The cognitive coefficients including c1 and c2 in stand-
ard PSO have a value of 2 (c1 = c2 = 2). w is the inertia com-
ponent keeps the particle moving in the same direction it was 
originally heading. In other words, the inertia weight is used 

(19)
vt+1
i

= wvt
i
+ c 1 × rand() × (pbesti − � t

i
)

+ c 2 × rand() × (gbest − � t
i
) ,

(20)� t+1
i

= � t
i
+ vt+1

i
,

to control the effect of the previous velocities on the current 
velocity. This makes compromise between a global and local 
exploration abilities of the swarm. The size of inertia weight 
is closely related to searching ability of particle. The larger 
value of the inertia weight is the larger particle velocity is. 
rand () is a uniformly distributed random number between 0 
and 1 and it is used to introduce a stochastic element in the 
search process. In this algorithm, the particles are initialized 
with random positions and velocities in the problem space. 
The number of repetitions is 500, c1 = c2 = 2, and the inertia 
weight is also linearly reduced from 0.9 to 0.4.

In the next part, we present a CPSO algorithm to achieve 
global optimum.

5.1.2 � Main idea of CPSO

In the PSO algorithm, the cognitive coefficients, c1, c2, with 
random vectors rand () control the statistical effect of cognitive 
components on the total velocity of a particle. The coefficient 
c1 determines how much a particle is assured to itself and its 
nearest neighbor, while the coefficient c2 indicates how much 
other neighbors can be trusted. If c1 = c2 = 0, then the particle 
moves at the same speed as before to reach the boundary of the 
search space, which will cause a lot of time and cost. If c1 > 0 
and c2 = 0, all particles move independently, and the experi-
ment of any particles does not affect the motion of another. In 
fact, each particle finds the best place. If the best location is 
found better than the previous one, it replaces the new place. In 
this case, we say that the particle is a local search. If c2 > 0 and 
c1 = 0, all particles are absorbed into a particle and do not care 
about their experience and trust the best particle. However, the 
whole community can collaborate and make the right answer 
by sharing their personal and global experiences with less time 
and cost. Therefore, this collaboration can be useful when c1 
and c2 have a right balance between each other. In many appli-
cations, c1 = c2 is used to drag particles into average positions. 
If c1 > > c2, each particle goes further towards the best indi-
vidual experience. If c2 > > c1, particles are more attracted to 
the best global experience. In this paper, in order to improve the 
exploration power of each particle, to avoid premature conver-
gence and to fall into local traps, we put much importance in 
low iteration for personal experience, and in higher repetitions, 
the importance of this experience is reduced, and we give more 
value to the experience of the global. With these interpretations, 
we improve the cognitive coefficients c1 and c2 as follows:

where iter and max_iter indicate the iteration and maximum 
iteration number, respectively. We named this version of 

(21)

c1(t) = 3 − c2(t)

c2(t) = min{c2} × log

{(
max{c2}

min{c2}

) 2

1+20 (iter∕max_iter)

}
,

Fig. 4   Block diagram that shows the proposed method
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PSO as CPSO. The changes in values of c1 and c2 in vari-
ous times are shown in Fig. 5.

In the next part, we present the optimization problem in 
this paper and the link of the CPSO algorithm to this problem 
is determined.

5.1.3 � Optimization problem

For representing the problem, we have to identify the variables 
of the problem of training ANFIS. The main parameters of an 
ANFIS are the premise parameters and consequent param-
eters. As mentioned in Sect. 5, the premise parameters and 
consequent parameters are {ai, ci} and {mi, ni, ri}, respectively. 
Therefore, they have to be represented as a vector as follows:

This vector includes all the parameters to be optimized by 
a training algorithm. The number of variables in this vector 
defines the dimension of the search agent (candidate solutions) 
in evolutionary algorithms such as CPSO.

The next step is to define the objective function. In this 
study, the measurement for quantifying the performance of 
ANFIS, is Mean Squared Error (MSE), which is defined as 
follows:

The MSE can be calculated for each of training samples. 
However, an ANFIS should be adapted to classify all train-
ing samples. So, we calculate the MSE for all the training 
samples and average them. This gives overall performance 

(22)

x = {premise parameters , consequent parameters}

=
{
{ai, ci},

{
m

i
, n

i
, r

i

}}
.

(23)MSE =

m∑
i=1

(Tk
i
−Ok

i
)2.

of ANFIS when classifying training samples. The equation 
for this purpose is as follows:

where Tk
i
 is the desired output of the i-th input, Ok

i
 is the 

actual output of the i-th input unit when the k-th training 
sample appears in training. m is the number of outputs and 
n is the number of training samples. So, the optimization 
problem can be formulated as follows:

Finally, we use the CPSO algorithm to optimize it. In 
the next section, several analyzes are performed on some 
benchmark functions. Also, the analysis of the results from 
the classification of motor imagery is presented.

6 � Simulation results

6.1 � Applying CPSO on some mathematical 
benchmark functions

In the case of global optimization, an efficient algorithm 
should possess two abilities, namely exploration and exploi-
tation. The exploration is the ability of an algorithm to 
search the whole feasible space of the problem. In contrast 
to exploration, the exploitation is the convergence ability to 
the best solution near a good solution. Therefore, in order 
to investigate the efficiency of the algorithm, we apply this 
algorithm to a set of benchmark functions with known global 
optimal. These test functions are divided into two groups: 
the first group of unimodal functions (F1–F7) is suitable for 

(24)MSE =

N�
k=1

∑m

i=1
(Tk

i
−Ok

i
)2

N
,

(25)Minimize: f (x⃗) = MSE.
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exploitation testing because these functions have an opti-
mal point and no other local optimal. However, the second 
group is multimodal functions (F8–F12) that have a large 
number of local optimums and can be helpful for examining 

the exploration and preventing falling into local traps. The 
mathematical formulation of these two groups of test func-
tions, the graphical results of the proposed algorithm and its 
comparison with the other algorithms examined in this paper 

Table 1   Applying CPSO on some benchmark function and comparing with other algorithms (for all benchmark functions fmin = 0)
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are shown in Tables 1 and 2. This point should be noted that 
the convergence curves show the averages of 20 independent 
runs. Also, there are 30 search agent and 500 iterations for 

each algorithm. As shown in Tables 1 and 2, except for F4 
in the set of unimodal functions, and F9 in the multimodal 
functions set, the CPSO algorithm is superior to the rest of 

Table 1   (continued)
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the algorithms in finding the global optimum. Nevertheless, 
in F4 and F9, the CPSO algorithm is ranked second best 
regarding finding the optimal point. Therefore, the CPSO 
algorithm operates better than other algorithms both in 
the exploration and exploitation phase, since it proved to 
be more potent than the rest of the discussed algorithms in 

finding the global optimum for both unimodal and multi-
modal functions.

Table 1   (continued)
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6.2 � Results of applying CPSO for ANFIS training 
to classify EEG signals

In this paper, our main goal is the classification of two motor 
imagery (right and foot) based on the EEG signal for the 
aforementioned dataset in Sect. 2. At first, in pre-processing, 
the EEG signal is filtered using a 3rd order band-pass filter. 
Then, in feature extraction, the CSP filter (with m = 5) is 

used. According to what was said in describing the CSP 
method in Sect. 3, the number of features is equal to 2 m 
(2m = 10). So, the output of the feature extraction stage is a 
140 × 10 matrix with 140 labels. Now, this matrix must be 
applied to the CPSO-trained ANFIS classifier. The following 
figure shows this procedure (Fig. 6).

The main results include a comparison between desired 
outputs (targets) and calculated outputs (outputs). In this 

Table 2   Global optimum that 
obtained by each algorithm 
(for all benchmark functions 
fmin = 0)

Algorithm Func-
tion name

PSO GA DE BBO CPO

Function 1 0.010653 3.5904 4.5748 0.6919 1.9208e−06
Function 2 1.1305 0.28374 0.62687 0.26345 0.015742
Function 3 709.6118 2128.0712 32014.0023 413.5479 61.6431
Function 4 11.4886 3.4371 24.262 1.0779 2.3831
Function 5 160.3797 266.729 3356.092 151.5941 27.7524
Function 6 0.040064 0.47587 0.049303 1.2207 6.3514e−06
Function 7 0.093506 0.024613 0.05379 0.08636 0.0046304
Function 8 68.6525 71.6382 99.3118 32.6599 8.1763
Function 9 3.5184 0.68957 0.059806 2.6602 0.11906
Function 10 0.0017969 0.24685 0.13856 0.5149 3.0952e−06
Function 11 0.049474 0.095337 0.67223 0.02177 0.014508
Function 12 9.5955 0.0012145 7.312 0.0012708 1.8828e−08

CSP
with 
m=5

Input EEG Data

1 2 ... 10

1 ...

2 ...

3 ...

4 ...

... ...

140 ...

 output of CSP is a matrix has the size of
140*10

feature vector_1 

feature vector_2 

feature vector_10 

3rd order
band-pass 

filter

output of the 
filtering stage has 
the size of 140*59

CPSO- trained

ANFIS 

(Classifier)
140 139 ... 4 3 2 1

140 139 ... 4 3 2 1

.

.

.

140 139 ... 4 3 2 1X 1

X 9

X 10

1

2

3

...

140

Feature Vector 
(output of CSP 

method)

Output
Labels

.

.

.

Fig. 6   Main procedure of the classification algorithms
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Fig. 7   Prediction results for DS1a
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Fig. 8   Prediction results for DS1c
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part, the target and output curves are compared to each other, 
and the error curve is shown. Also, the error dispersion is 
shown around zero, and for each, the standard deviation is 
calculated for each one. For the reliability of the results, 
these were obtained from 20 independent runs, and the mean 
value of them are measured. These results are shown in 
Figs. 7 and 8 for two subjects DS1a and DS1c, respectively. 
The histogram displays the extent of the accumulation of 
error information.

•	 Convergence curves

Convergence curve defines the relationship between the 
grid interval and the analysis error. From these curves, it 
can be found that which algorithm has less error and more 
convergence speed. These curves are shown in Figs. 9 and 
10 for DS1a and DS1c, respectively. Table 3 shows these 
results for all subjects. Also, Fig. 11 shows the bar plot of 
MSE values for all subjects.

Results reveal that the CPSO algorithm has minimum 
MSE in ANFIS training in order to classify motor imageries. 
It is clear that the CPSO-trained ANFIS predicts the target 
output very well, and in the next rank, the PSO algorithm 
obtains a precise result.

For a comprehensive comparison, in addition to accu-
racy, we also compare the convergence of algorithms. In this 
regard, we have recorded a repetition in which convergence 
occurs for each algorithm, which is shown in Table 4 for 
each subject. As shown in this table, on average, the DE 
algorithm is best in terms of the convergence rate and the 
CPSO algorithm is in the next rank. But the problem with 
the DE algorithm is that it does not approach the optimal 
response and encounters local traps and converges in these 
local traps. In other words, early convergence is occurred for 

this algorithm. But the proposed CPSO algorithm, as above 
results confirm, is closer to the global optimum and has an 
acceptable speed than the rest of the algorithms under dis-
cussion; therefore, by considering the compromise between 
speed and the accuracy of this algorithm, it is superior to the 
rest of discussed algorithms.

•	 Comparison with other works

For a good comparison, the proposed technique perfor-
mance is compared with some benchmark methods that test 
this dataset in similar conditions. Table 5 shows the motor 
imagery classification accuracy obtained per subject. As 
seen, the ANFIS-CPSO approach reaches the best accu-
racy in comparison with the method given in (Higashi and 
Tanaka 2013) that includes common spatio-time-frequency 
patterns to design the time windows for the motor imagery 
task. The motor imagery classification procedure described 
in (He et al. 2012) also involves the EMD-based CSP pre-
processing. The proposed adaptive frequency band selection 
together with the developed method of feature extraction 
is insufficient, causing in a low classification performance 
with a high standard deviation value. An approach given in 
(Zhang et al. 2012) is based on a robust learning method 
that extracts spatio-spectral features for discriminating 
multiple EEG tasks. The achieved motor imagery classi-
fication has the lowest performance among the compara-
tive approaches. Another technique given in (Álvarez-Meza 
et al. 2015) is based on feature relevance analysis within 
the motor imagery classification framework. This method 
reached 92.86% classification accuracy that is a good perfor-
mance, but the proposed method in this paper, as can be seen 
in Fig. 12 and Table 5, the ANFIS-CPSO, has the highest 
performance compared to the other techniques in terms of 
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classification accuracy. So, the superiority of the proposed 
method over another benchmark method in terms of clas-
sification accuracy is clear for all subjects.

Moreover, the classification accuracy of ANFIS-CPSO 
is compared with some popular machine learning classi-
fiers such as support vector machine (SVM) (Cortes et al. 

Fig. 10   The convergence curves for DS1c

Table 3   MSE and RMSE values for all subjects

Algorithm ds1a ds1b ds1c ds1d ds1e ds1f ds1g
MSE RMSE MSE RMSE MSE RMSE MSE RMSE MSE RMSE MSE RMSE MSE RMSE

ANFIS-GA 0.28628 0.53505 0.25943 0.50935 0.092665 0.3044 0.26795 0.51764 0.14351 0.37883 0.12478 0.3532 0.16213 0.4027
ANFIS-DE 0.3899 0.6244 0.38491 0.6204 0.4313 0.6567 0.30221 0.5497 0.26991 0.5195 0.4800 0.6204 0.30012 0.5478
ANFIS-PSO 0.13225 0.36367 0.10454 0.32332 0.0410 0.2025 0.13003 0.11403 0.03896 0.1974 0.03204 0.1790 0.05496 0.2344
ANFIS-BBO 0.22642 0.47580 0.37442 0.6119 0.13375 0.3657 0.33245 0.5766 0.18845 0.4341 0.25786 0.5078 0.21218 0.4606
ANFIS-CPSO 0.082343 0.28695 0.07142 0.2672 0.00280 0.05293 0.09689 0.31127 0.01576 0.12555 0.00848 0.0921 0.01921 0.1386
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Fig. 11   The bar plot representation of MSE values for all subjects
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Table 4   The iterations that convergence of algorithms is occurred

Algorithms
Subjects

DE GA PSO CPSO BBO

DS1a 150 500 420 270 300
DS1b 260 470 425 230 275
DS1c 100 450 170 370 380
DS1d 190 480 380 200 320
DS1e 175 400 370 210 350
DS1f 130 390 415 190 250
DS1g 180 420 400 220 300
Mean ~ 169 ~ 444 ~ 369 ~ 241 ~ 310

Table 5   Comparison of the proposed method with other works in term of classification accuracy (average accuracy ± standard deviation)

Subject Higashi and Tanaka 
(2013)

He et al. (2012) Zhang et al. (2012) Álvarez-Meza et al. 
(2015)

ANFIS-CPSO (proposed)

DS1a 92.30 ± 02.50 67.70 ± 02.20 77.20 ± 00.03 91.50 ± 01.20 93.3929 ± 01.1084
DS1b 90.60 ± 07.20 70.70 ± 01.20 70.80 ± 0.02 96.50 ± 03.37 97.3571 ± 0.9421
DS1c – 83.90 ± 01.30 – 91.50 ± 04.74 94.6451 ± 1.0710
DS1d – 93.00 ± 01.20 – 87.00 ± 06.32 97.5000 ± 01.7021
DS1e – 93.20 ± 01.20 – 91.50 ± 07.47 96.8571 ± 01.0178
DS1f 93.30 ± 03.60 – 76.80 ± 0.03 98.50 ± 02.42 98.7512 ± 0.9987
DS1g 94.10 ± 04.10 – 80.00 ± 0.03 93.50 ± 07.09 98.0000 ± 1.1270
Mean ± STD 92.58 ± 01.51 81.70 ± 12.06 76.20 ± 03.87 92.86 ± 03.77 96.6433 ± 1.9205
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Fig. 12   Comparison of the proposed method with other works in terms of classification accuracy and standard deviation (Mean ± STD). The ver-
tical lines show the variation of accuracy for each method
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1995), k-nearest neighborhood (KNN) (Altman 1992), 
Naïve Bayes (Zhang et  al. 2009) and neural networks 
(Hansen and Salamon 1990) in terms of classification 
rate. Figure 13 shows this comparison, and it can be seen 
that the classification accuracy of the proposed algorithm, 
ANFIS-CPSO, is much better than others.

7 � Conclusion

This paper has proposed the CPSO to train ANFIS for 
two class motor imagery classification. An extensive study 
was conducted on 12 mathematical benchmark functions 
to analyze exploration, exploitation, local optima avoid-
ance, and convergence behavior of the proposed algorithm. 
CPSO was found to be competitive enough with other 
state-of-the-art meta-heuristic methods. The CSP method 
was used to extract the features of an EEG signal. Using 
CSP, the data dimension has been reduced from 59 to 10. 
Then, these features are classified using an ANFIS that 
its parameters are trained by CPSO algorithm. The clas-
sification accuracy of this classifier was compared with 
ANFIS classifiers trained by other meta-heuristic algo-
rithms such as PSO, GA, DE, and BBO. The criteria of 
MSE and RMSE were compared for different algorithms. 
These criteria were reported for various algorithms and 
seven relevant data. The graph containing the histogram 
indicates the concentration of the calculated error, and 
the closer the histogram around zero is, the better the effi-
ciency. Also, the proposed method compared with other 
benchmark methods on this EEG dataset in terms of clas-
sification accuracy, the results showed that the classifica-
tion accuracy of ANFIS trained by CPSO is better than 
the other discussed algorithms and has the acceptable 
convergence.
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