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Abstract
The fuzzy neural networks are efficient hybrid structures to perform tasks of regression, patterns classification and time 
series prediction. To define its architecture, some models use techniques that fuzzification of data that can divide the sample 
space in grid format through membership functions. The models that use such techniques achieve results with a high degree 
of accuracy in their activities, but their structures can vary greatly when the number of features of the problem is high, 
making of fuzzy neurons an exponential relationship between the number of inputs and the membership functions numbers 
used in the model of the input space. A multi-neuron structure can make the training and update of parameters damaging 
to the model’s computational performance, making it impossible to work with problems of high dimensions or even with 
a high number of samples. To solve the problem of the creation of structures of hybrid models based on neural networks 
and fuzzy systems this paper proposes the use of a novel fully data-driven algorithm. This algorithm uses an extra cosine 
similarity-based directional component to work together with a traditional distance metric and nonparametric Empirical 
Data Analytics to data partitioning and forming data clouds in the first layer of the model. Another problem that exists in 
fuzzy neural network models is that some of their parameters are defined at random, so they challenging to interpret and can 
introduce casual situations that may impair model responses. In this paper we also propose the definition of bias and weights 
of the neurons of the first layer using the concepts of the wavelet transform, allowing the parameters of the neurons also to be 
directly related to the input data submitted to the model. In the second layer, the unineurons aggregate the neurons generated 
in the first layer and a regularization function is activated to determine the most significant unineurons. The weights used 
in the third layer, represented by an artificial neural network with an activation function of type ReLU, are generated using 
the concepts of the extreme learning machine. To verify the new training approach for fuzzy neural networks, tests with real 
and synthetic databases were performed for pattern classification, which led to the conclusion that the cloud-based approach 
and neuron weights generation based on the data frequency of training proves that the accuracy of the model is adequate to 
perform binary classification problems.
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1 Introduction

The fuzzy neural networks (FNN) are hybrid models based 
on the incorporation of fuzzy systems, which are capable 
of generating interpretability to the results, with the gen-
eralist capacity of artificial neural networks, which have 
several training techniques to solve problems that normally 
humans act. These structures have been applied in several 
contexts in the area of artificial intelligence, such as binary 
patterns classification (de Campos Souza et al. 2018; de 
Campos Souza and de Oliveira 2018; Lughofer et al. 2018; 
Lughofer 2012), regression (Juang et al. 2010), time series 
forecasting (Han et al. 2018; Bordignon and Gomide 2014; 
Rosa et al. 2013; de Campos Souza and Torres 2018), rain-
fall (Sharifian et al. 2018), financial market (Rosa et al. 
2014), software effort estimation (Souza et al. 2018), fail-
ures prediction in some engineering contexts (Song et al. 
2018; Tang et al. 2017; de Jesús Rubio 2018, 2017) and 
so on.

The architecture of fuzzy neural networks have layers 
that can perform various tasks. Generally, the first layer 
is responsible for partitioning the input data according 
to the chosen fuzzy technique. Fuzzy neurons are con-
structed according to training data and may generate fuzzy 
rules for the construction of expert systems (Buckley and 
Hayashi 1994). In the second layer, the updating of the 
parameters involved may involve techniques such as back-
propagation, gradient descent (Amari 1993) and extreme 
learning machine (Huang et al. 2006), which consists in 
determining parameters of the hidden layers of the net-
works at random and calculate the final weights using least 
squares concepts. The second layer may contain artificial 
neurons or neural logic neurons. These neurons enable the 
transformation of model elements into if/else fuzzy rules. 
The neurons and, orPedrycz and Gomide (2007), unineu-
rons, Pedrycz (2006) and nullneuron, Hell et al. (2008) 
are highlighted as neurons with this capacity. Evolution-
ary and genetic approaches are also used. Finally, these 
models use a neural network of aggregation with artificial 
neurons to carry out their responses. In general, neurons 
use activation functions commonly known to obtain the 
final network output.

When verifying that fuzzy neural networks suffer from 
problems related to the number of neurons, regularization 
techniques were incorporated into the models, allowing the 
less significant neurons to be discarded from the model. 
In particular techniques such as the regression ridge (Tik-
honov et al. 2013), LARS (Hansen 1982) and the bootstrap 
lasso (Bach 2008) are employed to define the architecture 
of fuzzy neural networks. This paper presents a new train-
ing model in fuzzy neural networks where the first layer of 
the model has its fuzzy neurons with the synaptic weights 

and bias defined by wavelet transform functions (Daube-
chies 1990). The Gaussian membership functions of the 
fuzzy neurons in the first layer are defined by an algorithm 
fully data-driven called SODA (Self-Organized Direction 
Aware) (Gu et al. 2018). This algorithm applies the con-
cept of a directional component based on extra cosine sim-
ilarity to work in conjunction with a traditional distance 
metric. In summary, SODA uses nonparametric Empirical 
Data Analysis (EDA) (Angelov et al. 2017) operators to 
automatically identify the critical modes of the data pat-
tern from the empirically observed training samples and 
uses them as focal points to form data clouds. The second 
layer of the model is composed of unineurons that perform 
the aggregation of the fuzzy neurons of the first layer. In 
order to eliminate unnecessary neurons to the model, the 
algorithm bolasso Bach (2008) to eliminate neurons using 
the lasso method according to a decision consensus and 
some bootstraps. Finally, the artificial neural network is 
present in the third layer of the model, but different from 
the model of de Campos Souza et al. (2018), where linear 
activation functions are used, the concepts of rectified lin-
ear units (ReLU) are used (Maas et al. 2013).

This type of approach using logical neurons that aggre-
gate neurons formed by cloud techniques allows a more sig-
nificant number of input data to be worked by the model in 
a time less than exponential approaches proposed by models 
that have fuzzification processes based on the model Anfis 
(Jang 1993).

To verify the capacity of the new model, binary pattern 
classification tests will be performed in order to evaluate 
aspects of model accuracy. The paper is organized as fol-
lows: Sect. 2 presents the main concepts that guide the 
research, such as the definitions of fuzzy neural networks, 
wavelets, regularization and activation functions. Section 3 
will present the steps and concepts related to the methodol-
ogy proposed to generate the first layer weights of the FNN 
based on the wavelet transform, and the concepts of SODA 
to construct the first layer neurons, in addition to the artifi-
cial neurons based on the activation functions of type ReLU 
to perform the of binary patterns classification in the output 
of the model. Section 4 will present the methodology used 
in the tests, including the bases, and the algorithms used to 
perform the binary pattern classification. Finally, in Sect. 5 
the conclusions of the work will be presented.

2  Literature review

2.1  Fuzzy neural network

Over the last few decades, fuzzy systems and their hybrid 
derivations have been shown to be able to simulate the typi-
cal human reasoning ability in a computationally efficient 
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way. An important area of current research is the develop-
ment of such systems with a high level of flexibility and 
autonomy to evolve their structures and knowledge based 
on changes in the environment, being able to handle mod-
eling, control, prediction and classification of patterns in 
a situation not stationary, susceptible to constant changes. 
Fuzzy neural networks are characterized by neural networks 
composed of fuzzy neurons (Pedrycz and Gomide 2007). 
The motivation for the development of these networks lies 
in its easy interpretability, being possible to extract knowl-
edge from its topology. These networks are formed by a syn-
ergistic collaboration between fuzzy set theory and neural 
networks allowing a wide range of learning abilities, thus 
providing models that integrate the uncertain information 
handling provided by the fuzzy systems and the learning 
ability granted by the neural networks (Pedrycz 1991). Thus 
a Fuzzy neural network can be defined as a fuzzy system 
that is trained by an algorithm provided by a neural network. 
Given this analogy, the union of the neural network with 
the fuzzy logic comes with the intention of softening the 
deficiency of each of these systems, making us have a more 
efficient, robust and easy to understand a system.

2.2  Fuzzy neural networks models

FNNs are composed of logical neurons, which are functional 
units that add relevant aspects of processing with learning 
capacity. They can be seen as multivariate nonlinear trans-
formations between unit hypercubes (Pedrycz 1991). Stud-
ies propose the generalization of logical neurons and and 
or that are constructed through extensions of t-norms and 
s-norms. One of the most important features of these neu-
rons, called unineurons, Pedrycz (2006) and nullneurons, 
Hell et al. (2008), are their ability to vary smoothly from a 
neuron or to and and vice versa, depending on the need for 
the problem to be solved. This causes the final structure of 
the network to be determined by the training process, mak-
ing this structure more general than fuzzy neural networks 
formed only by classical logical neurons.

These intelligent models have an architecture based on 
multilayer networks, where each one of them has different 
functions for the activities carried out. The layers of a fuzzy 
neural network can act as fuzzification, transforming numer-
ical data into representations of fuzzy sets, other layers can 
perform with the defuzzification making the inverse pro-
cess (convert fuzzy sets into numerical values). Some layers 
have with fuzzy rules, where they are usually called of fuzzy 
inference systems and layers representing neural aggregation 
networks. Each model has layers and different training tech-
niques to solve problems. As examples of three-layers archi-
tectures, the proposals of Souza 2018, de Campos Souza and 
Torres (2018), Guimarães et al. (2018), de Campos Souza 
et  al. (2018) and Guimaraes et  al. (2018). Already the 

models that have four and five layers in its structure, we 
can highlight the models of Lin et al. (2018) and Kasabov 
(2001) respectively. In most models, the first layer is the one 
that partitions the input data, transforming them into fuzzy 
logical neurons. Algorithms common to these approaches 
are fuzzy c-means (Bezdek et al. 1984), clouds (Koutrika 
et al. 2009) and functions based on ANFIS techniques (Jang 
1993). The fuzzy neural networks may also present train-
ing characteristics based on recurring functions (Yen et al. 
2018; Ballini and Gomide 2002), evolving concepts (Silva 
et al. 2014; Rosa et al. 2013, 2014) and contours-correlated 
functions (Ebadzadeh and Salimi-Badr 2018).

In this paper, the highlight will be the extreme learning 
machine (Huang et al. 2006) in conjunction with fuzzy data 
processing techniques in the first layers. These approaches 
have already been used in models such as (Souza 2018; 
de Campos Souza and Torres 2018; Lemos et al. 2012; Rong 
et al. 2009), differing from the model proposed in this paper 
by the type of algorithm used for the fuzzification process.

The main difference will be between the change of the 
ANFIS model (Jang 1993) that uses equally spaced member-
ship functions to a cloud approach. The nature of the input 
data of the model will have greater significance for the con-
struction of the neurons than an exponential relationship of 
grid division proposed by models that are based on the tech-
niques of the division of the sample space. This will allow 
the fuzzification technique used in the fuzzy neural network 
to create the number of neurons in the first layer much lower 
when compared to the approaches that use the ANFIS. In 
techniques that the main fuzzification parameters are based 
on structures of pertinence functions, many neurons may 
represent empty or inexpressive spaces for the problem. 
The SODA technique works with the representativeness of 
the data, allowing only representative neurons to be created 
according to the density of the data in the sample space. The 
fuzzification approach in the input sets defines the number of 
neurons that will make up the network. Therefore the cloud 
fuzzification technique leaves the fuzzy neural network more 
optimized, without losing its ability to solve problems.

Another difference in the approach proposed in this work 
is how the parameters of the neurons of the first layer (weight 
and bias) are defined according to the wavelet transform 
(Daubechies 1990), thus allowing a relationship between 
the input data of the model and its initial parameters. For 
this, the concept of the discrete wavelet transform is used 
through the application of filter banks. This technique can 
process data at different scales or resolutions and, regardless 
of whether the function of interest is an image, a curve or a 
surface, wavelets offer an excellent technique in representing 
the detail levels present in the data, thus allowing the values 
recovered are derived from the representation of the input 
data. In this case, the values obtained by the techniques to 
be assigned to the weights and bias of the neurons of the first 
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layer will have a representation on the data that will operate, 
different from the traditional approach that determines these 
values in a random way and without a meaning of relation 
with the of the problem.

The unineuron proposed by Lemos et al. (2010) is used to 
facilitate the actuation of the model, being able to act in dif-
ferent moments like type AND and type OR. This approach 
allows greater flexibility of the rules of the fuzzy inference 
system. Unlike the FNN algorithms explained in this topic, 
the model proposed in this paper intends to use a data cloud 
technique to create the first layer neurons. Also, in the neu-
ron of the neural aggregation network, we want to insert an 
activation function that does not activate all fuzzy rules of 
the problem at the same time. This means only a few features 
are taken into account in the problem, making the neural 
network sparse, efficient and easy to process.

2.3  Evolving hybrid models

Intelligent evolving systems are based on online machine 
learning methods for intelligent hybrid models. These sys-
tems are characterized by their ability to extract knowledge 
from data and adapt their structure and parameters to better 
adapt to changes in the environment (Kasabov and Filev 
2006). They are formed by an evolutionary set of locally 
valid subsystems that represent different situations or points 
of operation. The concepts of this learning methodology 
make it possible to develop unsupervised clustering algo-
rithms capable of adapting to changes in the environment 
as the current knowledge is not sufficient to describe such 
changes (Angelov et al. 2008).

The term “evolving” should not be confused with “evolu-
tionary.” Genetic algorithms (Goldberg and Holland 1988) 
and genetic programming, are based on the evolutionary 
process that occurs in populations of individuals and use 
operators based on the concepts of selection, crossing, and 
mutation of chromosomes as adaptive mechanisms. Also 
evolving fuzzy systems are based on the process of evolution 
of individuals throughout their life; specifically the process 
of human learning, based on the generation and adaptation 
of knowledge from experiences (Angelov and Zhou 2008).

The evolving models and evolutionary algorithms, which 
alter parameters as they update new training inputs (Angelov 
et al. 2010), can be exemplified by the hybrid models pro-
posed by Angelov et al. (2008), Zhang et al. (2006), Aliev 
et al. (2009), Liao and Tsao (2004), Kasabov (2001), Wang 
and Li (2003), Yu and Zhang (2005), Hell et al. (2014), 
Kasabov and Song (1999), Fei and Lu (2018), Maciel et al. 
(2012), Yu et al. (2018), Pratama et al. (2017), Rong et al. 
(2009), Lughofer (2011), Angelov and Filev (2004), Subra-
manian and Suresh (2012), Rong et al. (2006), Rong et al. 
(2011), Kasabov and Song (2002), de Campos Souza et al. 
(2019), Angelov and Kasabov (2005), Angelov et al. (2004), 

Baruah and Angelov (2012), Angelov and Kasabov (2006), 
Perova and Bodyanskiy (2017).

2.4  Self‑organized direction aware data 
partitioning algorithm‑ SODA

The process by which fuzzy models treat data can deter-
mine how hybrid models can have the interpretability of 
their results closer to their real world. Models that are fully 
data-driven are the targets of recent research and have 
achieved satisfactory results in a cloud data cluster. This 
clustering concept focused on data is called Empirical Data 
Analytics (EDA) (Angelov et al. 2017). This concept brings 
together the data without statistical or traditional probability 
approaches, based entirely on the empirical observation of 
the input data of the model, without the need for any previ-
ous assumptions and parameters (Gu et al. 2018).

SODA is a data partitioning algorithm capable of iden-
tifying peaks/modes of data distribution and uses them as 
focal points to associate other points to data clouds that 
resemble Voronoi tessellation. Data clouds can be under-
stood as a particular type of clusters, but with a much dif-
ferent variety. They are non-parametric, but their shape is 
not predefined and predetermined by the type of distance 
metric used. Data clouds directly represent the properties of 
the local set of observed data samples (Gu et al. 2018). The 
approach employs a magnitude component based on a tradi-
tional distance metric and a directional/angular component 
based on the cosine similarity.

The main EDA operators are described in Angelov et al. 
(2017), which are also suitable for streaming data process-
ing. The EDA operators include the Cumulative Proximity, 
Local Density, and Global Density. The local density Dn is 
defined as the inverse of the normalized cumulative proxim-
ity and directly indicates the main pattern of observed data 
Angelov et al. (2017), where D for the training input xi = (1, 
2,...,N); Nu > 1 is defined as follow Gu et al. (2018):

Global density is defined for unique data samples together 
with their corresponding numbers of repeats in the dataset/
stream, and of a particular unique data sample, ui (i=1, 2, 
...nu ; nu ≥ 1) is expressed as the product of its local density 
and its number of repeats considered as a weighting factor 
Angelov et al. (2017) as follows:

As the main EDA operators (cumulative proximity, local 
density (D) and global density ( DG )) can be updated recur-
sively, the SODA algorithm can be suitable for online pro-
cessing of streaming data, causing the updating of density 

(1)Dn(xi) =

∑n

j=1
�n(xj)

2n�n(xj)

(2)DG
n
(ui) = fiDn(ui)
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groups of data in an evolving process. The algorithm is per-
formed used in this paper utilizing the following steps (Gu 
et al. 2018):

Stage 1- Preparation: we calculate the average values 
between every pair of input data, x1, x2,… , xn for both, the 
square angular components, dA and square Euclidean com-
ponents, dM.

Stage 2- DA Plane Projection: The DA projection opera-
tion works with the unique data sample that has the most 
significant global density, namely u∗ 1 . It is initially set to be 
the first reference, �1 ← u1 , which is also the origin point of 
the first DA plane, denoted by P1 ( Lc ← 1, Lc is the number 
of existing DA planes in the data space).

Stage 3: Identifying the Focal Points: for each DA 
plane, expressed as Pe , find the adjacent DA planes.

Stage 4: Forming Data Clouds: After all the DA planes 
reaching for the modes/peaks of the data density are identi-
fied, we consider their origin points, denoted by �o , as the 
focal points and use them to form data clouds according to 
as a Voronoi tessellation (Okabe et al. 2009). It is worth to 
stress that the theory of data clouds is quite similar to the 
idea of clusters, but differs in the following characters:

 (i) data clouds are nonparametric;
 (ii) data clouds do not have a specific shape;
 (iii) data clouds represent the real data distribution. Fig-

ure 1 shows an example of the SODA definition and 
the center of cloud grouping defined by the algo-
rithm. The data submitted to the SODA model are 
normalized.

2.5  Wavelets

Wavelet is a function capable of decomposing and rep-
resenting another function described in the time domain 
so that we can investigate this other function in different 

frequency and time orders. In Fourier analysis, can only 
identify information about the frequency domain, but we 
can not know when these repetitions that we study happen. 
Meantime, in wavelet analysis, we can also extract infor-
mation from the function in the time domain. The detailing 
of the frequency domain analysis decreases as time resolu-
tion increases, and it is impossible to increase the detail 
in one domain without decreasing it in the other. Using 
wavelet analysis, you can choose the best combination of 
details for an established goal. Adapting this concept to 
the fuzzy neural networks, the use of wavelet functions 
can allow the values destined for the bias and the weights 
of the neurons to be determined according to their nature 
and no longer in a random way (Daubechies 1990). In this 
paper, the discrete wavelet will be adopted. This type of 
methodology is much used in data compression.

In order to calculate the discrete wavelet transforms, 
it is through the filter bank application where the filter 
determined by the coefficients h = {hn}n∈ℤ corresponds to 
a high pass filter and the filter g = {gn}n∈ℤ to a low pass 
filter. Each of these coefficients in the discrete wavelet 
transform is tabulated. Emphasis is given to the use of the 
operator (↓ 2) is the sub-sampling operator. This opera-
tor applied to a discrete function (a sequence) reduces its 
number of elements in half, recovering only the compo-
nents in even positions, allowing the procedure to be faster 
and more precise (Daubechies 1990). The filters h and g 
are linear operators, which can be employed to the input 
x as a convolution:

The decomposition with the filter decays the signal into only 
two frequency bands. The chaining of a series of filter banks 
can be accomplished using sub-sampling operation to pro-
vide the division of the sampling frequency by 2 to each new 
filter bank threaded (Daubechies 1990). Figure 2 shows a 
schematic of the two filters.

(3)c(n) =
∑
k

g(k)x(n − k) = g ∗ x

(4)d(n) =
∑
k

h(k)x(n − k) = h ∗ x

Fig. 1  SODA algorithm
Fig. 2  Filter decomposition signal of input. Avaliable: https ://
zh.wikip edia.org/wiki/File:Wavel ets-Filte r_Bank.png

https://zh.wikipedia.org/wiki/File:Wavelets-Filter_Bank.png
https://zh.wikipedia.org/wiki/File:Wavelets-Filter_Bank.png
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2.6  Rectified linear activation—ReLU

The activation functions allow the introduction of a nonlinear 
component in the intelligent models, especially those neurons 
that use logical representations of the human artificial neuron. 
This characteristic allows intelligent models, such as fuzzy neu-
ral networks, to learn more than linear relationships between 
dependent and independent variables (Karlik and Olgac 2011). 
Therefore, understanding the functioning of the activation func-
tion and in which contexts it can best be applied are prepon-
derant foundations for the success of the model in performing 
activities that simulate human behavior. They are essential to 
provide a representative capability for fuzzy neural networks by 
introducing a nonlinearity component. On the other hand, with 
this power, some difficulties arise, mainly due to the diversi-
fied nature of activation functions, that can vary the effective-
ness of their actions according to specific characteristics of the 
database to which the model is being submitted. In general, by 
introducing non-linear activation, the cost surface of the neuron 
is no longer convex, making optimization more complicated. 
In problems that use parameterization by descent gradients, 
non-linearity makes it more identifiable which elements need 
adjustment (Karlik and Olgac 2011). In models of fuzzy neural 
networks, the main functions of activation are those that use the 
hyperbolic tangent, Gaussian and linear. Other functions can be 
highlighted for convolutional and big data problems such as the 
ReLU (2011), Elu (2015) and Leaky Relu (2013) functions.

A model that has been used to solve various problems is 
Rectified Linear Activation (ReLU). It a the nonlinear activa-
tion function more usually applied to compose neural networks 
to solve image detection problems. His proposes that if the 
input is no important to the model, the ReLU function will 
apply its value to zero and the feature will not be activated. 
This proposes that at the same moment, only several features 
are activated, creating the sparse neuron, efficient and straight-
forward for computing. In these circumstances, the inputs and 
combinations of a more representative characteristic can act 
dynamically and efficiently to improve the accuracy of the 
model (Karlik and Olgac 2011).

Artificial neural networks with the ReLU function are 
secure to optimize since the ReLU is hugely similar to the 
identity function. The only difference is that ReLU produces 
zero in half of its domain. As a consequence, the derivatives 
stay large while the unit is active (Goodfellow et al. 2016).

3  SODA wavelets regularized fuzzy neural 
network and ReLU activation function

3.1  Network architecture

The fuzzy neural network described in this chapter follows 
most of the structure defined in de Campos Souza et al. (2018). 

However, modifications were made in the first layer (fuzzifica-
tion) and the third layer (the neural network of aggregation). 
Unineuron is used to construct fuzzy neural networks in the 
second layer to solve pattern recognition problems and bring 
interpretability to the model.

The first layer is composed of neurons whose activation 
functions are membership functions of fuzzy sets defined for 
the input variables. For each input variable xij , Lc clouds are 
defined Alcj , lc = 1 ...Lc whose membership functions are the 
activation functions of the corresponding neurons. Thus, the 
outputs of the first layer are the membership degrees associ-
ated with the input values, i.e., ajlc = �A

lc
 for j = 1 ...N and lc = 

1 ...Lc , where N is the number of inputs and Lc is the number 
of fuzzy sets for each input results by SODA.

The second layer is composed by Lc fuzzy unineuron. Each 
neuron performs a weighted aggregation of all of the first layer 
outputs. This aggregation is performed using the weights wilc 
(for i = 1 ...N and lc = 1 ...Lc ). For each input variable j, only 
one first layer output ajlc is defined as input of the lc-th neuron. 
So that w is sparse, each neuron of the second layer is associ-
ated with an input variable. Finally, the output layer is com-
posed of one neuron whose activation functions (f) are ReLU 
Maas et al. (2013). The output of the model is:

where z0 = 1, v0 is the bias, and zj and vj , j = 1, ..., lc are the 
output of each fuzzy neuron of the second layer and their 
corresponding weight, f is the activation function and sign is 
an operator that transforms the output of the neuron to 1 if it 
is greater than zero and -1 if it is less than zero, respectively. 

(5)� = sign

lc∑
j=0

f (zlvl)

Fig. 3  FNN architecture
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Figure 3 presents an example of FNN architecture proposed 
in this paper.

3.2  A proposition to update first layer weights 
and bias using wavelets

For the first layer of the FNN, training will be performed 
with each output of the filters of each level of the wavelet 
transform, thus allowing to update the weights, which by the 
original definition in de Campos Souza et al. (2018) should 
be randomly assigned, assigning them the corresponding 
values of the output of the wavelet filters. Thus, the training 
of the fuzzy neural network can happen in a parallel way. In 
addition to allowing better representation of the problems 
for the weights and bias of the fuzzy neuron.

The algorithm below presents the necessary information 
about the steps performed to carry out the training and pre-
sent in Algorithm 1.

In the first layer of this architecture, the initial vector has 
lc values. After the application of the wavelet transform, the 
resulting vector still with lc elements but part of this vector 
is responsible for the high frequencies (detail), and the other 
part is responsible for the low frequencies (approximation).

Initially, the wavelet transform is applied to the input data 
resulting in a vector �1 . This vector is then passed to a detail 
removal function that matches the size of the obtained vector 
to the size of the output of the current layer so that training 
can be done resulting in a vector �1 . In other words, if the 
first hidden layer of the FNN has seven neurons, only the 
first seven values of the vector �1 will be used for the attribu-
tion of the weights, the others will be discarded.

Consider that for the FNN example, the initial vector has 
nine elements. After applying the Wavelet transform, the 
resulting vector continues with nine elements but part of 
this vector is responsible for the high frequencies (detail), 
and the other part is responsible for the low frequencies 
(approximation). When operating RemoveDetails(�1) only 
the first seven elements of the vector are used. In this way, 
we have two vectors: a vector of 9 items (input of the first 
layer) and another vector of 7 features (output of the first 
layer). From this vector of 7 elements, the values responsible 
for the approximation are assigned to the bias and the detail 
value to the weights of the neurons in the first layer.

The high filter values will be assigned to the neuron 
weights, and the low filter values will be allocated to the 
bias. This procedure ensures that the same amount of 
weights and bias that would be randomly assigned are pro-
vided based on the wavelet transform, allowing these two 
parameters to be based on the characteristics of the database 
submitted to the model.

Figure 4 shows that with the input data of the fuzzy neural 
network model the low and high pass filter functions gener-
ate approximation and detail vectors with the input data. In 

this case, each of these vectors will be assigned to the bias 
(low) and the weights (high) of the neurons of the first layer. 
This assignment was made arbitrarily because in preliminary 
tests it did not matter if it was otherwise.

Algorithm 1: FNN training with filter bank Wavelets
for weight w and bias b
ψ1 ← Wavelet(input);
φ1 ← RemoveDetails(ψ1);
Train(in = input, out = φ1)

3.3  Training fuzzy neural network

The membership functions in the first layer of the FNN are 
adopted in this paper as Gaussian, constructed through the 
centers ( � ) obtained by the method of granularization of the 
input space (SODA) and by the randomly defined sigma ( � ). 
Another difference in the first layer is the definition of the 
fuzzy neuron weights using the wavelet transform. The number 
of neurons Lc in the first layer is defined according to the input 
data, and by the number of partitions ( � ) defined parametri-
cally. This approach partitions the input space, following the 
definition logic of creating data nodes. The centers of these 
created clouds make up the Gaussian activation functions of 
the fuzzy neurons. These changes will allow the adaptation of 
the data according to the basis submitted to the model, allow-
ing a more independent and data-centered approach. The sec-
ond layer performs the aggregation of the Lc neurons from the 
first layer through the unineurons proposed by Lemos et al. 
(2010). These neurons use the concept of uninorm Yager and 
Rybalov (1996), which extends t-norm and s-norm, allowing 
the values of the identity element (o) to change between 0 and 
1. Therefore, the identity element allows the change of the cal-
culation in the fuzzy neuron in a simple way by alternating the 
aggregation of elements between an s-norm (if o = 0) and an 
t-norm (if o = 1). Thus the value of the identity element allows 
the uninorm Yager and Rybalov (1996) to have the freedom 
to transform the unineurons into andneurons or in orneurons, 
within the resolution of the problem. In this paper, the uninorm 
(U) is expressed as follows:

Fig. 4  Value assignment wavelet for the weights of the neuron and 
the bias
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where T are t-norms, S is a s-norms and o is the identity 
element. In this paper, we considered the t-norm operator 
the product and as s-norm operator the probabilistic sum.

The unineuron proposed in Lemos et al. (2010) performs 
the following operations to compute its output:

1 each pair ( ai , wi ) is transformed into a single value bi = 
h ( ai , wi);

2 calculate the unified aggregation of the transformed val-
ues with uninorm U ( b1, b2 … bn ), where n is the number 
of inputs.

The function p (relevancy transformation) is responsible for 
transforming the inputs and corresponding weights into indi-
vidual transformed values. This function fulfills the require-
ment of monotonicity in value which means if the input value 
increases the transformed value must also increase. Finally, the 
function p can bring consistency of effect of wi . A formulation 
for the p function can be described as Lemos et al. (2010):

using the weighted aggregation reported above the unineu-
ron can be written as Lemos et al. (2010):

The fuzzy rules can be extracted from the network topology 
and are presented in Eq. 9.

After the construction of the Lc unineuron, the bolasso algo-
rithm (Alg. 2) Bach (2008) is executed to select LARS using 
the most significant neurons (called L� ). The final network 
architecture is defined through a feature extraction technique 
based on l1 regularization and resampling. The learning 
algorithm assumes that the output hidden layer composed 

(6)U(x, y) =

⎧
⎪⎨⎪⎩

oT(
x

o
,
y

o
), if y ∈ [0, o]

o + (1 − o)S(
x−o

1−o
,
y−o

1−o
), if y ∈ [o, 1]

max (x, y) or min (x, y), otherside

(7)p(w, a) = wa + wo

(8)� = UNI(w;x;a) = Un
i=1

p(wi, ai)

(9)

Rule1 ∶ If xi1 is A
1

1
with certainty w11 …

and∕or xi2 is A
2

1
with certainty w21 …

Then y1 is v1

Rule2 ∶ If xi1 is A
1

2
with certainty w12 …

and∕or xi2 is A
2

2
with certainty w22 …

Then y2 is v2

Rule3 ∶ If xil is A
1

3
with certainty w13 …

Then y3 is v3

Rule4 ∶ If xi2 is A
2

3
with certainty w23 …

Then y4 is v4

of the candidate neurons can be written as de Campos Souza 
et al. (2018):

where v = [ v0, v1, v2,… , vL� ] is the weight vector of the out-
put layer and z ( xi ) = [ z0, z1(xi), z2(xi)… zL�(xi )] the output 
vector of the second layer, for z0 = 1. In this context, z ( xi ) is 
considered as the non-linear mapping of the input space for 
a space of fuzzy characteristics of dimension L� (de Cam-
pos Souza et al. 2018).

Subsequently, following the determination of the network 
topology, the predictions of the evaluation of the vector of 
weights’ output layer are performed. In this paper, this vector 
is considered by the Moore-Penrose pseudo Inverse de Cam-
pos Souza et al. (2018):

where Z+ is pseudo-inverse of Moore-Penrose of z which 
is the minimum norm of the least squares solution for the 
weights of the output layer and y is the vector of expected 
output in supervised training.

3.4  Model consistent Lasso estimation 
through the bootstrap—Bolasso

A universal algorithm used for estimating the parameters of a 
regression model and selecting relevant characteristics is the 
Least Angle Regression (LARS) Efron et al. (2004). LARS 
is a regression algorithm for high-dimensional data that is 
capable of estimating not only regression coefficients but also 
a subset of candidate regressors to be included in the final 
model. LARS is used in the de Jesús Rubio et al. (2018) and 
de Jesus Rubio et al. (2018) models to perform operator hand 
movements learning in a manipulator. A modification of the 
LARS allows the creation of the lasso using the ordinary least 
squares, a restriction of the sum of the regression coefficients 
(Efron et al. 2004). Consider a set of n distinct samples ( xi , yi ), 
where xi = [ xi1 , xi2 , ..., xiN ] � ℝN and yi � ℝ for i = 1, ..., N, the 
cost function of Lasso algorithm can be defined as:

where � is a regularization parameter, commonly estimated 
by cross-validation.

The first term of (12) corresponds to the sum of the 
squares of the residues (RSS). This term decreases as the 
training error decreases. The second term is an L1 regulariza-
tion term. Generally, this term is added, since it improves the 
generalization of the model, avoiding the super adjustment 
and can generate sparse models (Efron et al. 2004).

(10)f (xi) =

L�∑
i=o

vizi(xi) = z(xi)v

(11)� = �+�

(12)
N�
i=1

‖z(xi)� − yi
��2 + �‖���1
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The LARS algorithm can be used to perform the model 
selection since for a given value of � only a fraction (or 
none) of the regressors have corresponding nonzero weights. 
If � = 0, the problem becomes unrestricted regression, and 
all weights are nonzero. As �max increases from 0 to a given 
value �max , the number of nonzero weights decreases to zero. 
For the problem considered in this paper, the zL� regressors 
are the outputs of the significant neurons. Thus, the LARS 
algorithm can be used to select an optimal subset of the 
significant neurons that minimize (12) for a given value of �.

Bolasso can be seen as a regime of consensus combi-
nations where the most significant subset of variables on 
which all regressors agree when the aspect is the selection 
of variables is maintained (Bach 2008). Bolasso uses the 
decision threshold system ( � ) that represents the choice of 
model regularization, that is, when the value of � is indi-
cated, it defines the percentage involved in choosing the best 
regressors. For example, if � = 0.5 means that if the neuron 
is at least 50% of resampling as a relevant neuron, it will be 
chosen for the final model.

Bolasso procedure is summarized in Algorithm 2.

Algorithm 2: Bolasso- bootstrap-enhanced least abso-
lute shrinkage operator

(b1) Let n be the number of samples in z:
(b2) Show n examples of (z, y), uniformly and with
substitution, called here (zsamp, ysamp).
(b3) Determine which weights are nonzero given a λ
value.
(b4) Repeat steps b1: b3 for a specified number of
bootstraps bt.
(b5) Take the intersection of the non-zero weights indexes
of all bootstrap replications.
(b6) Select the resulting variables.
(b7) Revise the results using the variables selected via
non-regularized least squares regression.
(b8) Repeat the procedure for each value of bt bootstraps
and λ (actually done more efficiently by collecting interim
results).
(b9) Determine ”optimal” values for λ and bt.
(b10) Use the consensus threshold (γ) to determine the
most significant neurons in the model.

3.5  Use of activation functions of type rectified 
linear activation (ReLU) in the neural network 
aggregation

In sequence to classify higher efficient functions to act as 
activation functions the paper (Karlik and Olgac 2011) 
determined the rectified linear activation (ReLU). This func-
tion is defined by:

In Eq. (5) the function f is replaced by the function fReLU.
(13)fReLU(zL�) = max (0, zL�).

The learning method can be synthesized as demonstrated 
in Algorithm 3. It has three parameters:

1 the number of grid size, �;
2 the number of bootstrap replications, bt;
3 the consensus threshold, �.

Algorithm 3: SODA-FNN training
(1) Define grid size, ρ.
(2) Define bootstrap replications, bt.
(3) Define consensus threshold, γ
(4) Calculate Lc cluster in the first layer using SODA and
ρ.
(5) Construct Lc fuzzy neurons with Gaussian
membership functions constructed with center values (β)
derived from SODA and sigma (σ) defined at random.
(6) Define the weights and bias of the fuzzy neurons using
the transform wavelets.
(7) Construct Lc unineurons with random weights and
bias on the second layer of the network by welding the Lc

fuzzy neurons of the first layer.
(8) For all K inputs do
(8.1) Calculate the mapping z (xi)
end for
(9) Select significant Ls neurons using the bootstrap lasso
according to the settings of bt and γ.
(10) Estimate the weights of the output layer (Eq. 11)
(11) Calculate the output of the model using an artificial
neuron with activation function of type ReLU (Eq. 5 and
Eq. 13).

4  Test of binary patterns classification

4.1  Assumptions and initial test configurations

In this section, the assumptions of the classification tests for 
the model proposed in this paper are presented. To perform 
the tests, real and synthetic bases were chosen, seeking to 
verify if the accuracy of the proposed model surpasses the 
traditional FNN techniques of pattern classification. The fol-
lowing tables present information about the tests, presenting 
factors such as the percentage of samples destined for the 
training and testing of fuzzy neural networks. All the tests 
with the involved algorithms were done randomly, avoid-
ing tendencies that could interfere in the evaluations of the 
results. The model proposed in this paper, called SODA-
FNN, was compared to fuzzy neural network classifiers 
using fuzzy c-means (FCM-FNN) (Lemos et al. 2012) and 
genfis1 (GN-FNN) (de Campos Souza et al. 2018) in the 
fuzzification process.

In the last two models, the weights and bias were used in 
the first and second layers randomly, already in the approach 
proposed in this paper, the weights and bias in the first layer 
are defined by the wavelets. The number of primary neurons 
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of each model is defined according to the number of centers 
(FCM-FNN), membership functions (GN-FNN) and grid size 
(SODA-FNN). For uniformity of the tests, the values involved 
in the first layers of the models, which end up defining the 
number of Lc neurons, were arbitrated in the range of [3–5], 
where the best results were defined using cross-validation. In 
the three models, the unineuron is adopted as logical neuron 
of the second layer. The activation functions of the neurons 
used in artificial neural networks were ReLU (SODA-FNN), 
sigmoid (FCM-FNN) and a linear function (GN-FNN). A total 
of 30 experiments were performed with the three models sub-
mitted to all test bases.

In all tests and all models, the samples were shuffled in 
each test to demonstrate the actual capacity of the models. Per-
centage values for the classification tests are presented in the 
results tables, accompanied by the standard deviation found in 
the 30 replicates. The outputs of the model were normalized to 
0 and 1 to aid the correct calculations. The factors evaluated in 
this paper are as follows:

where the sensitivity and specificity are calculated using the 
following equations:

where, TP = true positive, TN = true negative, FN = false 
negative and FP = false positive. All weights of the output 
layer were obtained using ELM methods in all models.

4.2  Database used in the tests

The following tables identify the settings applied in the 
tests. In Table 1, the information of the synthetic bases 
used in the binary pattern classification tests. In Table 2 
the real bases extracted from Bache and Lichman (2013) 
for classification problems.

(14)accuracy =
TP + TN

TP + FN + TN + FP

(15)AUC =
1

2
(sensitivity + specificity)

(16)sensitivity =
TP

TP + FN

(17)specificity =
TN

TN + TP

Figure 5 shows the characteristics of the synthetic bases 
used in the tests.

4.3  Binary pattern classification tests

Tables 3 and 4 present the accuracy and AUC results respec-
tively of the tests with the synthetic bases.

After carrying out the tests with synthetic bases, it was 
confirmed that the proposed model presented smaller accu-
racy results in the spiral base, which has greater complexity 

Table 1  Synthetic dataset used in the experiments

Dataset Init. Feature Train Test

Half Kernel HKN 2 350 150
Spiral SPR 2 350 150
Cluster CLU 2 350 150
Corner COR 2 350 150

Table 2  Real dataset used in the experiments

Dataset Init. Feature Train Test

Haberman HAB 3 214 92
Transfusion TRA 4 523 225
Mammographic MAM 5 581 249
Liver Disorder LIV 6 242 103
Diabetes DIA 8 538 230
Heart HEA 13 189 81
German Credit GER 14 390 168
Australian Credit AUS 24 700 300
Ionosphere ION 32 245 106

Fig. 5  Synthetic dataset

Table 3  Acurracy of the model in the tests performed

Dataset SODA-FNN FCM-FNN GN-FNN

HKN 99.87 (0.11) 99.64 (0.07) 99.93 (0.17)
SPR 97.60 (0.74) 98.15 (0.87) 87.12 (2.43)
CLU 99.88 (0.04) 98.71 (0.14) 99.12 (0.44)
COR 88.94 (4.87) 94.65 (0.82) 97.65 (2.11)
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in its composition. The other bases had an equivalent preci-
sion within the standard deviation found in the experiments. 
We highlight the precision of the proposed model and the 
one that uses a sigmoid activation function, which had a high 
success rate in all experiments. Figure 6 presents the result 
of SODA and Fig. 7 the model decision space and Fig. 8 
decision 3d plot.

The decision space present in Fig. 7 demonstrates that 
the technique can act as an excellent pattern classification. 
Decision spaces are suitable for separating the main samples 
intended for testing.

In the next test of pattern classification using real data-
bases will be compared in each one of the models the accu-
racy of model (Table 5), AUC (Table 6), execution time 
(Table 7) and the number of fuzzy rules (Table 8) used to 
obtain the results. Tests performed on a desktop machine 
with Intel Core i5-3470 processor 3.20GHz and 4.00GB 
Memory.

In the execution of real tests, it was verified that the 
model proposed in this paper obtained superior results of 
accuracy in six of the nine datasets proposed in the test. In 
the datasets that the model did not take the best test results, 
it obtained results close to the models evaluated in the test.

From the lower results of the model, the values of the 
test with the heart dataset are highlighted. The model pro-
posed in this paper obtained a significant difference for the 

other models in the analysis. Another factor that can also be 
considered as non-positive was the high standard deviation 
for the result of the ionosphere base. Although the model 

Table 4  AUC of the model in the tests performed

Dataset SODA-FNN FCM-FNN GN-FNN

HKN 0.9981 (0.03) 0.9654 (0.14) 0.9965 (0.01)
SPR 0.9831 (0.04) 0.998 (0.01) 0.9762 (0.54)
CLU 0.9907 (0.01) 0.9920 (0.74) 0.9931 (0.19)
COR 0.9165 (0.54) 0.9650 (0.65) 0.8856 (0.53)

Fig. 6  Synthetic dataset—SODA result

Fig. 7  Synthetic Dataset- FNN decision

Fig. 8  Synthetic Dataset- FNN decision -3d

Table 5  Accuracy of the model in the tests performed

Dataset SODA-FNN FCM-FNN GN-FNN

HAB 70.83 (4.16) 67.12 (3.32) 61.59 (2.23)
TRA 75.49 (2.36) 78.37 (2.19) 75.85 (2.29)
MAM 83.91 (1.75) 82.10 (2.11) 81.27 (2.24)
LIV 67.86 (5.57) 65.51 (4.12) 66.08 (2.16)
DIA 74.78 (3.30) 67.40 (3.80) 74.67 (2.48)
HEA 74.86 (6.06) 74.78 (11.76) 79.22 (1.54)
GER 70.51 (2.91) 69.77 (1.54) 70.34 (2.98)
AUS 71.30 (3.06) 67.53 (0.78) 75.59 (4.51)
ION 78.59 (11.65) 69.44 (1.14) 75.66 (2.51)
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obtained the best average results, it showed much instabil-
ity in solving the problem. On the other hand, in the tests of 
mammography, transfusion and German credit, the model 
was very stable in the results. This factor may have hap-
pened because the nature of the data is greatly varying in 
the problems that it presented high standard deviation and 
remained more stable (or the issues have this nature) during 
the patterns classification tests.

The results of Table  7 of the tests prove that the 
model presents a shorter execution time of binary pattern 

classification when compared to the other FNN in the test. 
This enables the proposal acts with less time due to the 
techniques used to carry out the correct identification of the 
patterns.

Another relevant factor about the model is that in addi-
tion to presenting a smaller number of fuzzy rules (Table 8), 
it also presented a much shorter execution time (Table 7) 
than techniques that use grouping or the model of equally 
spaced membership functions. If the differences in time and 
complexity of the fuzzy neural network were much smaller 
with a limited number of samples, this difference should 
appear more evident when the model solves problems with 
many features and also a high number of samples. There-
fore, because it has achieved the majority of the best results 
in the tests of classification of patterns with real databases 
using less time and a smaller number of neurons/rules, the 
viability of the model in the resolution of these problems 
is verified.

An architecture with a smaller number of neurons facili-
tates the reading of the most relevant fuzzy rules. As the 
SODA technique works with the data according to their 
complex nature, problems become more representative 
directly affecting the constructed fuzzy rules, allowing them 
to be more representative of the nature of the problem.

It should be noted that FNN now becomes a model to 
work with a high number of samples or problems with many 
features, such factor was very complicated when using the 
ANFIS process in the fuzzification of the model. Extract-
ing knowledge from large volumes of data is a current and 
fundamental problem for many corporations.

5  Conclusion

The fuzzy neural network proposed in this paper obtained 
better results than other models that use the extreme learn-
ing machine and fuzzy logic neurons. The use of the wave-
let transforms allowed the model to use the training data to 
define the values of the weights and bias in the first layer, 
thus allowing the parameters of the model to be more coher-
ent with the data submitted to the model. The use of unineu-
ron facilitates the transition of the use of the AND and OR 
neurons, allowing the interpretation of the fuzzy rules to be 
closer to the real one. Finally, the use of the SODA technique 
maintained the interpretability capacity of the FNN model 
and significantly reduced the execution time when compared 
to the other FNN models that use logical neurons and fuzzy 
grouping techniques. Finally, the use of the ReLU activation 
function helped to improve the responses obtained by the 
FNN model when compared to the models that use linear 
and sigmoidal activation functions in real datasets.

The patterns classification tests with less number of fuzzy 
rules and the use of faster activation functions allow the 

Table 6  AUC of the model in the tests performed

Dataset SODA-FNN FCM-FNN GN-FNN

HAB 0.5650 (0.05) 0.5650 (0.03) 0.5642 (0.466)
TRA 0.5109 (0.76) 0.6300 (0.03) 0.6393 (0.23)
MAM 0.8399 (0.02) 0.8210 (0.02) 0.8349 (2.24)
LIV 0.6465 (0.05) 0.6591 (0.04) 0.6560 (0.04)
DIA 0.7000 (0.26) 0.6523 (0.03) 0.7057 (0.03)
HEA 0.7444 (0.04) 0.7797 (0.05) 0.7927 (0.41)
GER 0.5764 (0.13) 0.8718 (0.01) 0.8218 (0.01)
AUS 0.5807 (0.03) 0.6506 (0.06) 0.7533 (0.04)
ION 0.7468 (0.06) 0.6506 (0.06) 0.7533 (0.04)

Table 7  Algorithm execution time for pattern classification (in sec-
onds)

Dataset SODA-FNN FCM-FNN GN-FNN

HAB 28.55 (2.33) 52.14 (6.08) 74.17 (12.14)
TRA 24.51 (3.42) 66.12 (1.54) 123.44 (21.43)
MAM 32.16 (4.57) 102.44 (15.49) 144.23 (12.15)
LIV 17.41 (0.12) 58.43 (2.11) 83.45 (5.24)
DIA 13.51 (0.52) 17.58 (7.01) 19.44 (2.23)
HEA 8.45 (0.17) 14.55 (0.53) 17.14 (1.10)
GER 14.01 (0,44) 27.16 (2.54) 44.15 (6.21)
AUS 16.17 (1.43) 38.53 (12.42) 104.23 (32.53)
ION 16.12 (1.14) 33.51 (8.51) 54.17 (13.14)

Table 8  Number of fuzzy rules used by the model

Dataset SODA-FNN FCM-FNN GN-FNN

HAB 8.65 (1.75) 12.77 (2.65) 17.61 (1.76)
TRA 9.77 (2.11) 22.06 (0.88) 17.60 (2.24)
MAM 17.88 (5.12) 33.64 (12.96) 24.57 (8.65)
LIV 9.76 (8.56) 33.74 (14.90) 12.17 (7.43)
DIA 6.87 (0.81) 14.89 (2.43) 7.43 (1.08)
HEA 14.16 (2.43) 25.76 (3.87) 10.12 (1.43)
GER 18.17 (3.49) 22.43 (2.98) 19.32 (4.65)
AUS 14.98 (3.44) 48.42 (12.55) 16.01 (2.20)
ION 14.56 (2.33) 32.44 (4.58) 19.67 (4.54)
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model proposed in this paper to be identified as a model that 
maintained the accuracy of pattern classification and at the 
same time significantly decreased the response time to carry 
out the activities. This approach accredits the model to work 
with large-scale databases (big data).

The tests performed verified that the definition of weights 
and bias using wavelets, the use of a cloud data group and 
the use of the ReLU activation function is satisfactory for 
the classification of binary patterns executed by fuzzy neural 
networks. Basing the parameters to represent the characteris-
tics of the base, we find essential variations in the results of 
precision found. This approach brings more representative-
ness to the results of the FNN that can elaborate more fuzzy 
rules with the input data.

For future work can be checked the impact on the model 
output and the processing time of your actions using other 
types of membership functions. Because data clouds theory 
allows the use of any existing membership function, there 
may be improvements in the classification of patterns by 
changing the type of function used.

Other approaches can be performed to optimize param-
eters related to Grid size, the number of bootstrap repetitions 
and consensus threshold. Despite finding suitable results, 
cross-validation spends a high computational time to per-
form the combinations defined in the tests and determine 
the models. With advanced optimization techniques, genetic 
algorithms and other existing intelligent approaches, the best 
model parameters can be found more dynamically and effi-
ciently. Also in extensions of this work can be applied prob-
lems of linear regression, prediction of time series to verify 
if the model maintains its capacity of universal approxima-
tion. Other training approaches can also be evaluated to 
identify the impacts ELM can generate on parameter setting. 
Finally, the application of this intelligent model is stimulated 
for problems with larger dimensions than those that were ini-
tially submitted to the test. The SODA technique lowers the 
complexity of the network structure, so for problems of high 
dimensionality and Big Data, the model may be suitable to 
deal with such kind of problems. Testing real problems with 
large volumes of data is a strongly encouraged approach to 
examining the model.
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