
Vol.:(0123456789)1 3

Evolving Systems (2021) 12:303–317
https://doi.org/10.1007/s12530-019-09278-5

ORIGINAL PAPER

Self‑organized direction aware for regularized fuzzy neural networks

Paulo Vitor de Campos Souza1 · Cristiano Fraga Guimaraes Nunes2 · Augusto Junio Guimares3 ·
Thiago Silva Rezende3 · Vanessa Souza Araujo3 · Vincius Jonathan Silva Arajuo3

Received: 6 July 2018 / Accepted: 4 March 2019 / Published online: 15 March 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
The fuzzy neural networks are efficient hybrid structures to perform tasks of regression, patterns classification and time
series prediction. To define its architecture, some models use techniques that fuzzification of data that can divide the sample
space in grid format through membership functions. The models that use such techniques achieve results with a high degree
of accuracy in their activities, but their structures can vary greatly when the number of features of the problem is high,
making of fuzzy neurons an exponential relationship between the number of inputs and the membership functions numbers
used in the model of the input space. A multi-neuron structure can make the training and update of parameters damaging
to the model’s computational performance, making it impossible to work with problems of high dimensions or even with
a high number of samples. To solve the problem of the creation of structures of hybrid models based on neural networks
and fuzzy systems this paper proposes the use of a novel fully data-driven algorithm. This algorithm uses an extra cosine
similarity-based directional component to work together with a traditional distance metric and nonparametric Empirical
Data Analytics to data partitioning and forming data clouds in the first layer of the model. Another problem that exists in
fuzzy neural network models is that some of their parameters are defined at random, so they challenging to interpret and can
introduce casual situations that may impair model responses. In this paper we also propose the definition of bias and weights
of the neurons of the first layer using the concepts of the wavelet transform, allowing the parameters of the neurons also to be
directly related to the input data submitted to the model. In the second layer, the unineurons aggregate the neurons generated
in the first layer and a regularization function is activated to determine the most significant unineurons. The weights used
in the third layer, represented by an artificial neural network with an activation function of type ReLU, are generated using
the concepts of the extreme learning machine. To verify the new training approach for fuzzy neural networks, tests with real
and synthetic databases were performed for pattern classification, which led to the conclusion that the cloud-based approach
and neuron weights generation based on the data frequency of training proves that the accuracy of the model is adequate to
perform binary classification problems.

Keywords Fuzzy neural networks · SODA · Wavelets · ReLU · Pattern classification

 * Paulo Vitor de Campos Souza
 pauloc@prof.una.br; paulovitor@cefetmg.br

 Cristiano Fraga Guimaraes Nunes
 cfgnunes@gmail.com

 Augusto Junio Guimares
 augustojunioguimaraes@gmail.com

 Thiago Silva Rezende
 silvarezendethiago@gmail.com

 Vanessa Souza Araujo
 v.souzaaraujo@yahoo.com.br

 Vincius Jonathan Silva Arajuo
 vinicius.j.s.a22@hotmail.com

1 Faculty Una of Betim CEFET-MG, Belo Horizonte, Brazil
2 Postgraduate Program in Mathematical and Computational

Modeling CEFET-MG, Belo Horizonte, Brazil
3 Faculty Una of Betim, Betim, Brazil

http://orcid.org/0000-0002-7343-5844
http://crossmark.crossref.org/dialog/?doi=10.1007/s12530-019-09278-5&domain=pdf

304 Evolving Systems (2021) 12:303–317

1 3

1 Introduction

The fuzzy neural networks (FNN) are hybrid models based
on the incorporation of fuzzy systems, which are capable
of generating interpretability to the results, with the gen-
eralist capacity of artificial neural networks, which have
several training techniques to solve problems that normally
humans act. These structures have been applied in several
contexts in the area of artificial intelligence, such as binary
patterns classification (de Campos Souza et al. 2018; de
Campos Souza and de Oliveira 2018; Lughofer et al. 2018;
Lughofer 2012), regression (Juang et al. 2010), time series
forecasting (Han et al. 2018; Bordignon and Gomide 2014;
Rosa et al. 2013; de Campos Souza and Torres 2018), rain-
fall (Sharifian et al. 2018), financial market (Rosa et al.
2014), software effort estimation (Souza et al. 2018), fail-
ures prediction in some engineering contexts (Song et al.
2018; Tang et al. 2017; de Jesús Rubio 2018, 2017) and
so on.

The architecture of fuzzy neural networks have layers
that can perform various tasks. Generally, the first layer
is responsible for partitioning the input data according
to the chosen fuzzy technique. Fuzzy neurons are con-
structed according to training data and may generate fuzzy
rules for the construction of expert systems (Buckley and
Hayashi 1994). In the second layer, the updating of the
parameters involved may involve techniques such as back-
propagation, gradient descent (Amari 1993) and extreme
learning machine (Huang et al. 2006), which consists in
determining parameters of the hidden layers of the net-
works at random and calculate the final weights using least
squares concepts. The second layer may contain artificial
neurons or neural logic neurons. These neurons enable the
transformation of model elements into if/else fuzzy rules.
The neurons and, orPedrycz and Gomide (2007), unineu-
rons, Pedrycz (2006) and nullneuron, Hell et al. (2008)
are highlighted as neurons with this capacity. Evolution-
ary and genetic approaches are also used. Finally, these
models use a neural network of aggregation with artificial
neurons to carry out their responses. In general, neurons
use activation functions commonly known to obtain the
final network output.

When verifying that fuzzy neural networks suffer from
problems related to the number of neurons, regularization
techniques were incorporated into the models, allowing the
less significant neurons to be discarded from the model.
In particular techniques such as the regression ridge (Tik-
honov et al. 2013), LARS (Hansen 1982) and the bootstrap
lasso (Bach 2008) are employed to define the architecture
of fuzzy neural networks. This paper presents a new train-
ing model in fuzzy neural networks where the first layer of
the model has its fuzzy neurons with the synaptic weights

and bias defined by wavelet transform functions (Daube-
chies 1990). The Gaussian membership functions of the
fuzzy neurons in the first layer are defined by an algorithm
fully data-driven called SODA (Self-Organized Direction
Aware) (Gu et al. 2018). This algorithm applies the con-
cept of a directional component based on extra cosine sim-
ilarity to work in conjunction with a traditional distance
metric. In summary, SODA uses nonparametric Empirical
Data Analysis (EDA) (Angelov et al. 2017) operators to
automatically identify the critical modes of the data pat-
tern from the empirically observed training samples and
uses them as focal points to form data clouds. The second
layer of the model is composed of unineurons that perform
the aggregation of the fuzzy neurons of the first layer. In
order to eliminate unnecessary neurons to the model, the
algorithm bolasso Bach (2008) to eliminate neurons using
the lasso method according to a decision consensus and
some bootstraps. Finally, the artificial neural network is
present in the third layer of the model, but different from
the model of de Campos Souza et al. (2018), where linear
activation functions are used, the concepts of rectified lin-
ear units (ReLU) are used (Maas et al. 2013).

This type of approach using logical neurons that aggre-
gate neurons formed by cloud techniques allows a more sig-
nificant number of input data to be worked by the model in
a time less than exponential approaches proposed by models
that have fuzzification processes based on the model Anfis
(Jang 1993).

To verify the capacity of the new model, binary pattern
classification tests will be performed in order to evaluate
aspects of model accuracy. The paper is organized as fol-
lows: Sect. 2 presents the main concepts that guide the
research, such as the definitions of fuzzy neural networks,
wavelets, regularization and activation functions. Section 3
will present the steps and concepts related to the methodol-
ogy proposed to generate the first layer weights of the FNN
based on the wavelet transform, and the concepts of SODA
to construct the first layer neurons, in addition to the artifi-
cial neurons based on the activation functions of type ReLU
to perform the of binary patterns classification in the output
of the model. Section 4 will present the methodology used
in the tests, including the bases, and the algorithms used to
perform the binary pattern classification. Finally, in Sect. 5
the conclusions of the work will be presented.

2 Literature review

2.1 Fuzzy neural network

Over the last few decades, fuzzy systems and their hybrid
derivations have been shown to be able to simulate the typi-
cal human reasoning ability in a computationally efficient

305Evolving Systems (2021) 12:303–317

1 3

way. An important area of current research is the develop-
ment of such systems with a high level of flexibility and
autonomy to evolve their structures and knowledge based
on changes in the environment, being able to handle mod-
eling, control, prediction and classification of patterns in
a situation not stationary, susceptible to constant changes.
Fuzzy neural networks are characterized by neural networks
composed of fuzzy neurons (Pedrycz and Gomide 2007).
The motivation for the development of these networks lies
in its easy interpretability, being possible to extract knowl-
edge from its topology. These networks are formed by a syn-
ergistic collaboration between fuzzy set theory and neural
networks allowing a wide range of learning abilities, thus
providing models that integrate the uncertain information
handling provided by the fuzzy systems and the learning
ability granted by the neural networks (Pedrycz 1991). Thus
a Fuzzy neural network can be defined as a fuzzy system
that is trained by an algorithm provided by a neural network.
Given this analogy, the union of the neural network with
the fuzzy logic comes with the intention of softening the
deficiency of each of these systems, making us have a more
efficient, robust and easy to understand a system.

2.2 Fuzzy neural networks models

FNNs are composed of logical neurons, which are functional
units that add relevant aspects of processing with learning
capacity. They can be seen as multivariate nonlinear trans-
formations between unit hypercubes (Pedrycz 1991). Stud-
ies propose the generalization of logical neurons and and
or that are constructed through extensions of t-norms and
s-norms. One of the most important features of these neu-
rons, called unineurons, Pedrycz (2006) and nullneurons,
Hell et al. (2008), are their ability to vary smoothly from a
neuron or to and and vice versa, depending on the need for
the problem to be solved. This causes the final structure of
the network to be determined by the training process, mak-
ing this structure more general than fuzzy neural networks
formed only by classical logical neurons.

These intelligent models have an architecture based on
multilayer networks, where each one of them has different
functions for the activities carried out. The layers of a fuzzy
neural network can act as fuzzification, transforming numer-
ical data into representations of fuzzy sets, other layers can
perform with the defuzzification making the inverse pro-
cess (convert fuzzy sets into numerical values). Some layers
have with fuzzy rules, where they are usually called of fuzzy
inference systems and layers representing neural aggregation
networks. Each model has layers and different training tech-
niques to solve problems. As examples of three-layers archi-
tectures, the proposals of Souza 2018, de Campos Souza and
Torres (2018), Guimarães et al. (2018), de Campos Souza
et al. (2018) and Guimaraes et al. (2018). Already the

models that have four and five layers in its structure, we
can highlight the models of Lin et al. (2018) and Kasabov
(2001) respectively. In most models, the first layer is the one
that partitions the input data, transforming them into fuzzy
logical neurons. Algorithms common to these approaches
are fuzzy c-means (Bezdek et al. 1984), clouds (Koutrika
et al. 2009) and functions based on ANFIS techniques (Jang
1993). The fuzzy neural networks may also present train-
ing characteristics based on recurring functions (Yen et al.
2018; Ballini and Gomide 2002), evolving concepts (Silva
et al. 2014; Rosa et al. 2013, 2014) and contours-correlated
functions (Ebadzadeh and Salimi-Badr 2018).

In this paper, the highlight will be the extreme learning
machine (Huang et al. 2006) in conjunction with fuzzy data
processing techniques in the first layers. These approaches
have already been used in models such as (Souza 2018;
de Campos Souza and Torres 2018; Lemos et al. 2012; Rong
et al. 2009), differing from the model proposed in this paper
by the type of algorithm used for the fuzzification process.

The main difference will be between the change of the
ANFIS model (Jang 1993) that uses equally spaced member-
ship functions to a cloud approach. The nature of the input
data of the model will have greater significance for the con-
struction of the neurons than an exponential relationship of
grid division proposed by models that are based on the tech-
niques of the division of the sample space. This will allow
the fuzzification technique used in the fuzzy neural network
to create the number of neurons in the first layer much lower
when compared to the approaches that use the ANFIS. In
techniques that the main fuzzification parameters are based
on structures of pertinence functions, many neurons may
represent empty or inexpressive spaces for the problem.
The SODA technique works with the representativeness of
the data, allowing only representative neurons to be created
according to the density of the data in the sample space. The
fuzzification approach in the input sets defines the number of
neurons that will make up the network. Therefore the cloud
fuzzification technique leaves the fuzzy neural network more
optimized, without losing its ability to solve problems.

Another difference in the approach proposed in this work
is how the parameters of the neurons of the first layer (weight
and bias) are defined according to the wavelet transform
(Daubechies 1990), thus allowing a relationship between
the input data of the model and its initial parameters. For
this, the concept of the discrete wavelet transform is used
through the application of filter banks. This technique can
process data at different scales or resolutions and, regardless
of whether the function of interest is an image, a curve or a
surface, wavelets offer an excellent technique in representing
the detail levels present in the data, thus allowing the values
recovered are derived from the representation of the input
data. In this case, the values obtained by the techniques to
be assigned to the weights and bias of the neurons of the first

306 Evolving Systems (2021) 12:303–317

1 3

layer will have a representation on the data that will operate,
different from the traditional approach that determines these
values in a random way and without a meaning of relation
with the of the problem.

The unineuron proposed by Lemos et al. (2010) is used to
facilitate the actuation of the model, being able to act in dif-
ferent moments like type AND and type OR. This approach
allows greater flexibility of the rules of the fuzzy inference
system. Unlike the FNN algorithms explained in this topic,
the model proposed in this paper intends to use a data cloud
technique to create the first layer neurons. Also, in the neu-
ron of the neural aggregation network, we want to insert an
activation function that does not activate all fuzzy rules of
the problem at the same time. This means only a few features
are taken into account in the problem, making the neural
network sparse, efficient and easy to process.

2.3 Evolving hybrid models

Intelligent evolving systems are based on online machine
learning methods for intelligent hybrid models. These sys-
tems are characterized by their ability to extract knowledge
from data and adapt their structure and parameters to better
adapt to changes in the environment (Kasabov and Filev
2006). They are formed by an evolutionary set of locally
valid subsystems that represent different situations or points
of operation. The concepts of this learning methodology
make it possible to develop unsupervised clustering algo-
rithms capable of adapting to changes in the environment
as the current knowledge is not sufficient to describe such
changes (Angelov et al. 2008).

The term “evolving” should not be confused with “evolu-
tionary.” Genetic algorithms (Goldberg and Holland 1988)
and genetic programming, are based on the evolutionary
process that occurs in populations of individuals and use
operators based on the concepts of selection, crossing, and
mutation of chromosomes as adaptive mechanisms. Also
evolving fuzzy systems are based on the process of evolution
of individuals throughout their life; specifically the process
of human learning, based on the generation and adaptation
of knowledge from experiences (Angelov and Zhou 2008).

The evolving models and evolutionary algorithms, which
alter parameters as they update new training inputs (Angelov
et al. 2010), can be exemplified by the hybrid models pro-
posed by Angelov et al. (2008), Zhang et al. (2006), Aliev
et al. (2009), Liao and Tsao (2004), Kasabov (2001), Wang
and Li (2003), Yu and Zhang (2005), Hell et al. (2014),
Kasabov and Song (1999), Fei and Lu (2018), Maciel et al.
(2012), Yu et al. (2018), Pratama et al. (2017), Rong et al.
(2009), Lughofer (2011), Angelov and Filev (2004), Subra-
manian and Suresh (2012), Rong et al. (2006), Rong et al.
(2011), Kasabov and Song (2002), de Campos Souza et al.
(2019), Angelov and Kasabov (2005), Angelov et al. (2004),

Baruah and Angelov (2012), Angelov and Kasabov (2006),
Perova and Bodyanskiy (2017).

2.4 Self‑organized direction aware data
partitioning algorithm‑ SODA

The process by which fuzzy models treat data can deter-
mine how hybrid models can have the interpretability of
their results closer to their real world. Models that are fully
data-driven are the targets of recent research and have
achieved satisfactory results in a cloud data cluster. This
clustering concept focused on data is called Empirical Data
Analytics (EDA) (Angelov et al. 2017). This concept brings
together the data without statistical or traditional probability
approaches, based entirely on the empirical observation of
the input data of the model, without the need for any previ-
ous assumptions and parameters (Gu et al. 2018).

SODA is a data partitioning algorithm capable of iden-
tifying peaks/modes of data distribution and uses them as
focal points to associate other points to data clouds that
resemble Voronoi tessellation. Data clouds can be under-
stood as a particular type of clusters, but with a much dif-
ferent variety. They are non-parametric, but their shape is
not predefined and predetermined by the type of distance
metric used. Data clouds directly represent the properties of
the local set of observed data samples (Gu et al. 2018). The
approach employs a magnitude component based on a tradi-
tional distance metric and a directional/angular component
based on the cosine similarity.

The main EDA operators are described in Angelov et al.
(2017), which are also suitable for streaming data process-
ing. The EDA operators include the Cumulative Proximity,
Local Density, and Global Density. The local density Dn is
defined as the inverse of the normalized cumulative proxim-
ity and directly indicates the main pattern of observed data
Angelov et al. (2017), where D for the training input xi = (1,
2,...,N); Nu > 1 is defined as follow Gu et al. (2018):

Global density is defined for unique data samples together
with their corresponding numbers of repeats in the dataset/
stream, and of a particular unique data sample, ui (i=1, 2,
...nu ; nu ≥ 1) is expressed as the product of its local density
and its number of repeats considered as a weighting factor
Angelov et al. (2017) as follows:

As the main EDA operators (cumulative proximity, local
density (D) and global density (DG)) can be updated recur-
sively, the SODA algorithm can be suitable for online pro-
cessing of streaming data, causing the updating of density

(1)Dn(xi) =

∑n

j=1
�n(xj)

2n�n(xj)

(2)DG
n
(ui) = fiDn(ui)

307Evolving Systems (2021) 12:303–317

1 3

groups of data in an evolving process. The algorithm is per-
formed used in this paper utilizing the following steps (Gu
et al. 2018):

Stage 1- Preparation: we calculate the average values
between every pair of input data, x1, x2,… , xn for both, the
square angular components, dA and square Euclidean com-
ponents, dM.

Stage 2- DA Plane Projection: The DA projection opera-
tion works with the unique data sample that has the most
significant global density, namely u∗ 1 . It is initially set to be
the first reference, �1 ← u1 , which is also the origin point of
the first DA plane, denoted by P1 (Lc ← 1, Lc is the number
of existing DA planes in the data space).

Stage 3: Identifying the Focal Points: for each DA
plane, expressed as Pe , find the adjacent DA planes.

Stage 4: Forming Data Clouds: After all the DA planes
reaching for the modes/peaks of the data density are identi-
fied, we consider their origin points, denoted by �o , as the
focal points and use them to form data clouds according to
as a Voronoi tessellation (Okabe et al. 2009). It is worth to
stress that the theory of data clouds is quite similar to the
idea of clusters, but differs in the following characters:

 (i) data clouds are nonparametric;
 (ii) data clouds do not have a specific shape;
 (iii) data clouds represent the real data distribution. Fig-

ure 1 shows an example of the SODA definition and
the center of cloud grouping defined by the algo-
rithm. The data submitted to the SODA model are
normalized.

2.5 Wavelets

Wavelet is a function capable of decomposing and rep-
resenting another function described in the time domain
so that we can investigate this other function in different

frequency and time orders. In Fourier analysis, can only
identify information about the frequency domain, but we
can not know when these repetitions that we study happen.
Meantime, in wavelet analysis, we can also extract infor-
mation from the function in the time domain. The detailing
of the frequency domain analysis decreases as time resolu-
tion increases, and it is impossible to increase the detail
in one domain without decreasing it in the other. Using
wavelet analysis, you can choose the best combination of
details for an established goal. Adapting this concept to
the fuzzy neural networks, the use of wavelet functions
can allow the values destined for the bias and the weights
of the neurons to be determined according to their nature
and no longer in a random way (Daubechies 1990). In this
paper, the discrete wavelet will be adopted. This type of
methodology is much used in data compression.

In order to calculate the discrete wavelet transforms,
it is through the filter bank application where the filter
determined by the coefficients h = {hn}n∈ℤ corresponds to
a high pass filter and the filter g = {gn}n∈ℤ to a low pass
filter. Each of these coefficients in the discrete wavelet
transform is tabulated. Emphasis is given to the use of the
operator (↓ 2) is the sub-sampling operator. This opera-
tor applied to a discrete function (a sequence) reduces its
number of elements in half, recovering only the compo-
nents in even positions, allowing the procedure to be faster
and more precise (Daubechies 1990). The filters h and g
are linear operators, which can be employed to the input
x as a convolution:

The decomposition with the filter decays the signal into only
two frequency bands. The chaining of a series of filter banks
can be accomplished using sub-sampling operation to pro-
vide the division of the sampling frequency by 2 to each new
filter bank threaded (Daubechies 1990). Figure 2 shows a
schematic of the two filters.

(3)c(n) =
∑
k

g(k)x(n − k) = g ∗ x

(4)d(n) =
∑
k

h(k)x(n − k) = h ∗ x

Fig. 1 SODA algorithm
Fig. 2 Filter decomposition signal of input. Avaliable: https ://
zh.wikip edia.org/wiki/File:Wavel ets-Filte r_Bank.png

https://zh.wikipedia.org/wiki/File:Wavelets-Filter_Bank.png
https://zh.wikipedia.org/wiki/File:Wavelets-Filter_Bank.png

308 Evolving Systems (2021) 12:303–317

1 3

2.6 Rectified linear activation—ReLU

The activation functions allow the introduction of a nonlinear
component in the intelligent models, especially those neurons
that use logical representations of the human artificial neuron.
This characteristic allows intelligent models, such as fuzzy neu-
ral networks, to learn more than linear relationships between
dependent and independent variables (Karlik and Olgac 2011).
Therefore, understanding the functioning of the activation func-
tion and in which contexts it can best be applied are prepon-
derant foundations for the success of the model in performing
activities that simulate human behavior. They are essential to
provide a representative capability for fuzzy neural networks by
introducing a nonlinearity component. On the other hand, with
this power, some difficulties arise, mainly due to the diversi-
fied nature of activation functions, that can vary the effective-
ness of their actions according to specific characteristics of the
database to which the model is being submitted. In general, by
introducing non-linear activation, the cost surface of the neuron
is no longer convex, making optimization more complicated.
In problems that use parameterization by descent gradients,
non-linearity makes it more identifiable which elements need
adjustment (Karlik and Olgac 2011). In models of fuzzy neural
networks, the main functions of activation are those that use the
hyperbolic tangent, Gaussian and linear. Other functions can be
highlighted for convolutional and big data problems such as the
ReLU (2011), Elu (2015) and Leaky Relu (2013) functions.

A model that has been used to solve various problems is
Rectified Linear Activation (ReLU). It a the nonlinear activa-
tion function more usually applied to compose neural networks
to solve image detection problems. His proposes that if the
input is no important to the model, the ReLU function will
apply its value to zero and the feature will not be activated.
This proposes that at the same moment, only several features
are activated, creating the sparse neuron, efficient and straight-
forward for computing. In these circumstances, the inputs and
combinations of a more representative characteristic can act
dynamically and efficiently to improve the accuracy of the
model (Karlik and Olgac 2011).

Artificial neural networks with the ReLU function are
secure to optimize since the ReLU is hugely similar to the
identity function. The only difference is that ReLU produces
zero in half of its domain. As a consequence, the derivatives
stay large while the unit is active (Goodfellow et al. 2016).

3 SODA wavelets regularized fuzzy neural
network and ReLU activation function

3.1 Network architecture

The fuzzy neural network described in this chapter follows
most of the structure defined in de Campos Souza et al. (2018).

However, modifications were made in the first layer (fuzzifica-
tion) and the third layer (the neural network of aggregation).
Unineuron is used to construct fuzzy neural networks in the
second layer to solve pattern recognition problems and bring
interpretability to the model.

The first layer is composed of neurons whose activation
functions are membership functions of fuzzy sets defined for
the input variables. For each input variable xij , Lc clouds are
defined Alcj , lc = 1 ...Lc whose membership functions are the
activation functions of the corresponding neurons. Thus, the
outputs of the first layer are the membership degrees associ-
ated with the input values, i.e., ajlc = �A

lc
 for j = 1 ...N and lc =

1 ...Lc , where N is the number of inputs and Lc is the number
of fuzzy sets for each input results by SODA.

The second layer is composed by Lc fuzzy unineuron. Each
neuron performs a weighted aggregation of all of the first layer
outputs. This aggregation is performed using the weights wilc
(for i = 1 ...N and lc = 1 ...Lc). For each input variable j, only
one first layer output ajlc is defined as input of the lc-th neuron.
So that w is sparse, each neuron of the second layer is associ-
ated with an input variable. Finally, the output layer is com-
posed of one neuron whose activation functions (f) are ReLU
Maas et al. (2013). The output of the model is:

where z0 = 1, v0 is the bias, and zj and vj , j = 1, ..., lc are the
output of each fuzzy neuron of the second layer and their
corresponding weight, f is the activation function and sign is
an operator that transforms the output of the neuron to 1 if it
is greater than zero and -1 if it is less than zero, respectively.

(5)� = sign

lc∑
j=0

f (zlvl)

Fig. 3 FNN architecture

309Evolving Systems (2021) 12:303–317

1 3

Figure 3 presents an example of FNN architecture proposed
in this paper.

3.2 A proposition to update first layer weights
and bias using wavelets

For the first layer of the FNN, training will be performed
with each output of the filters of each level of the wavelet
transform, thus allowing to update the weights, which by the
original definition in de Campos Souza et al. (2018) should
be randomly assigned, assigning them the corresponding
values of the output of the wavelet filters. Thus, the training
of the fuzzy neural network can happen in a parallel way. In
addition to allowing better representation of the problems
for the weights and bias of the fuzzy neuron.

The algorithm below presents the necessary information
about the steps performed to carry out the training and pre-
sent in Algorithm 1.

In the first layer of this architecture, the initial vector has
lc values. After the application of the wavelet transform, the
resulting vector still with lc elements but part of this vector
is responsible for the high frequencies (detail), and the other
part is responsible for the low frequencies (approximation).

Initially, the wavelet transform is applied to the input data
resulting in a vector �1 . This vector is then passed to a detail
removal function that matches the size of the obtained vector
to the size of the output of the current layer so that training
can be done resulting in a vector �1 . In other words, if the
first hidden layer of the FNN has seven neurons, only the
first seven values of the vector �1 will be used for the attribu-
tion of the weights, the others will be discarded.

Consider that for the FNN example, the initial vector has
nine elements. After applying the Wavelet transform, the
resulting vector continues with nine elements but part of
this vector is responsible for the high frequencies (detail),
and the other part is responsible for the low frequencies
(approximation). When operating RemoveDetails(�1) only
the first seven elements of the vector are used. In this way,
we have two vectors: a vector of 9 items (input of the first
layer) and another vector of 7 features (output of the first
layer). From this vector of 7 elements, the values responsible
for the approximation are assigned to the bias and the detail
value to the weights of the neurons in the first layer.

The high filter values will be assigned to the neuron
weights, and the low filter values will be allocated to the
bias. This procedure ensures that the same amount of
weights and bias that would be randomly assigned are pro-
vided based on the wavelet transform, allowing these two
parameters to be based on the characteristics of the database
submitted to the model.

Figure 4 shows that with the input data of the fuzzy neural
network model the low and high pass filter functions gener-
ate approximation and detail vectors with the input data. In

this case, each of these vectors will be assigned to the bias
(low) and the weights (high) of the neurons of the first layer.
This assignment was made arbitrarily because in preliminary
tests it did not matter if it was otherwise.

Algorithm 1: FNN training with filter bank Wavelets
for weight w and bias b
ψ1 ← Wavelet(input);
φ1 ← RemoveDetails(ψ1);
Train(in = input, out = φ1)

3.3 Training fuzzy neural network

The membership functions in the first layer of the FNN are
adopted in this paper as Gaussian, constructed through the
centers (�) obtained by the method of granularization of the
input space (SODA) and by the randomly defined sigma (�).
Another difference in the first layer is the definition of the
fuzzy neuron weights using the wavelet transform. The number
of neurons Lc in the first layer is defined according to the input
data, and by the number of partitions (�) defined parametri-
cally. This approach partitions the input space, following the
definition logic of creating data nodes. The centers of these
created clouds make up the Gaussian activation functions of
the fuzzy neurons. These changes will allow the adaptation of
the data according to the basis submitted to the model, allow-
ing a more independent and data-centered approach. The sec-
ond layer performs the aggregation of the Lc neurons from the
first layer through the unineurons proposed by Lemos et al.
(2010). These neurons use the concept of uninorm Yager and
Rybalov (1996), which extends t-norm and s-norm, allowing
the values of the identity element (o) to change between 0 and
1. Therefore, the identity element allows the change of the cal-
culation in the fuzzy neuron in a simple way by alternating the
aggregation of elements between an s-norm (if o = 0) and an
t-norm (if o = 1). Thus the value of the identity element allows
the uninorm Yager and Rybalov (1996) to have the freedom
to transform the unineurons into andneurons or in orneurons,
within the resolution of the problem. In this paper, the uninorm
(U) is expressed as follows:

Fig. 4 Value assignment wavelet for the weights of the neuron and
the bias

310 Evolving Systems (2021) 12:303–317

1 3

where T are t-norms, S is a s-norms and o is the identity
element. In this paper, we considered the t-norm operator
the product and as s-norm operator the probabilistic sum.

The unineuron proposed in Lemos et al. (2010) performs
the following operations to compute its output:

1 each pair (ai , wi) is transformed into a single value bi =
h (ai , wi);

2 calculate the unified aggregation of the transformed val-
ues with uninorm U (b1, b2 … bn), where n is the number
of inputs.

The function p (relevancy transformation) is responsible for
transforming the inputs and corresponding weights into indi-
vidual transformed values. This function fulfills the require-
ment of monotonicity in value which means if the input value
increases the transformed value must also increase. Finally, the
function p can bring consistency of effect of wi . A formulation
for the p function can be described as Lemos et al. (2010):

using the weighted aggregation reported above the unineu-
ron can be written as Lemos et al. (2010):

The fuzzy rules can be extracted from the network topology
and are presented in Eq. 9.

After the construction of the Lc unineuron, the bolasso algo-
rithm (Alg. 2) Bach (2008) is executed to select LARS using
the most significant neurons (called L�). The final network
architecture is defined through a feature extraction technique
based on l1 regularization and resampling. The learning
algorithm assumes that the output hidden layer composed

(6)U(x, y) =

⎧
⎪⎨⎪⎩

oT(
x

o
,
y

o
), if y ∈ [0, o]

o + (1 − o)S(
x−o

1−o
,
y−o

1−o
), if y ∈ [o, 1]

max (x, y) or min (x, y), otherside

(7)p(w, a) = wa + wo

(8)� = UNI(w;x;a) = Un
i=1

p(wi, ai)

(9)

Rule1 ∶ If xi1 is A
1

1
with certainty w11 …

and∕or xi2 is A
2

1
with certainty w21 …

Then y1 is v1

Rule2 ∶ If xi1 is A
1

2
with certainty w12 …

and∕or xi2 is A
2

2
with certainty w22 …

Then y2 is v2

Rule3 ∶ If xil is A
1

3
with certainty w13 …

Then y3 is v3

Rule4 ∶ If xi2 is A
2

3
with certainty w23 …

Then y4 is v4

of the candidate neurons can be written as de Campos Souza
et al. (2018):

where v = [v0, v1, v2,… , vL�] is the weight vector of the out-
put layer and z (xi) = [z0, z1(xi), z2(xi)… zL�(xi)] the output
vector of the second layer, for z0 = 1. In this context, z (xi) is
considered as the non-linear mapping of the input space for
a space of fuzzy characteristics of dimension L� (de Cam-
pos Souza et al. 2018).

Subsequently, following the determination of the network
topology, the predictions of the evaluation of the vector of
weights’ output layer are performed. In this paper, this vector
is considered by the Moore-Penrose pseudo Inverse de Cam-
pos Souza et al. (2018):

where Z+ is pseudo-inverse of Moore-Penrose of z which
is the minimum norm of the least squares solution for the
weights of the output layer and y is the vector of expected
output in supervised training.

3.4 Model consistent Lasso estimation
through the bootstrap—Bolasso

A universal algorithm used for estimating the parameters of a
regression model and selecting relevant characteristics is the
Least Angle Regression (LARS) Efron et al. (2004). LARS
is a regression algorithm for high-dimensional data that is
capable of estimating not only regression coefficients but also
a subset of candidate regressors to be included in the final
model. LARS is used in the de Jesús Rubio et al. (2018) and
de Jesus Rubio et al. (2018) models to perform operator hand
movements learning in a manipulator. A modification of the
LARS allows the creation of the lasso using the ordinary least
squares, a restriction of the sum of the regression coefficients
(Efron et al. 2004). Consider a set of n distinct samples (xi , yi),
where xi = [xi1 , xi2 , ..., xiN] � ℝN and yi � ℝ for i = 1, ..., N, the
cost function of Lasso algorithm can be defined as:

where � is a regularization parameter, commonly estimated
by cross-validation.

The first term of (12) corresponds to the sum of the
squares of the residues (RSS). This term decreases as the
training error decreases. The second term is an L1 regulariza-
tion term. Generally, this term is added, since it improves the
generalization of the model, avoiding the super adjustment
and can generate sparse models (Efron et al. 2004).

(10)f (xi) =

L�∑
i=o

vizi(xi) = z(xi)v

(11)� = �+�

(12)
N�
i=1

‖z(xi)� − yi
��2 + �‖���1

311Evolving Systems (2021) 12:303–317

1 3

The LARS algorithm can be used to perform the model
selection since for a given value of � only a fraction (or
none) of the regressors have corresponding nonzero weights.
If � = 0, the problem becomes unrestricted regression, and
all weights are nonzero. As �max increases from 0 to a given
value �max , the number of nonzero weights decreases to zero.
For the problem considered in this paper, the zL� regressors
are the outputs of the significant neurons. Thus, the LARS
algorithm can be used to select an optimal subset of the
significant neurons that minimize (12) for a given value of �.

Bolasso can be seen as a regime of consensus combi-
nations where the most significant subset of variables on
which all regressors agree when the aspect is the selection
of variables is maintained (Bach 2008). Bolasso uses the
decision threshold system (�) that represents the choice of
model regularization, that is, when the value of � is indi-
cated, it defines the percentage involved in choosing the best
regressors. For example, if � = 0.5 means that if the neuron
is at least 50% of resampling as a relevant neuron, it will be
chosen for the final model.

Bolasso procedure is summarized in Algorithm 2.

Algorithm 2: Bolasso- bootstrap-enhanced least abso-
lute shrinkage operator

(b1) Let n be the number of samples in z:
(b2) Show n examples of (z, y), uniformly and with
substitution, called here (zsamp, ysamp).
(b3) Determine which weights are nonzero given a λ
value.
(b4) Repeat steps b1: b3 for a specified number of
bootstraps bt.
(b5) Take the intersection of the non-zero weights indexes
of all bootstrap replications.
(b6) Select the resulting variables.
(b7) Revise the results using the variables selected via
non-regularized least squares regression.
(b8) Repeat the procedure for each value of bt bootstraps
and λ (actually done more efficiently by collecting interim
results).
(b9) Determine ”optimal” values for λ and bt.
(b10) Use the consensus threshold (γ) to determine the
most significant neurons in the model.

3.5 Use of activation functions of type rectified
linear activation (ReLU) in the neural network
aggregation

In sequence to classify higher efficient functions to act as
activation functions the paper (Karlik and Olgac 2011)
determined the rectified linear activation (ReLU). This func-
tion is defined by:

In Eq. (5) the function f is replaced by the function fReLU.
(13)fReLU(zL�) = max (0, zL�).

The learning method can be synthesized as demonstrated
in Algorithm 3. It has three parameters:

1 the number of grid size, �;
2 the number of bootstrap replications, bt;
3 the consensus threshold, �.

Algorithm 3: SODA-FNN training
(1) Define grid size, ρ.
(2) Define bootstrap replications, bt.
(3) Define consensus threshold, γ
(4) Calculate Lc cluster in the first layer using SODA and
ρ.
(5) Construct Lc fuzzy neurons with Gaussian
membership functions constructed with center values (β)
derived from SODA and sigma (σ) defined at random.
(6) Define the weights and bias of the fuzzy neurons using
the transform wavelets.
(7) Construct Lc unineurons with random weights and
bias on the second layer of the network by welding the Lc

fuzzy neurons of the first layer.
(8) For all K inputs do
(8.1) Calculate the mapping z (xi)
end for
(9) Select significant Ls neurons using the bootstrap lasso
according to the settings of bt and γ.
(10) Estimate the weights of the output layer (Eq. 11)
(11) Calculate the output of the model using an artificial
neuron with activation function of type ReLU (Eq. 5 and
Eq. 13).

4 Test of binary patterns classification

4.1 Assumptions and initial test configurations

In this section, the assumptions of the classification tests for
the model proposed in this paper are presented. To perform
the tests, real and synthetic bases were chosen, seeking to
verify if the accuracy of the proposed model surpasses the
traditional FNN techniques of pattern classification. The fol-
lowing tables present information about the tests, presenting
factors such as the percentage of samples destined for the
training and testing of fuzzy neural networks. All the tests
with the involved algorithms were done randomly, avoid-
ing tendencies that could interfere in the evaluations of the
results. The model proposed in this paper, called SODA-
FNN, was compared to fuzzy neural network classifiers
using fuzzy c-means (FCM-FNN) (Lemos et al. 2012) and
genfis1 (GN-FNN) (de Campos Souza et al. 2018) in the
fuzzification process.

In the last two models, the weights and bias were used in
the first and second layers randomly, already in the approach
proposed in this paper, the weights and bias in the first layer
are defined by the wavelets. The number of primary neurons

312 Evolving Systems (2021) 12:303–317

1 3

of each model is defined according to the number of centers
(FCM-FNN), membership functions (GN-FNN) and grid size
(SODA-FNN). For uniformity of the tests, the values involved
in the first layers of the models, which end up defining the
number of Lc neurons, were arbitrated in the range of [3–5],
where the best results were defined using cross-validation. In
the three models, the unineuron is adopted as logical neuron
of the second layer. The activation functions of the neurons
used in artificial neural networks were ReLU (SODA-FNN),
sigmoid (FCM-FNN) and a linear function (GN-FNN). A total
of 30 experiments were performed with the three models sub-
mitted to all test bases.

In all tests and all models, the samples were shuffled in
each test to demonstrate the actual capacity of the models. Per-
centage values for the classification tests are presented in the
results tables, accompanied by the standard deviation found in
the 30 replicates. The outputs of the model were normalized to
0 and 1 to aid the correct calculations. The factors evaluated in
this paper are as follows:

where the sensitivity and specificity are calculated using the
following equations:

where, TP = true positive, TN = true negative, FN = false
negative and FP = false positive. All weights of the output
layer were obtained using ELM methods in all models.

4.2 Database used in the tests

The following tables identify the settings applied in the
tests. In Table 1, the information of the synthetic bases
used in the binary pattern classification tests. In Table 2
the real bases extracted from Bache and Lichman (2013)
for classification problems.

(14)accuracy =
TP + TN

TP + FN + TN + FP

(15)AUC =
1

2
(sensitivity + specificity)

(16)sensitivity =
TP

TP + FN

(17)specificity =
TN

TN + TP

Figure 5 shows the characteristics of the synthetic bases
used in the tests.

4.3 Binary pattern classification tests

Tables 3 and 4 present the accuracy and AUC results respec-
tively of the tests with the synthetic bases.

After carrying out the tests with synthetic bases, it was
confirmed that the proposed model presented smaller accu-
racy results in the spiral base, which has greater complexity

Table 1 Synthetic dataset used in the experiments

Dataset Init. Feature Train Test

Half Kernel HKN 2 350 150
Spiral SPR 2 350 150
Cluster CLU 2 350 150
Corner COR 2 350 150

Table 2 Real dataset used in the experiments

Dataset Init. Feature Train Test

Haberman HAB 3 214 92
Transfusion TRA 4 523 225
Mammographic MAM 5 581 249
Liver Disorder LIV 6 242 103
Diabetes DIA 8 538 230
Heart HEA 13 189 81
German Credit GER 14 390 168
Australian Credit AUS 24 700 300
Ionosphere ION 32 245 106

Fig. 5 Synthetic dataset

Table 3 Acurracy of the model in the tests performed

Dataset SODA-FNN FCM-FNN GN-FNN

HKN 99.87 (0.11) 99.64 (0.07) 99.93 (0.17)
SPR 97.60 (0.74) 98.15 (0.87) 87.12 (2.43)
CLU 99.88 (0.04) 98.71 (0.14) 99.12 (0.44)
COR 88.94 (4.87) 94.65 (0.82) 97.65 (2.11)

313Evolving Systems (2021) 12:303–317

1 3

in its composition. The other bases had an equivalent preci-
sion within the standard deviation found in the experiments.
We highlight the precision of the proposed model and the
one that uses a sigmoid activation function, which had a high
success rate in all experiments. Figure 6 presents the result
of SODA and Fig. 7 the model decision space and Fig. 8
decision 3d plot.

The decision space present in Fig. 7 demonstrates that
the technique can act as an excellent pattern classification.
Decision spaces are suitable for separating the main samples
intended for testing.

In the next test of pattern classification using real data-
bases will be compared in each one of the models the accu-
racy of model (Table 5), AUC (Table 6), execution time
(Table 7) and the number of fuzzy rules (Table 8) used to
obtain the results. Tests performed on a desktop machine
with Intel Core i5-3470 processor 3.20GHz and 4.00GB
Memory.

In the execution of real tests, it was verified that the
model proposed in this paper obtained superior results of
accuracy in six of the nine datasets proposed in the test. In
the datasets that the model did not take the best test results,
it obtained results close to the models evaluated in the test.

From the lower results of the model, the values of the
test with the heart dataset are highlighted. The model pro-
posed in this paper obtained a significant difference for the

other models in the analysis. Another factor that can also be
considered as non-positive was the high standard deviation
for the result of the ionosphere base. Although the model

Table 4 AUC of the model in the tests performed

Dataset SODA-FNN FCM-FNN GN-FNN

HKN 0.9981 (0.03) 0.9654 (0.14) 0.9965 (0.01)
SPR 0.9831 (0.04) 0.998 (0.01) 0.9762 (0.54)
CLU 0.9907 (0.01) 0.9920 (0.74) 0.9931 (0.19)
COR 0.9165 (0.54) 0.9650 (0.65) 0.8856 (0.53)

Fig. 6 Synthetic dataset—SODA result

Fig. 7 Synthetic Dataset- FNN decision

Fig. 8 Synthetic Dataset- FNN decision -3d

Table 5 Accuracy of the model in the tests performed

Dataset SODA-FNN FCM-FNN GN-FNN

HAB 70.83 (4.16) 67.12 (3.32) 61.59 (2.23)
TRA 75.49 (2.36) 78.37 (2.19) 75.85 (2.29)
MAM 83.91 (1.75) 82.10 (2.11) 81.27 (2.24)
LIV 67.86 (5.57) 65.51 (4.12) 66.08 (2.16)
DIA 74.78 (3.30) 67.40 (3.80) 74.67 (2.48)
HEA 74.86 (6.06) 74.78 (11.76) 79.22 (1.54)
GER 70.51 (2.91) 69.77 (1.54) 70.34 (2.98)
AUS 71.30 (3.06) 67.53 (0.78) 75.59 (4.51)
ION 78.59 (11.65) 69.44 (1.14) 75.66 (2.51)

314 Evolving Systems (2021) 12:303–317

1 3

obtained the best average results, it showed much instabil-
ity in solving the problem. On the other hand, in the tests of
mammography, transfusion and German credit, the model
was very stable in the results. This factor may have hap-
pened because the nature of the data is greatly varying in
the problems that it presented high standard deviation and
remained more stable (or the issues have this nature) during
the patterns classification tests.

The results of Table 7 of the tests prove that the
model presents a shorter execution time of binary pattern

classification when compared to the other FNN in the test.
This enables the proposal acts with less time due to the
techniques used to carry out the correct identification of the
patterns.

Another relevant factor about the model is that in addi-
tion to presenting a smaller number of fuzzy rules (Table 8),
it also presented a much shorter execution time (Table 7)
than techniques that use grouping or the model of equally
spaced membership functions. If the differences in time and
complexity of the fuzzy neural network were much smaller
with a limited number of samples, this difference should
appear more evident when the model solves problems with
many features and also a high number of samples. There-
fore, because it has achieved the majority of the best results
in the tests of classification of patterns with real databases
using less time and a smaller number of neurons/rules, the
viability of the model in the resolution of these problems
is verified.

An architecture with a smaller number of neurons facili-
tates the reading of the most relevant fuzzy rules. As the
SODA technique works with the data according to their
complex nature, problems become more representative
directly affecting the constructed fuzzy rules, allowing them
to be more representative of the nature of the problem.

It should be noted that FNN now becomes a model to
work with a high number of samples or problems with many
features, such factor was very complicated when using the
ANFIS process in the fuzzification of the model. Extract-
ing knowledge from large volumes of data is a current and
fundamental problem for many corporations.

5 Conclusion

The fuzzy neural network proposed in this paper obtained
better results than other models that use the extreme learn-
ing machine and fuzzy logic neurons. The use of the wave-
let transforms allowed the model to use the training data to
define the values of the weights and bias in the first layer,
thus allowing the parameters of the model to be more coher-
ent with the data submitted to the model. The use of unineu-
ron facilitates the transition of the use of the AND and OR
neurons, allowing the interpretation of the fuzzy rules to be
closer to the real one. Finally, the use of the SODA technique
maintained the interpretability capacity of the FNN model
and significantly reduced the execution time when compared
to the other FNN models that use logical neurons and fuzzy
grouping techniques. Finally, the use of the ReLU activation
function helped to improve the responses obtained by the
FNN model when compared to the models that use linear
and sigmoidal activation functions in real datasets.

The patterns classification tests with less number of fuzzy
rules and the use of faster activation functions allow the

Table 6 AUC of the model in the tests performed

Dataset SODA-FNN FCM-FNN GN-FNN

HAB 0.5650 (0.05) 0.5650 (0.03) 0.5642 (0.466)
TRA 0.5109 (0.76) 0.6300 (0.03) 0.6393 (0.23)
MAM 0.8399 (0.02) 0.8210 (0.02) 0.8349 (2.24)
LIV 0.6465 (0.05) 0.6591 (0.04) 0.6560 (0.04)
DIA 0.7000 (0.26) 0.6523 (0.03) 0.7057 (0.03)
HEA 0.7444 (0.04) 0.7797 (0.05) 0.7927 (0.41)
GER 0.5764 (0.13) 0.8718 (0.01) 0.8218 (0.01)
AUS 0.5807 (0.03) 0.6506 (0.06) 0.7533 (0.04)
ION 0.7468 (0.06) 0.6506 (0.06) 0.7533 (0.04)

Table 7 Algorithm execution time for pattern classification (in sec-
onds)

Dataset SODA-FNN FCM-FNN GN-FNN

HAB 28.55 (2.33) 52.14 (6.08) 74.17 (12.14)
TRA 24.51 (3.42) 66.12 (1.54) 123.44 (21.43)
MAM 32.16 (4.57) 102.44 (15.49) 144.23 (12.15)
LIV 17.41 (0.12) 58.43 (2.11) 83.45 (5.24)
DIA 13.51 (0.52) 17.58 (7.01) 19.44 (2.23)
HEA 8.45 (0.17) 14.55 (0.53) 17.14 (1.10)
GER 14.01 (0,44) 27.16 (2.54) 44.15 (6.21)
AUS 16.17 (1.43) 38.53 (12.42) 104.23 (32.53)
ION 16.12 (1.14) 33.51 (8.51) 54.17 (13.14)

Table 8 Number of fuzzy rules used by the model

Dataset SODA-FNN FCM-FNN GN-FNN

HAB 8.65 (1.75) 12.77 (2.65) 17.61 (1.76)
TRA 9.77 (2.11) 22.06 (0.88) 17.60 (2.24)
MAM 17.88 (5.12) 33.64 (12.96) 24.57 (8.65)
LIV 9.76 (8.56) 33.74 (14.90) 12.17 (7.43)
DIA 6.87 (0.81) 14.89 (2.43) 7.43 (1.08)
HEA 14.16 (2.43) 25.76 (3.87) 10.12 (1.43)
GER 18.17 (3.49) 22.43 (2.98) 19.32 (4.65)
AUS 14.98 (3.44) 48.42 (12.55) 16.01 (2.20)
ION 14.56 (2.33) 32.44 (4.58) 19.67 (4.54)

315Evolving Systems (2021) 12:303–317

1 3

model proposed in this paper to be identified as a model that
maintained the accuracy of pattern classification and at the
same time significantly decreased the response time to carry
out the activities. This approach accredits the model to work
with large-scale databases (big data).

The tests performed verified that the definition of weights
and bias using wavelets, the use of a cloud data group and
the use of the ReLU activation function is satisfactory for
the classification of binary patterns executed by fuzzy neural
networks. Basing the parameters to represent the characteris-
tics of the base, we find essential variations in the results of
precision found. This approach brings more representative-
ness to the results of the FNN that can elaborate more fuzzy
rules with the input data.

For future work can be checked the impact on the model
output and the processing time of your actions using other
types of membership functions. Because data clouds theory
allows the use of any existing membership function, there
may be improvements in the classification of patterns by
changing the type of function used.

Other approaches can be performed to optimize param-
eters related to Grid size, the number of bootstrap repetitions
and consensus threshold. Despite finding suitable results,
cross-validation spends a high computational time to per-
form the combinations defined in the tests and determine
the models. With advanced optimization techniques, genetic
algorithms and other existing intelligent approaches, the best
model parameters can be found more dynamically and effi-
ciently. Also in extensions of this work can be applied prob-
lems of linear regression, prediction of time series to verify
if the model maintains its capacity of universal approxima-
tion. Other training approaches can also be evaluated to
identify the impacts ELM can generate on parameter setting.
Finally, the application of this intelligent model is stimulated
for problems with larger dimensions than those that were ini-
tially submitted to the test. The SODA technique lowers the
complexity of the network structure, so for problems of high
dimensionality and Big Data, the model may be suitable to
deal with such kind of problems. Testing real problems with
large volumes of data is a strongly encouraged approach to
examining the model.

Acknowledgements The thanks of this work are destined to CEFET-
MG, University Center UNA and University Center UNIBH.

References

Aliev RA, Guirimov B, Fazlollahi B, Aliev RR (2009) Evolutionary
algorithm-based learning of fuzzy neural networks. Part 2: recur-
rent fuzzy neural networks. Fuzzy Sets Syst 160(17):2553–2566

Amari S-I (1993) Backpropagation and stochastic gradient descent
method. Neurocomputing 5(4–5):185–196

Angelov PP, Filev DP (2004) An approach to online identification of
takagi-sugeno fuzzy models. IEEE Trans Syst Man Cybern Part
B (Cybern) 34(1):484–498

Angelov PP, Gu X, Príncipe JC (2017) A generalized methodology for
data analysis. IEEE Trans Cybern

Angelov PP, Zhou X (2008) Evolving fuzzy-rule-based classifiers from
data streams. IEEE Trans Fuzzy Syst 16(6):1462–1475

Angelov P, Filev D, Kasabov N (2008) Guest editorial: evolving fuzzy
systems: preface to the special section. IEEE Trans Fuzzy Syst
16(6):1390–1392

Angelov P, Lughofer E, Zhou X (2008) Evolving fuzzy classi-
fiers using different model architectures. Fuzzy Sets Syst
159(23):3160–3182

Angelov P, Gu X, Kangin D (2017) Empirical data analytics. Int J Intell
Syst 32(12):1261–1284

Angelov P, Filev DP, Kasabov N (2010) Evolving intelligent systems:
methodology and applications, vol 12. Wiley, Amsterdam

Angelov P, Kasabov N (2005) Evolving computational intelligence
systems. In: Proceedings of the 1st international workshop on
genetic fuzzy systems, pp 76–82

Angelov P, Kasabov N (2006) Evolving intelligent systems, eis. IEEE
SMC eNewsLetter 15:1–13

Angelov P, Victor J, Dourado A, Filev D (2004) On-line evolu-
tion of takagi-sugeno fuzzy models. In: IFAC Proceedings Vol
37(16):67–72

Bach FR (2008) Bolasso: model consistent lasso estimation through the
bootstrap. In: Proceedings of the 25th international conference on
machine learning, ACM, pp 33–40

Bache K, Lichman M (2013) Uci machine learning repository
Ballini R, Gomide F (2002) Learning in recurrent, hybrid neurofuzzy

networks. In: Fuzzy Systems, 2002. FUZZ-IEEE’02. Proceedings
of the 2002 IEEE international conference on, vol 1, IEEE, pp
785–790

Baruah RD, Angelov P (2012) Evolving local means method for clus-
tering of streaming data. In: 2012 IEEE international conference
on fuzzy systems, IEEE, pp 1–8

Bezdek JC, Ehrlich R, Full W (1984) FCM: the fuzzy c-means cluster-
ing algorithm. Comput Geosci 10(2–3):191–203

Bordignon F, Gomide F (2014) Uninorm based evolving neural
networks and approximation capabilities. Neurocomputing
127:13–20

Buckley JJ, Hayashi Y (1994) Fuzzy neural networks: a survey. Fuzzy
Sets Syst 66(1):1–13

Clevert D.-A, Unterthiner T, Hochreiter S (2015) Fast and accurate
deep network learning by exponential linear units (elus). arXiv
:1511.07289

Daubechies I (1990) The wavelet transform, time-frequency localiza-
tion and signal analysis. IEEE Trans Inf Theory 36(5):961–1005

de Campos Souza PV, de Oliveira PFA (2018) Regularized fuzzy neu-
ral networks based on nullneurons for problems of classification
of patterns. In: 2018 IEEE symposium on computer applications
industrial electronics (ISCAIE), pp 25–30

de Campos Souza PV, Guimaraes AJ, Araújo VS, Rezende TS, Araújo
VJS (2018) Fuzzy neural networks based on fuzzy logic neurons
regularized by resampling techniques and regularization theory
for regression problems. Intell Artif 21(62):114–133

de Campos Souza PV, Silva GRL, Torres LCB (2018) Uninorm based
regularized fuzzy neural networks. In: 2018 IEEE conference on
evolving and adaptive intelligent systems (EAIS), pp 1–8

de Campos Souza PV, Torres LCB (2018) Regularized fuzzy neural
network based on or neuron for time series forecasting. In: Barreto
GA, Coelho R, (eds), Fuzzy information processing, Springer,
Cham, pp 13–23

de Campos Souza PV, Torres LCB, Guimaraes AJ, Araujo VS, Araujo
VJS, Rezende TS (2019) Data density-based clustering for regu-
larized fuzzy neural networks based on nullneurons and robust

http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1511.07289

316 Evolving Systems (2021) 12:303–317

1 3

activation function. Soft Comput. https ://doi.org/10.1007/s0050
0-019-03792 -z

de Jesús Rubio J (2017) Usnfis: uniform stable neuro fuzzy inference
system. Neurocomputing 262:57–66

de Jesús Rubio J (2018) Error convergence analysis of the sufin and
csufin. Appl Soft Comput

de Jesus Rubio J, Garcia E, Aquino G, Aguilar-Ibañez C, Pacheco J,
Meda-Campaña JA (2018) Mínimos cuadrados recursivos para un
manipulador que aprende por demostración. Revista Iberoameri-
cana de Automática e Informática industrial

de Jesús Rubio J, Garcia E, Aquino G, Aguilar-Ibañez C, Pacheco J,
Zacarias A (2018) Learning of operator hand movements via least
angle regression to be teached in a manipulator. Evol Syst pp 1–16

Ebadzadeh MM, Salimi-Badr A (2018) Ic-fnn: A novel fuzzy neu-
ral network with interpretable, intuitive, and correlated-contours
fuzzy rules for function approximation. IEEE Trans Fuzzy Syst
26(3):1288–1302

Efron B, Hastie T, Johnstone I, Tibshirani R (2004) Least angle regres-
sion. Ann Stat 32(2):407–499

Fei J, Lu C (2018) Adaptive sliding mode control of dynamic systems
using double loop recurrent neural network structure. IEEE Trans
Neural Netw Learn Syst 29(4):1275–1286

Goldberg DE, Holland JH (1988) Genetic algorithms and machine
learning. Mach Learn 3(2):95–99

Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press
http://www.deepl earni ngboo k.org

Gu X, Angelov P, Kangin D, Principe J (2018) Self-organised direction
aware data partitioning algorithm. Inf Sci 423:80–95

Guimaraes AJ, Araújo VJ, de Oliveira Batista L, Souza PVC, Araújo
V, Rezende TS (2018) Using fuzzy neural networks to improve
prediction of expert systems for detection of breast cancer. In:
XV Encontro Nacional de Inteligência Artificial e Computacional
(ENIAC), no 1, pp 799–810

Guimarães AJ, Araujo VJS, de Campos Souza PV, Araujo VS, Rezende
TS (2018) Using fuzzy neural networks to the prediction of
improvement in expert systems for treatment of immunotherapy.
In: Ibero-American conference on artificial intelligence, Springer,
pp 229–240

Hansen LP (1982) Large sample properties of generalized method of
moments estimators. Econometrica pp 1029–1054

Han M, Zhong K, Qiu T, Han B (2018) Interval type-2 fuzzy neural
networks for chaotic time series prediction: a concise overview.
IEEE Trans Cybern pp 1–12

Hell M, Costa P, Gomide F (2008) Hybrid neurofuzzy computing with
nullneurons. In: Neural networks, IJCNN 2008. (IEEE World
Congress on Computational Intelligence). IEEE International
Joint Conference on, IEEE 2008:3653–3659

Hell M, Costa P, Gomide F (2014) Participatory learning in the neuro-
fuzzy short-term load forecasting. In: Computational intelligence
for engineering solutions (CIES), (2014) IEEE symposium on,
IEEE, pp 176–182

Huang G-B, Zhu Q-Y, Siew C-K (2006) Extreme learning machine:
theory and applications. Neurocomputing 70(1–3):489–501

Jang J-S (1993) Anfis: adaptive-network-based fuzzy inference system.
IEEE Trans Syst Man Cybern 23(3):665–685

Juang C-F, Huang R-B, Cheng W-Y (2010) An interval type-2 fuzzy-
neural network with support-vector regression for noisy regression
problems. IEEE Trans Fuzzy Syst 18(4):686–699

Karlik B, Olgac AV (2011) Performance analysis of various activation
functions in generalized mlp architectures of neural networks. Int
J Artif Intell Expert Syst 1(4):111–122

Kasabov N (2001) Evolving fuzzy neural networks for supervised/
unsupervised online knowledge-based learning. IEEE Trans Syst
Man Cybern Part B (Cybern) 31(6):902–918

Kasabov NK, Song Q (1999) Dynamic evolving fuzzy neural networks
with“ m-out-of-n” activation nodes for on-line adaptive systems.
Department of Information Science, University of Otago

Kasabov NK (2001) On-line learning, reasoning, rule extraction and
aggregation in locally optimized evolving fuzzy neural networks.
Neurocomputing 41(1–4):25–45

Kasabov NK, Song Q (2002) Denfis: dynamic evolving neural-fuzzy
inference system and its application for time-series prediction.
IEEE Trans Fuzzy Syst 10(2):144–154

Kasabov N, Filev D (2006) Evolving intelligent systems: methods,
learning, and applications. In: Evolving fuzzy systems, (2006)
international symposium on, IEEE, pp 8–18

Koutrika G, Zadeh ZM, Garcia-Molina H (2009) Data clouds: sum-
marizing keyword search results over structured data. In: Proceed-
ings of the 12th international conference on extending database
technology: advances in database technology. ACM, pp 391–402

Lemos AP, Caminhas W, Gomide F (2012) A fast learning algorithm
for uninorm-based fuzzy neural networks. In: Fuzzy information
processing society (NAFIPS) (2012) Annual Meeting of the North
American, IEEE pp 1–6

Lemos A, Caminhas W, Gomide F (2010) New uninorm-based neuron
model and fuzzy neural networks. In: Fuzzy information process-
ing society (NAFIPS) (2010) annual meeting of the North Ameri-
can, IEEE 1–6

Liao G-C, Tsao T-P (2004) Application of fuzzy neural networks and
artificial intelligence for load forecasting. Electr Power Syst Res
70(3):237–244

Lin Y.-C, Wu Z.-Y, Lee S.-J, Ouyang C.-S (2018) Neuro-fuzzy net-
work for pm2. 5 prediction. In: International conference on smart
vehicular technology, transportation, communication and applica-
tions, Springer, New York, pp 269–276

Lughofer E (2011) Evolving fuzzy systems-methodologies, advanced
concepts and applications, vol 53. Springer, New York

Lughofer E (2012) Single-pass active learning with conflict and igno-
rance. Evol Syst 3(4):251–271

Lughofer E, Pratama M, Skrjanc I (2018) Incremental rule splitting in
generalized evolving fuzzy systems for autonomous drift compen-
sation. IEEE Trans Fuzzy Syst 26(4):1854–1865

Maas AL, Hannun AY, Ng AY (2013) Rectifier nonlinearities improve
neural network acoustic models. In: Proceedings of ICML,
vol 30(1), p 3

Maciel L, Lemos A, Gomide F, Ballini R (2012) Evolving fuzzy sys-
tems for pricing fixed income options. Evol Syst 3(1):5–18

Okabe A, Boots B, Sugihara K, Chiu S N (2009) Spatial tessellations:
concepts and applications of Voronoi diagrams, vol 501. Wiley,
Amsterdam

Pedrycz W (1991) Neurocomputations in relational systems. IEEE
Trans Pattern Anal Mach Intell 3:289–297

Pedrycz W (2006) Logic-based fuzzy neurocomputing with unineu-
rons. IEEE Trans Fuzzy Syst 14(6):860–873

Pedrycz W, Gomide F (2007) Fuzzy systems engineering: toward
human-centric computing. Wiley, Amsterdam

Perova I, Bodyanskiy Y (2017) Fast medical diagnostics using autoas-
sociative neuro-fuzzy memory. Int J Comput 16(1):34–40

Pratama M, Zhang G, Er MJ, Anavatti S (2017) An incremental type-2
meta-cognitive extreme learning machine. IEEE Trans Cybern
47(2):339–353

Rong H-J, Huang G-B, Sundararajan N, Saratchandran P (2009) Online
sequential fuzzy extreme learning machine for function approxi-
mation and classification problems. IEEE Trans Syst Man Cybern
Part B (Cybern) 39(4):1067–1072

Rong H-J, Sundararajan N, Huang G-B, Saratchandran P (2006)
Sequential adaptive fuzzy inference system (safis) for non-
linear system identification and prediction. Fuzzy Sets Syst
157(9):1260–1275

https://doi.org/10.1007/s00500-019-03792-z
https://doi.org/10.1007/s00500-019-03792-z
http://www.deeplearningbook.org

317Evolving Systems (2021) 12:303–317

1 3

Rong H-J, Sundararajan N, Huang G-B, Zhao G-S (2011) Extended
sequential adaptive fuzzy inference system for classification prob-
lems. Evol Syst 2(2):71–82

Rosa R, Gomide F, Ballini R (2013) Evolving hybrid neural fuzzy net-
work for system modeling and time series forecasting. In: Machine
learning and applications (ICMLA), 2013 12th international con-
ference on, vol 2, IEEE, pp 78–383

Rosa R, Maciel L, Gomide F, Ballini R (2014) Evolving hybrid neural
fuzzy network for realized volatility forecasting with jumps. In:
Computational intelligence for financial engineering and econom-
ics (CIFEr), 2104 IEEE Conference on, IEEE, pp 481–488

Sharifian A, Ghadi MJ, Ghavidel S, Li L, Zhang J (2018) A new method
based on type-2 fuzzy neural network for accurate wind power
forecasting under uncertain data. Renew Energy 120:220–230

Silva AM, Caminhas W, Lemos A, Gomide F (2014) A fast learn-
ing algorithm for evolving neo-fuzzy neuron. Appl Soft Comput
14:194–209

Song L-K, Wen J, Fei C-W, Bai G-C (2018) Distributed collaborative
probabilistic design of multi-failure structure with fluid–structure
interaction using fuzzy neural network of regression. Mech Syst
Signal Process 104:72–86

Souza PVDC, Guimaraes AJ, Araujo VS, Rezende TS, Araujo VJS
(2018) Regularized fuzzy neural networks to aid effort forecasting
in the construction and software development. Int J Artif Intell
Appl 9(6):13–26

Souza PVC (2018) Regularized fuzzy neural networks for pattern clas-
sification problems. Int J Appl Eng Res 13(5):2985–2991

Subramanian K, Suresh S (2012) A meta-cognitive sequential learning
algorithm for neuro-fuzzy inference system. Appl Soft Comput
12(11):3603–3614

Tang J, Liu F, Zou Y, Zhang W, Wang Y (2017) An improved fuzzy
neural network for traffic speed prediction considering periodic
characteristic. IEEE Trans Intell Transp Syst 18(9):2340–2350

Tikhonov AN, Goncharsky A, Stepanov V, Yagola AG (2013) Numeri-
cal methods for the solution of ill-posed problems. Springer, New
York, vol 328

Wang W-Y, Li Y-H (2003) Evolutionary learning of bmf fuzzy-neural
networks using a reduced-form genetic algorithm. IEEE Trans
Syst Man Cybern Part B (Cybern) 33(6):966–976

Yager RR, Rybalov A (1996) Uninorm aggregation operators. Fuzzy
Sets Syst 80(1):111–120

Yen VT, Nan WY, Van Cuong P (2018) Recurrent fuzzy wavelet neural
networks based on robust adaptive sliding mode control for indus-
trial robot manipulators. Neural Comput Appl pp 1–14

Yu X, Fu Y, Li P, Zhang Y (2018) Fault-tolerant aircraft control based
on self-constructing fuzzy neural networks and multivariable smc
under actuator faults. IEEE Trans Fuzzy Syst 26(4):2324–2335

Yu L, Zhang Y-Q (2005) Evolutionary fuzzy neural networks for hybrid
financial prediction. IEEE Trans Syst Man Cybern Part C (Appl
Rev) 35(2):244–249

Zhang Q-Z, Gan W-S, Zhou Y-L (2006) Adaptive recurrent
fuzzy neural networks for active noise control. J Sound Vib
296(4–5):935–948

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Self-organized direction aware for regularized fuzzy neural networks
	Abstract
	1 Introduction
	2 Literature review
	2.1 Fuzzy neural network
	2.2 Fuzzy neural networks models
	2.3 Evolving hybrid models
	2.4 Self-organized direction aware data partitioning algorithm- SODA
	2.5 Wavelets
	2.6 Rectified linear activation—ReLU

	3 SODA wavelets regularized fuzzy neural network and ReLU activation function
	3.1 Network architecture
	3.2 A proposition to update first layer weights and bias using wavelets
	3.3 Training fuzzy neural network
	3.4 Model consistent Lasso estimation through the bootstrap—Bolasso
	3.5 Use of activation functions of type rectified linear activation (ReLU) in the neural network aggregation

	4 Test of binary patterns classification
	4.1 Assumptions and initial test configurations
	4.2 Database used in the tests
	4.3 Binary pattern classification tests

	5 Conclusion
	Acknowledgements
	References

