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Abstract
In this paper, an efficient stochastic optimization algorithm is presented for parameter identification of nonlinear systems. 
Due to its robust performance, short running time and desirable potency to find local minimums the Lozi map-based chaotic 
optimization algorithm is an appropriate choice to estimate unknown parameters of nonlinear dynamic systems. To enhance 
the identification efficacy and in order to escape local minimum, a modified version of this algorithm with higher stability 
and better performance is rendered in this paper. An Improved Lozi map-based chaotic optimization algorithm (ILCOA) is 
employed to identify three nonlinear systems and the performance of the proposed algorithm is compared with other opti-
mization algorithms. The simulation results of identification endorse the effectiveness of the proposed method.

Keywords Identification · Stochastic optimization · ILCOA · Nonlinear systems

1 Introduction

One of the main concerns in control and analysis of the 
behavior of the nonlinear systems is the knowledge of their 
exact model. To unravel this problem, different identification 
methods have been presented to estimate the dynamics of 
these systems in recent years. Various analytical techniques 
exist for linear systems such as the recursive least square 
method (Godfrey and Jones 1986), recursive prediction 
error technique (Billings et al. 1991), maximum-likelihood 
method (Bresler and Macovski 1986), and orthogonal least 
square estimation technique (Chen et al. 1989). Despite the 
desirable performance of these methods, due to dependency 
of these structures on some assumptions such as unimodal 
performance landscapes, differentiability of the performance 
function, and trapping in local minima, the range of their 
proficiency is limited (Ursem and Vadstrup 2004).

Due to the complexity of nonlinear systems, however, 
researchers take some parameters as constant when they 
want to identify system parameters using analytical methods 
(Ishaque et al. 2011). They may even ignore some param-
eters for simplicity (Babu and Gurjar 2014; Hejri et al. 2014; 
Malekzadeh et al. 2018a, b). This is while such simplifica-
tions might have severe impact on system modeling.

Many practical systems do not satisfy these assumptions 
and as a result, these methods are not usable for them. To get 
rid of these restrictions, researchers proposed stochastic opti-
mization algorithms such as genetic and particle swarm opti-
mization (PSO) (Malekzadeh et al. 2012, 2016; Azami et al. 
2012; Salahshour et al. 2018a, b; Costa et al. 2013; Angelov 
et al. 2008; Sadeghi-Tehran et al. 2012). The chaotic-based 
optimization algorithm is another example that attracts 
researcher attentions in different fields in recent years.

Bounded unstable dynamic behavior with sensitivity to 
initial conditions and semi-stochastic properties are the main 
reasons to employ this method in optimization problems (Salah-
shour et al. 2018a, b; Tavazoei and Haeri 2007; Acharjee and 
Goswami 2010; Mendel et al. 2011; Li and Yin 2014; Angelov 
and Yager 2013; Zhou and Angelov 2007; Angelov et al. 2013).

A combination of PSO and neural networks with nonlin-
ear autoregressive with exogenous input in order to identify 
realistic distillation column has been presented in Jaleel and 
Aparna (2018). In Zheng and Liao (2016), authors proposed 
an improved PSO algorithm called SEPSO. They tested their 
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method on a two-link robot. A brief overview of previous 
researches also reveal that solar panel has attracted many in the 
community as a remarkable case study in identification process. 
In Xiong et al. (2018), the authors used improved whale optimi-
zation algorithm, in order to identify photo-voltaic parameters. 
Other methods such as Improved Shuffled Complex Evolu-
tion Algorithm (Gao et al. 2018), Adaptive Differential Evo-
lution Algorithm (Chellaswamy and Ramesh 2016), Repaired 
Adaptive Differential Algorithm (Gong and Cai 2013), Hybrid 
Flower Pollination Algorithm (Xu and Wang 2017), Simplified 
Teaching Based Optimization (STBLO) (Niu et al. 2014) have 
been used for solar panel parameter identification. Another case 
study attracted attention in parameter identification is chaotic 
system. Chaos theory is a branch of mathematics focusing on the 
behavior of dynamical systems that are highly sensitive to initial 
conditions. Chaotic systems can be used in random-based opti-
mization algorithms instead of random processes. Nowadays, 
this behavior has been applied in different case studies such as 
chaotic neural networks (Zhou and Chen 2000) and combination 
of chaos sequences with evolutionary optimization algorithms 
in order to search the global optimum (Chatterjee et al. 2011). A 
new type of chaotic optimization algorithms (COA) is emerged 
which uses the chaotic sequence in all steps of optimization, 
namely “global and local optimization”. This paper presents 
an improved Lozi map-based chaotic optimization algorithm 
(ILCOA) with such features as higher stability, better escap-
ing the local minima, and improved performance with respect 
to the regular Lozi map-based chaotic optimization algorithm 
(LCOA). Also, a new selection strategy for step size λ, namely 
Semi-Exponentially Step Size (SESS) is proposed which focuses 
more on small λ and leads to better exploitation for refining the 
results. The rest of this paper is organized as follows.

Section 2 presents a general form of parameter identi-
fication of nonlinear systems. The proposed optimization 
algorithm is illustrated in Sect. 3. Section 4 demonstrates the 
simulation results of ILCOA in parameter identification and 
the conclusion of this study is rendered in Sect. 5.

2  Problem Statement

Different kinds of general nonlinear models have been pre-
sented in the literature. The dynamics of most engineering 
systems and industrial processes can be defined by some of 
these nonlinear models. This reduces the problem of dynamic 
identification to just parameter estimation. To illustrate the 
parameter identification method that is proposed in this study, 
consider the following nonlinear system definition:

where X = [x1, x2,… , xn]
T ∈ Rn is the state vector, X0 implies 

the initial states and � ∈ Rm is the unknown parameter 

(1)Ẋ = F(X,X0,𝜑)

vector. Also, F is a given nonlinear vector function. Accord-
ing to (1), the estimated model is defined as follows:

where X̂ = [x̂1, x̂2,… , x̂n]
T ∈ Rn is the estimated state vector 

and �̂� ∈ Rm is the estimated parameter vector.
In order to realize parameter identification, the proposed 

optimization algorithm is employed to minimize the mean 
square errors (MSEs) between real and estimated responses 
for a number of given samples. As we know MSE is consid-
ered as a measure of fitness for the estimation of the model 
parameters. Therefore, the cost function is considered as 
follows:

where N is the number of samples.

3  Proposed optimization algorithm (ILCOA)

3.1  Lozi map based chaotic optimization algorithm 
(LCOA)

Lozi map-based chaotic optimization algorithm has recently 
been propounded by Coelho (dos Santos Coelho 2009).

The Lozi map can be represented by

where k denotes the iteration number. In this work, we nor-
malize the values of y in the range [0,1] to each decision 
variable in the n-dimensional space of optimization prob-
lem. Thus y ∈ [− 0.6418, 0.6716] and [α, β] =(− 0.6418, 
0.6716). This work uses parameters a = 1.7 and b = 0.5 
(Farahani et al. 2012). The following equation provides a 
functional optimization problem which is used to formulate 
many unconstrained optimization problems:

where f is the objective function and X is the decision solu-
tion vector including n variables which are limited by lower 
(Li) and upper bounds (Ui). The chaotic search procedure 
based on the Lozi map can be illustrated as follows (dos 
Santos Coelho 2009; Farahani et al. 2012);

(2)̇̂
X = F(X̂,X0, �̂�)

(3)J = Mse =
1

N

N∑
k=1

[
X(k) − X̂(k)

]2

(4)y1(k) = 1 − a.||y1(k − 1)|| + y(k − 1)

(5)y(k) = b ⋅ y1(k − 1)

(6)z(k) =
y(k) − �

� − �

Find X to minimize f (X),X = [x1, x2,… , xn],
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Step 1 Initialization of variables and initial conditions: 
Set k = 1, y1(0), y(0), a = 1.7 and b = 0.5 for the Lozi map. 

Set the initial best objective function f *.
Step 2 Algorithm of chaotic global search:

X *= X (k)

f *= f (X(k))

End if

k=k+1

End while

End

Step 3: Algorithm of chaotic local search:

Begin

While k (Mg + ML)  do

For i= 1 to n

If   r < 0.5  Then (r is a uniformly distributed random variable with range [0, 1])

xi (k)=x*
i+ λ zi (k) |Ui - x*

i |

Else if

xi (k)=x*
i- λ zi (k) | x*

i -Li |

End if

End for

If    f (X(k)) < f * Then

X *= X (k)

f *= f (X(k))

End if

k=k+1

End while

End

Begin

While k Mg do

xi (k)=Li+zi (k) (Ui - Li)

If    f (X(k)) < f * Then

 < _

x

 < _

x x

x x
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where Mg and ML denote maximum number of iterations 
in the chaotic global and local searches, respectively; f* and 
X* are the best objective function and the best solution from 
the current run of the chaotic search, respectively. The effect 
of the current best solution on the process of generating a 
new trial solution is controlled by the step size λ. A small 
λ leads to exploitation which improves results of the local 
search while a large one leads to a global exploration of 
search space.

3.2  Improved Lozi map‑based chaotic optimization 
algorithm (ILCOA)

A simplified version of He´non map, Lozi map, is conven-
tionally employed by the LCOA as choatic map in order to 
replace conventional methods of generating random numbers 
in both global and local optimization procedure, resulting in 
a fast converging algorithm capable of searching the search 
space in a more precise way. The global and local searching 
capacities and computational efficiency of LCOA has deep 
roots in the ability of chaotic map to seek the whole search 
space since the whole optimization procedure is carried out 
based on chaotic sequences.

An example of evolution of Lozi map is shown in Fig. 1a 
in which darker areas represent areas with high density 
where most generated numbers are focused at, while light 
areas depict areas with lower densities;

It can vividly be seen from Fig. 1a that numbers gener-
ated by Lozi map suffer from an unfair and unevenly distri-
bution. As it is visible from the figure, we have a very low 
and low densities respectively at around the bottom, and 
upside of the interval while a high percentage of gener-
ated numbers concentrated in upper half of the interval, in 
other words, almost 60% of the density is focused in 40% 
of the area. Furthermore, almost only 25% of the density 
belongs to the upper half of the interval (0, 0.4) which con-
stitutes 40% of the total area. The remaining density (15%) 
is focused in (0.8, 1) or 20% of the area. As the Lozi map 
based generated numbers are not proportionately distrib-
uted in the search space, numerous searches are close to the 
upper half of the interval. As a result the searching capacity, 
especially around the bottom of the interval, is very weak 
and unpromising and obviously not beneficial, especially 
for chaotic global search.

In optimization processes, we usually deal with complex 
problems with several local minima while we are unaware 
of the presumptive position of global minimum. Therefore, 
we are compelled to choose a sufficiently large search space 
to avoid the trap of local minima. Our problem of having 
unproportionally distributed numbers, however, would be 

aggravated this way. Because, the larger the search space, 
the more parts of it will be out of reach. The size of search 
space, however, is not the only factor that can adversely 
affect our problem; the problem can also become more com-
plicated in cases where we are dealing with high-dimen-
sional optimization problems in which the individuals have 
truly a faint chance to simultaneously reach both the bottom 
and top areas of the interval. Thus, the algorithm becomes 
unstable and the optimization result may become very dif-
ferent in each run. The ILCOA algorithm is proposed to 
combat this problem.

In our proposed ILCOA, we propound to divide the cha-
otic variable interval to three distinct areas in order to meet 
the challenge;  A1 = [0, C1],  A2 = [C1, C2], and  A3=[C2, 1], 
in which 0 < C1 < 0.5, and 0.5 < C2 < 1 are adjustable param-
eters. During the global search subroutine of ILCOA, when 
an individual zi is generated, it would be checked to see if it 
is fallen into area  A2. If it belongs to the area A2, it will be 
passed to the next step at which its cost will be calculated. 
For the cases of falling into either area  A1 or  A3, however, 
it must be regenerated. Lower (Li) and upper limits (Ui) of 
solution variables must be reformed, as well. Thus, for cha-
otic global search subroutine of ILCOA, Ui and Li must be 
replaced by Ui

new and Li
new, respectively.

where:

From Fig. 1b, showing distribution of generated numbers 
by modified lozi map, uniformly distributed density can dis-
tinctly be deduced. Analogous modifications are required to 
be applied to local search subroutine. Thus, in chaotic local 
search subroutine, we propose the following mapping to be 
applied to the modified Lozi map:

where similar to chaotic global search subroutine, C1 ≤ zi ≤ 
C2; therefore: 0 ≤ zi

new ≤ 1.
Another important parameter affecting convergence 

behavior of optimization method, i.e. step size λ, needs to be 
modified as well. Selection of the step size λ has a proximate 
effect on the process of generating a new trial solution. The 
balance between the global and local exploration abilities 
is provided by an appropriate value of λ. In this work, we 
introduce a new selection strategy for step size λ namely; 
semi-exponentially step size (SESS), which focuses more 
on smaller values of λ and adds to a better exploitation for 
refining the results:

(7)
Unew

i
=
[(
1 − C1

)
∕
(
C2 − C1

)]
Ui +

[(
1 − C2

)
∕
(
C2 − C1

)]
Li

(8)Lnew
i

=
[
−C1∕

(
C2 − C1

)]
Ui +

[
C2∕

(
C2 − C1

)]
Li

(9)znew
i

=
(
1∕

(
C2 − C1

))
×
(
zi − C1

)
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where λmax is the initial step size, λmid is the step size of lin-
ear section ending,  itermax

2 is the total searching generations 
in local search subroutine  (itermax

2 = ML),  itermax
1 is the used 

generations the step size of which is linearly reduced. Different 
ending values of λ can be achieved through adjusting k. It is 
evident from (10) that, at the initial searching stage λ will be 
linearly reduced, so that a better global exploration of search 
space would be possible. Furthermore, around the global opti-
mum, it is possible to concentrate most iterations at small λ by 
using the exponential term of (10), and achieve more precision. 
Flowchart of the proposed ILCOA is provided by Fig. 2.

4  Simulation results

To evaluate the performance of the proposed algorithm, we 
implemented it on 3 systems: Lu system, Lorenz system and 
the permanent magnet synchronous motor. Lu and Lorenz 
systems are benchmark systems, on which the algorithms 
are implemented for testing their performance and having a 
fair comparison with other existing algorithms. The synchro-
nous permanent magnet motor system formulate the physical 
dynamics of a motor model. This system is included along 
with the two benchmark systems as an example of a practi-
cal system, with which we deal very much in the industry.

In this section, GA, PSO, DE, ABC, DE/ABC and WOA 
algorithms are implemented on each system and compared 
with the proposed algorithm. The purpose of these algo-
rithms is to identify the system parameters so that the cost 
function (3) tends to zero. The number of iterations was 
constant in all algorithms and set to 200 to have a correct 

(10)

⎧
⎪⎪⎨⎪⎪⎩

� = �max −
�max − �mid

iter1max

× iteration, 1 ≤ iteration ≤ iter1max

� =
�
�max −

�
�max − �mid

��
× exp

�
iter1max − iteration

k

�
, iter1max ≤ iteration ≤ iter2max

comparison between the algorithms. Population size was 
considered to be 30 for each algorithm. Each algorithm was 
separately run for 30 times. Moreover, the sampling rate was 
considered to be 0.001 for all systems. The simulation has 
been implemented in a 64-bit version of MATLAB 2016a 
and run on Windows 10, CORE i7 Intel, 8 GB Ram.

4.1  Chen system

In the first example, Chen system (1999), whose equations 
are given below, is investigated:

where x, y and z the state variables, and a, b and c are system 
parameters that are equal to 35, 3 and 28, respectively. The ini-
tial values of the state variables are [x(0) y(0) z(0)] = [0 2 10].

Table 1 contains the best value of the cost function and 
the identified values after 30 runs of the algorithms. We can 
clearly see from this table that the proposed algorithm can able 
to identify parameters better than other algorithms, and the 
best performance after it, is related to the DE/ABC algorithm 
followed by the LCOA algorithm. Figures 3, 4 and 5 show the 
relative estimation error obtained from each run, where the 
relative estimation error of the parameter � is obtained from 
the relation (𝜃 − 𝜃)∕𝜃 , in which 𝜃 is the estimated parameter 
and � is the original parameter. As stated above, the best case 
is when the algorithm has the least error in identifying the 
parameters and when the value of the cost function tends to 
zero. Therefore, it can be concluded from Figs. 3, 4 and 5 
that the ILCOA algorithm has a better performance than other 
algorithms. Figure 6 shows the best value obtained for the cost 
function through the 200 iterations among the 30 runs. It can 
also be easily seen in this figure that the ILCOA algorithm has 
a better performance than other algorithms and has been able 
to bring the cost function well towards zero. It can be seen in 
Figs. 7, 8 and 9 how the parameters converge to their original 
value. It can be seen that the ILCOA algorithm has been able 
to converge towards the parameter’s original value with good 
speed and precision and shows a good performance among 
other algorithms.

In Table 2, in order to compare ILOCA and LOCA, the 
values of their corresponding cost functions in 10 separate 

(11)

ẋ = a(y − x)

ẏ = (c − a)x − xz + cy

ż = xy − bz

1

 0.5

   0

0.8

0.6

0.4

0       0.2       0.4       0.6       0.8       1       1.2       1.4       1.6       1.8       2
4          10×

( )

( )

A

B

Fig. 1  Example of evolution (20,000 samples) of a Lozi map. b Mod-
ified Lozi map  (C1 = 0.4,  C2 = 0.8)
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runs have been shown. Going through the results one can see 
that the ILOCA algorithm is more stable. Moreover, its cost 
function reaches a lower value.

4.2  Lorenz system

In the second example, we investigate the Lorenz system (Lor-
enz 1963), whose equations are given below.

(12)

ẋ = a(y − x)

ẏ = (b − z)x − y

ż = xy − cz

where x, y , and z are the state variables, a, b , and c are system 
parameters that are equal to 10, 28, and 8.3 respectively. The 
initial values of the state variables are [x(0) y(0) z(0)] = [2 1 1].

Table 3 shows that the ILCOA algorithm has been able 
to perform better than other algorithms over 30 runs, and 
after it, the DE/ABC and LCOA algorithms have the best 
performance. The famous and powerful PSO algorithm failed 
to appear as it should and did not have an appropriate per-
formance. Figures 10, 11 and 12 show the relative error of 
identifying the parameters. In this figure, the relative error of 
identifying the parameters over 30 runs is measured and put 
along with each other for comparison. Figure 13 shows the 
convergence of the cost function to zero, in which it can be 
easily seen that the algorithm that has been able to achieve a 
lower cost function is the ILCOA algorithm. Figures 14, 15 
and 16 show the convergence of the identified parameters 
towards the original value of the parameters. It can be seen 
that the proposed algorithm has been able to quickly identify 
the original value of the parameter. With paying a little atten-
tion to the figures, the strength and accuracy of the proposed 
algorithm can be seen.

In Table 4, in order to compare ILOCA and LOCA the 
values of their corresponding cost functions in 10 separate 
runs have been shown. Going through the results one can see 
that the ILOCA algorithm is more stable. Moreover, its cost 
function reaches a lower value.

4.3  The permanent magnet synchronous motor 
system

In the last example, the permanent magnet synchronous 
motor system (Wang et al. 2014), whose equations are given 
below, is investigated.

(13)

ẋ = −x + yz

ẏ = −y − xz + az

ż = z + b(y − z)

iGenerate the value Z (K)

using Eq. (6)

i
Calculate the value of  x (K)

*x rconsidering  and 

Find the �itness and
* *&f xupdate 

?LK M>

K =K+1

Yes

No

Stop

i
Generate the value of  Z (K)

Start

Specify the initial

parameters/conditions

K=1

and check its validity 

1 3 ?iZ A or A∈

( )ix k =
( )( )new new new

i i i iL z k U L+ −

Find the �itness and
* *&f xupdate 

?gK M>

K =K+1

Yes

No

Yes

No

i
Calculate the value of  x (K)

K=1

Fig. 2  Flowchart of the proposed ILCOA

Table 1  Statistical results from the seven algorithms on the Chen sys-
tem

Best cost function in 30 run Best value of the identified param-
eters

Algorithm Best cost a b c

ILCOA 4.2867e−34 35.0000 3.0000 28.0000
DE/ABC 2.3351e−32 35.0000 3.0000 28.0000
LCOA 1.2297e−31 35.0000 3.0000 28.0000
DE 2.9166e−23 35.0000 3.0000 28.0000
PSO 3.4899e−04 35.0090 2.9973 28.0053
ABC 2.1683 35.4466 2.8680 28.2542
GA 6.8097 36.2094 2.7092 28.6981
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Fig. 3  The mean error value of 
the identified parameter a in the 
Chen system

Fig. 4  The mean error value of 
the identified parameter in the 
Chen system
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Fig. 5  The mean error value of 
the identified parameter c in the 
Chen system

Fig. 6  Convergence of the cost 
function’s value in the Chen 
system
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Fig. 7  Convergence of the iden-
tified parameter a to the original 
value of the parameter a in the 
Chen system

Fig. 8  Convergence of the iden-
tified parameter b to the original 
value of the parameter in the 
Chen system
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where x, y , and z are the state variables, and a, b are the 
system parameters, which are 20 and 5.46, respectively. The 
initial values of the state variables are [x(0) y(0) z(0)] = [5 
1 − 1].

Table 5, similar to Tables 1 and 3, shows the best value 
for the cost function over 30 runs, as well as the values of the 
identified parameters. It can be seen that the ILCOA algo-
rithm identifies the parameters with a value of the cost func-
tion less than the other algorithms. The DE/ABC algorithm 
has shown a good performance. Figures 17 and 18 show 
the relative error of the identified parameters (a, b) obtained 

from the relations, respectively. The ILCOA algorithm has 
the lowest relative error over 30 runs compared to the other 
algorithms. From the performance of the algorithms based 
on the convergence of the cost function to zero, it can be 
seen in Fig. 19 that the ILCOA algorithm has been able to 
perform better than other algorithms. In Figs. 20 and 21 
that show the convergence of identified parameters to the 
original value of the parameters, it can be well seen that the 
proposed algorithm has been able to identify the parameters 
well in a timely manner. It can be clearly concluded from 
all the figures that the proposed algorithm has a very good 
performance compared to other algorithms.

Fig. 9  Convergence of the iden-
tified parameter c to the original 
value of the parameter c in the 
Chen system

Table 2  The results of cost function for ILCOA and LCOA on the 
Chen system

ILCOA LCOA

Run 1 4.2858e−34 5.6234e−30
Run 2 4.2861e−34 3.2584e−28
Run 3 4.2867e−34 3.2658e−29
Run 4 4.2861e−34 6.5478e−30
Run 5 4.2873e−34 3.2587e−28
Run 6 4.2912e−34 1.2297e−31
Run 7 4.2911e−34 6.5485e−30
Run 8 7.9897e−33 1.2312e−31
Run 9 4.3129e−34 3.1458e−29
Run 10 7.9887e−33 6.5348e−30

Table 3  Statistical results from the seven algorithms on the Lorenz 
system

Best cost function in 30 run Best value of the identified param-
eters

Algorithm Best cost a b c

ILCOA 1.9963e−28 10.0000 28.0000 2.6667
DE/ABC 5.6675e−25 10.0000 28.0000 2.6667
LCOA 2.3396e−23 10.0000 28.0000 2.6667
DE 5.1659e−14 10.0000 28.0000 2.6667
PSO 4.8010e−05 10.0020 27.9988 2.6666
ABC 0.0015 10.0281 27.9796 2.6690
GA 0.7677 10.3673 27.6109 2.7251
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Fig. 10  The mean error value of 
the identified parameter in the 
Lorenz system

Fig. 11  The mean error value of 
the identified parameter in the 
Lorenz system
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Fig. 12  The mean error value of 
the identified parameter in the 
Lorenz system

Fig. 13  Convergence of the cost 
function’s value in the Lorenz 
system
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Fig. 14  Convergence of the 
identified parameter to the origi-
nal value of the parameter in the 
Lorenz system

Fig. 15  Convergence of the 
identified parameter to the origi-
nal value of the parameter in the 
Lorenz system
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In Table 6, in order to compare ILOCA and LOCA the 
values of their corresponding cost functions in 10 separate 
runs have been shown. Going through the results one can see 
that the ILOCA algorithm is more stable. Moreover, its cost 
function reaches a lower value.

5  Conclusion

In this paper, the ILCOA algorithm has been presented 
to identify the parameters of nonlinear systems. The 
ILCOA algorithm has been a good choice for evaluating 

the unknown parameters of the nonlinear dynamic system 
due to its high performance, short and desirable run time 
in finding global minima and avoiding local minima. This 
algorithm has been used along with other algorithms to 
identify two chaotic systems of Chen and Lorenz as well as 
a permanent magnet synchronous motor system. Simula-
tion results ascertain the very good performance and high 
speed of this algorithm in identifying these systems in 
comparison with other algorithms.

Fig. 16  Convergence of the 
identified parameter to the origi-
nal value of the parameter in the 
Lorenz system

Table 4  The results of cost function for ILCOA and LCOA on the 
Lorenz system

ILCOA LCOA

Run 1 1.9973e−28 2.3396e−23
Run 2 1.9997e−28 4.5698e−23
Run 3 1.9974e−28 6.3245e−22
Run 4 1.9963e−28 5.3268e−19
Run 5 1.9969e−28 2.1365e−22
Run 6 1.9964e−28 6.4789e−21
Run 7 2.0000e−28 1.2365e−22
Run 8 1.9972e−28 7.8965e−19
Run 9 1.9974e−28 6.4789e−21
Run 10 1.9964e−28 4.5698e−23

Table 5  Statistical results from the seven algorithms on the perma-
nent magnet synchronous motor system

Best cost function in 30 run Best value of the identi-
fied parameters

Algorithm Best cost a b

ILCOA 9.8380e−30 20.0000 5.4600
DE/ABC 2.9391e−27 20.0000 5.4600
LCOA 5.2377e−22 20.0000 5.4600
DE 1.2135e−20 20.0000 5.4600
PSO 3.0678e−12 20.0000 5.4600
ABC 2.8018e−05 19.9984 5.4606
GA 0.0180 19.9593 5.4749
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Fig. 17  The mean error value of 
the identified parameter in the 
permanent magnet synchronous 
motor system

Fig. 18  The mean error value of 
the identified parameter in the 
permanent magnet synchronous 
motor system
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Fig. 19  Convergence of the 
cost function’s value in the 
permanent magnet synchronous 
motor system

Fig. 20  Convergence of the 
identified parameter to the origi-
nal value of the parameter in the 
permanent magnet synchronous 
motor system
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