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Abstract
Recently, a new Nature Inspired Intelligent scheme has been proposed and presented, named Sonar Inspired Optimization 
(SIO). This algorithm is inspired by the SONAR mechanism, which is used by Warships to detect targets and avoid mines. 
In this paper, improvements have been done to the SIO approach in an attempt to increase the performance of the algorithm. 
Also, results from experiments in known constrained Engineering applications are presented and discussed. SIO tackles with 
these problems, managing to overcome the performance of other Nature Inspired metaheuristics, heuristics and mathematical 
approaches in most of the cases.

Keywords Sonar inspired optimization · Nature-Inspired Intelligent (NII) algorithm · Engineering optimization · Tension/
compression spring design · Welded beam design · Pressure vessel

1 Introduction

In the last twenty (20) years, a growth on Nature Inspired 
Intelligent (NII) methods (Yang 2010; Chiong 2009; Liu and 
Tsui 2006) is observed. Applications (Marrow 2000) and 
new challenges (Yang 2012) are presented, underlying the 
major contribution of these algorithms on the field of opti-
mization. Except for swarm based techniques (Kennedy et al. 
2001), there are many others that are inspired by physical 
phenomena (Shah-Hosseini 2009) and laws of science (Nasir 
et al. 2012). Recently the authors have extensively searched 
and collected all the algorithms that are based in the above-
mentioned categories and extracted some useful conclusions 
(Tzanetos and Dounias 2017). The overwhelming majority is 
population based schemes. A detail that highlights the need 
of multiple agents to achieve high exploration, while many 
of these algorithms are based also on attraction between 
their agents through equations that model the main idea 
inspired from nature.

Most of the schemes used, are based on the gravitational 
law [Gravitational Search Algorithm (Rashedi et al. 2009)] 
or in attraction-based laws, e.g. charged system search 
(Kaveh and Talatahari 2010), Electromagnetism-like opti-
mization (Birbil and Fang 2003). Based on these phenom-
ena, the best solution attracts all the others towards it. On 
the proposed scheme, introduced in (Tzanetos and Dounias 
2017a, b), each agent doesn’t interact with the others and 
thus, performs its independent search. The only information 
shared between all agents is the best-so-far fitness achieved. 
That’s a very useful feature, because all best-so-far solutions 
are contributing to find the best one and the algorithm can-
not be trapped in local optima. So, a good balance between 
exploration and exploitation is achieved.

What is more, in recent works, a major point of interest 
is the need for parameter tuning of the metaheuristic for dif-
ferent kind of problems (Yang et al. 2013; Crawford et al. 
2013; Fallahi et al. 2014). The initial goal was to provide a 
new self-tuning algorithm, which overcomes the problem of 
setting the exact number of agents to solve a problem. This 
goal is fulfilled in this work due to improvements that have 
been done on the initial scheme. Also, a self-tuning mecha-
nism which is based on the fitness of the solution, controls 
the size of the step for the current agent.

Furthermore, a significant detail is that this algorithm 
needs less parameterization. One of the open issues 
described in the previous work (Tzanetos and Dounias 
2017a, b) is solved here. The parameter of maximum 
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rotation angle is auto-tuned based on the fitness of the solu-
tion. The concept proposed here is based on the auto-tuning 
of the intensity parameter that determines how big search 
steps in the solution space the algorithm performs. At last, 
the relocation mechanism has been altered to maintain the 
balance between exploration and exploitation.

Finally, recent reviews of nature inspired algorithms 
(Tzanetos and Dounias 2017; Vassiliadis and Dounias 2009; 
Fister et al. 2013) show that even more schemes are pre-
sented every year. The importance of a new algorithm can 
be shown by its effectiveness in a specific application or 
the usage as a hybrid component. Thus, in this paper two 
constrained engineering optimization problems were chosen 
to measure the performance of SIO. This novel method is 
proven to be useful as much in terms of finding optimum 
fitness as in consistency of providing nearly good solutions.

The rest of the paper is organized as follows; in Sect. 2 
the algorithm is explained analytically, in Sect. 3 selected 
engineering applications are described, in Sect. 4 the experi-
mental results are presented and explained and in Sect. 5 
there are further research recommendations and conclusion.

2  Physical analogue and proposed 
algorithm

2.1  The actual sonar mechanism

The mechanism that provides inspiration in the proposed 
algorithm is the sonar that the Navy uses for war ships’ 
exploration for submarines. The basic idea behind the sonar 
application was to send an ultrasound and based on the 
sound level that the radio receives the size of an object or 
an obstacle can be estimated. So, the ship can identify the 
position of possible targets (Fig. 1).

A characteristic feature of SONAR is the cyclic scan of 
the area around the ship. To model this phenomenon, the 
concept of intensity of sound is implemented (Lurton 2002). 
Initially, the acoustic power output or sound power (P) has 
to be calculated:

where Pe is the power input and � is the transducer effi-
ciency, which is defined as the percentage of power out-
put to power input. Then, the Intensity is calculated as the 
ratio between sound power (P) and the area scanned, as it is 
shown in Fig. 2.

where the area is calculated as:

(1)P = � ⋅ Pe,

(2)I =
P

area
,

(3)Area = 4 ⋅ � ⋅ r2.

And r is the radius of the imaginary sphere around the 
ship that is scanned.

As a result, someone can observe that the decrease of 
intensity I causes an increase of the effective radius r and 
thus, the area that is scanned. This relation is used also in 
the proposed scheme.

2.2  The proposed SIO algorithm

We consider each agent Xi =
{

x1, x2, x3,… , xn
}

 to be a 
ship, where i ∈ 1, 2,… , N  and N being the maximum 
number of agents, while n is the maximum number of 
dimensions of the problem. The number of ships (agents) 
is predefined at the start of the algorithm, as in every 
nature-inspired algorithm, for saving computational power. 
Although generally the more agents there are, the higher 
is the probability of finding the optimal solution, in the 
proposed algorithm this is not the case. As it can be seen 
in the next subsections, the multitude of generated points 

Fig. 1  Ship’s SONAR. (source: http://brigh tmags .com/how-does-
sonar -work/)

Fig. 2  Sound Intensity depended upon sound power and area. 
(source: http://hyper physi cs.phy-astr.gsu.edu/hbase /Force s/isq.html)

http://brightmags.com/how-does-sonar-work/
http://brightmags.com/how-does-sonar-work/
http://hyperphysics.phy-astr.gsu.edu/hbase/Forces/isq.html
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around each agent’s work provides a wider search of the 
solution space, while the number of agents can remain the 
same. The strongest feature of the proposed scheme is the 
wider range of the solution area that is being searched, 
keeping the number of agents constant.

At start, the position of the agents is initialized some-
where in the solution space; the easiest way to do that is 
with random way via the normal distribution function, but 
this can be altered based on the values that every decision 
variable can take. In this paper, all problems use variables 
with boundaries, so the function used is:

where rand is a random number between (0,1), lower_boundd 
and upper_boundd are the lower and upper bound of each 
decision variable d , respectively.

Using Eqs. (2) and (3), the initial radius and intensity 
for every agent is calculated. We set the power input as the 
fitness of each agent, and so we get:

On the other hand, Eq. (1) is reformed as:

 in order to transform the fitness’ value in positive numbers. 
This has to be done, because of the usage of logarithm for 
the rescale of intensity values. Logarithmic equations cannot 
take negative values, while fitness could be negative in some 
problems. Thus, we solve this difficulty with a transforma-
tion inspired by the physical analogue (i.e. the corresponding 
idea inspired from nature for the algorithm).

The next steps are repeated until the stopping criteria are 
met. In the experiments conducted, the stopping criterion 
is the maximum number of iterations, named “number of 
scans”. For each ship we calculate the fitness function in 
order to find out the best solution. The best solution is saved 
and all agents change their intensity based on the solution 
they have found; if the solution is better from the previous 
best of the current agent, then the intensity increases and 
if the opposite exists, then the intensity decreases. That 
affects also the alteration of the effective radius.

Finally, one more useful mechanism is applied in our 
scheme. In reality, when a war ship doesn’t detect anything 
in an area, it changes place. An easy way to relocate an agent 
is to take into consideration the position of the best solution 
found so far, as described in (Tzanetos and Dounias 2017a, b):

where xd
i
 is the position of i th agent in the d th dimension, 

bestd is the best position found in the current iteration, ri
0
 is 

the effective radius of the i th agent and rand a random uni-
formly distributed number. However, this step is done only 

(4)
xd
i
= lower_boundd + (upper_boundd − lower_boundd) ⋅ rand,

(5)Pe = fiti , i ∈ {1, 2,… ,N}.

(6)P = ePe,

(7)xd
i
= bestd + ri

0
⋅ rand,

when the agent fitness was below the average fitness of all 
agents. Otherwise, the agent is randomly relocated using the 
Eq. (4). This method retains the balance between exploration 
and exploitation. Inspired by the similar concept of mutation 
rate (Nilsson and Snoad 2002):

where � is the number of generations between environmental 
changes, we set the limit of time without improvement (or 
without environmental change) as the 1% of the number of 
iterations (scans). So, we get (Fig. 3):

2.2.1  Intensity parameter

The most important parameter in our algorithm is the inten-
sity parameter. Intensity affects the change of effective 
radius and thus, the maximum size of area that each agent 
searches. Intensity is redefined at the end of each iteration 
based on the solution found by the corresponding agent. 
Using the exponential function’s attribute:

Magnitude is a way to define the importance of the target 
found by an agent/ship and is calculated as1:

where scan_besti is the fitness of the best solution found 
by the i th agent in the current scan and best is the glob-
ally best solution at the time. In previous experimentations, 
magnitude had such a value, that the updated Intensity was 
leading to Infinite values. This problem is solved using the 

(8)�opt =
1

�
,

(9)checkpoint = scans ⋅ 0.01.

(10)Ii
d = Ii

d
⋅ emagnitude

d

.

(11)
magnituded =

[(

scan_besti − best
)

× 10−b + s
]

⋅ weightedd,

Sonar Inspired Optimization
Initialization of ships’ position
Initialize effective radius and intensity for every agent
While stopping criteria not met

If counter = checkpoint
Relocate the agent
Recalculate intensity and radius

End
Update radius for every agent
Calculate Intensity for every agent
While full_scan = false

Update the rotation angle in every dimension
Calculate fitness of possible position
Save the best so far for each agent in the current scan

End
Update best position and fitness
Update intensity and acoustic power output for every agent

End

Fig. 3  Pseudocode of the proposed Sonar Inspired Algorithm (SIO)

1 Equation (11) is formed for minimization problems. In maximiza-
tion problems,  scan_besti and best reverse signs.
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multiplication of 10−b , where b is the highest power met 
in fitness by the current population. This parameter is 
decreased every time that all fitness values are below its 
current value.

Another issue was that the magnitude didn’t alter all dimen-
sions respectively. Thus, in this paper a vector that splits the 
magnitude properly is presented:

where accept_ranged = upper_boundd − lower_boundd for 
each dimension d of the problem.

To avoid the zero value of magnitude that the agent with the 
global best solution will return, we add a very small value s.

The Eq. (10) is formed based on the graph of ex . As it can 
be shown in Fig. 4, when the value of x for the ex is below 
zero, the value of y is lower than one. Thus, if the magnitude 
is negative (meaning that the agent found better solution), then 
the intensity will be decreased because it is multiplied with a 
number lower than the unity. On the other hand, if magnitude 
is positive, the intensity will increase because is multiplied 
with a number bigger than unity. And so, as further of the 
optimum an agent is so much bigger the increase of the inten-
sity will be, resulting into bigger steps to find a better solution.

Although, to transform the high value of Ii to a more useful 
one, implementing the physical analogue:

where Ii is the Intensity of the i th agent and I0 is the Thresh-
old of Hearing (Lurton 2002), which is defined as:

(12)weightedd =
accept_ranged

∑d

1
accept_ranged

,

(13)Ii = 10 ⋅ log
Ii

I0
,

In this algorithm the value of Threshold of Hearing I0 is set 
to 10−12 . This value is fixed no matter what problem is being 
solved. Previous experimentation has shown that this value is 
proper for any kind of problem and does not affect the perfor-
mance of the algorithm.

2.2.2  Effective radius r
0

The initial value of r0 should be considered, based on the 
solution space. A small value of the radius will drive the 
algorithm to perform smaller steps. On the other hand, the 
choice of a bigger radius will lead to longer jumps of the algo-
rithm towards better optima, but with the risk of overlooking 
(bypassing) other solutions of desired quality.

By reversing Eq. (3), the effective radius r0 is calculated as:

where areak
i
 is the area scanned by the i th agent for the d th 

dimension in k th iteration. As we see, this model represents 
the real relation between these measures; in higher intensity 
the area scanned is bigger than in lower intensity. Thus, the 
effective radius r0 is smaller too. The aim here is to increase 
the radius, if no better solution is found, so that each agent 
searches further than its current position.

2.2.3  Full scan loop

In order to search wider areas of the solution space, in each 
iteration every agent checks the space around it that is limited 
by its effective radius r0 . This process is called full scan loop, 
because three steps are repeated until a full cyclic search has 
been done. Beginning from the angle of 0◦ , random rotations in 
each dimension are executed. Each rotation covers a maximum 
of a◦ and is calculated as follows:

where rand is a random number produced from the uni-
form distribution function and angled is the rotation angle 
in dimension d . When any of angled exceeds 360◦ , the loop 
is stopped. The vector of angles is converted in vector of 
movements in every dimension as follows:

where rd is the random radius inside the cycle that is defined 
by the effective radius r0d for the d th dimension of the 
problem. In Fig. 5 below, an example of the way that the 
movementd is calculated in every dimension d is presented. 
Let the current solution of the dimension be the center of the 
circle, shown in Fig. 5. This circle is defined by the effective 

(14)I0 = 10−12 watts
/

m2 = 10−16 watts
/

cm2.

(15)r0
d
i
=

√

areadk
i

4 ⋅ �
,

(16)angled = angled + rand × a◦,

(17)movementd = rd ⋅ cos
(

angled
)

,

Fig. 4  Graph of y = ex function



535Evolving Systems (2020) 11:531–539 

1 3

radius r0d . The possible solutions checked in every loop of 
the full scan loop are calculated via Eq. (17) and one exam-
ple is illustrated as the projection of the small arrow on the 
horizontal line, as shown in Fig. 5.

A decrease of the maximum rotation angle ◦ , leads into 
smaller rotations and thus, more generated points in every 
dimension. To decrease computational time, a new addition 
is presented. Instead of keeping the maximum rotation angle 
a◦ same for all agents, they are sorted based on their fitness 
and according to the sub-group into which they belong, the 
maximum rotation angle is altered. In this paper, six sub-
groups have been used, given the values of maximum rota-
tion angle as follows:

With this mechanism, each agent searches more points 
around its position, while other algorithms’ agents check one 
point per iteration. But, at the same time, each agent searches 
the number of points that corresponds to its fitness: worst 
fitness leads to lower sub-group and thus, with smaller maxi-
mum rotation angle more points are searched. This provides 
bigger probability for the agent to jump to a better solution.

The new position is calculated as:

where, xd
i
 is the position of the i th agent in the d th dimension 

and movementd is the d th element of the Eq. (17). In each 
one of the rotation phases, the fitness of the new position 
is calculated and if it is better than the best found by the 
current agent, the best position and its fitness are updated.

2.2.4  Correction mechanisms

In order to avoid exceeding the bounds of the solution space, 
a correction mechanism has also been implemented. If an xd

i
 

is violating the bound constraints, it is relocated as:

 in order to fulfil the relation: lower_boundd < x
d

i
<

upper_boundd.

���⃗a◦ = [50 40 30 20 10 5].

(18)xd
i
= movementd + xd

i

(18)
xd
i
= lower_boundd +

(

upper_boundd − lower_boundd
)

⋅ cos
(

xd
i

)

,

The same correction mechanism is used also for the effec-
tive radius r0 . If the effective radius r0 of any agent in any 
dimension exceeds the accept_ranged mentioned before, then 
a new effective radius is generated using the same concept.

3  Engineering applications

In previous work (Tzanetos and Dounias 2017a, b), SIO has 
been proven to be a good optimization tool. However, as it 
was stated in further research, the real challenge for a Nature 
Inspired Intelligent scheme is its application in Real World 
Problems. Two known constrained Engineering Optimization 
problems have been chosen: tension/compression spring and 
welded beam designs.

3.1  Tension/compression spring design

The objective of this problem is to minimize the weight of a 
tension/compression spring as illustrated in Fig. 6. The mini-
mization process is subject to some constraints such as shear 
stress, surge frequency, and minimum deflection. There are 
three variables in this problem: wire diameter (d), mean coil 
diameter (D), and the number of active coils (N).

Considering the solution as a vector x⃗ =
[

x
1

, x
2

, x
3

]

=

[d, D, N] , the mathematical formulation of this problem is as 
follows (Mirjalili et al. 2014):

Minimize Minimize f
(

x⃗
)

=
(

x3 + 2
)

x2x
2
1

Subject to ∶ g1
(

x⃗
)

= 1 −
x3
2
x3

71785x4
1

≤ 0

g2
(

x⃗
)

=
4x2

2
− x1x2

12566
(

x2x
3
1
− x4

1

) +
1

5108x2
1

≤ 0

g3
(

x⃗
)

= 1 −
140.45x1

x2
2
x3

≤ 0

g4
(

x⃗
)

=
x1 + x2

1.5
− 1 ≤ 0,

0

Fig. 5  Example of how the movementd is calculated in every dimen-
sion d

Fig. 6  Tension/compression spring design
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 given that P = 6000 lb, L = 14 in., E = 30 × 106 psi, G = 12 
× 106 psi.

�max = 0.25 in., �max = 13,600 psi, �max = 30,000 psi.
and variable range:

3.2  Welded beam design

The objective of this problem is to minimize the fabrication 
cost of a welded beam as shown in Fig. 7. The constraints of 
this problem are: the shear stress (τ), the bending stress in the 
beam (θ), the buckling load on the bar ( Pc ), the end deflection 
of the beam (δ) and side constraints, as described below in 
problem formulation.

The variables of the problem are the thickness of the 
weld ( h ), the length of the attached part ( l ), the height of 
the bar ( t  ) and the thickness of the bar ( b ). Considering 
the solution as a vector x⃗ =

[

x1, x2, x3, x4
]

= [h, l, t, b] , the 
optimization problem can be described as (Mirjalili et al. 
2014):

0.05 ≤x1 ≤ 2

0.25 ≤x2 ≤ 1.3

2 ≤x3 ≤ 15.

Minimize Minimize f
(

x⃗
)

= 1.10471x2
1
x2 + 0.04811x3x4

(

14 + x2
)

Subject to: g1
(

x⃗
)

= 𝜏
(

x⃗
)

− 𝜏max ≤ 0

g2
(

x⃗
)

= 𝜎
(

x⃗
)

− 𝜎max ≤ 0

g3
(

x⃗
)

= 𝛿
(

x⃗
)

− 𝛿max ≤ 0

g4
(

x⃗
)

= x1 − x4 ≤ 0

g5
(

x⃗
)

= P − Pc(x⃗) ≤ 0

g6
(

x⃗
)

= 0.125 − x1 ≤ 0

g7
(

x⃗
)

= 1.10471x2
1
+ 0.04811x3x4

(

14 + x2
)

− 5 ≤ 0,

where 

𝜏
�

x⃗
�

=

�

(𝜏�)2 + 2𝜏�𝜏��
x2

2R
+ (𝜏��)2

𝜏� =
P

√

2x1x2

, 𝜏�� =
MR

J
, M = P

�

L +
x2

2

�

R =

�

x2
2

2
+

�

x1 + x3

2

�2

J = 2

�

√

2x1x2

�

x2
2

2
+

�

x1 + x3

2

�2
��

𝜎
�

x⃗
�

=
6PL

x4x
2
3

, 𝛿
�

x⃗
�

=
6PL3

x4x
2
3

Pc

�

x⃗
�

=

4.013E

�

x2
3
x6
4

36

L2

�

1 −
x3

2L

�

E

4G

�

.

 

given that P = 6000 lb, L = 14 in., E = 30 × 106 psi, G = 12 
× 106 psi.

�max = 0.25 in., �max = 13,600 psi, �max = 30,000 psi.
The variable range is given as follows:

4  Experimental results

All experiments were conducted using Matlab on a 4 GB, 
3.6 GHz Intel Core i7 Windows 10 Pro. For every problem, 
40 independent runs were done to measure the statistical 

0.1 ≤ x1 ≤ 2
g6
⇒ 0.125 ≤ x1 ≤ 2

0.1 ≤ x2 ≤ 10

0.1 ≤ x3 ≤ 10

0.1 ≤ x4 ≤ 2.

Fig. 7  Structure of welded beam design

Table 1  SIO parameters used in experimentation

Parameter Value

Number of iterations 1000
Number of population 25
Number of independent runs 40
s 0.0008
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performance of the algorithm. The results are compared with 
the corresponding results obtained by various algorithms 
in literature. In Table 1 below, the parameters used in all 
experiments are shown.

The performance of the algorithm on the Spring Design 
Problem can be seen below, in Table 2. Results of other 
known Nature-inspired metaheuristics, such as Grey Wolf 
Optimizer (GWO) (Mirjalili et al. 2014) and co-evolutionary 
Particle Swarm Optimization (CPSO) (He and Wang 2007), 
are used as benchmarks. Also, results from heuristic meth-
ods [Evolutionary Strategy (ES) (Mezura-Montes and Coe-
llo 2008), Genetic Algorithm (GA) (Coello 2000), Harmony 
Search (HS) (Mahdavi et al. 2007), co-evolutionary Differ-
ential Evolution (CDE) (Huang et al. 2007)] and mathemati-
cal approaches [numerical optimization technique (Arora 
2004) and mathematical optimization technique (Belegundu 
and Arora 1985)] are used as benchmarks. SIO managed to 
outperform the other algorithms and provided design points 
that do not violate any of the constraints.

Table 3 contains the comparison of results for the Welded 
Beam Design problem. Previous results from Grey Wolf 
Optimizer (GWO) (Mirjalili et al. 2014), Genetic Algo-
rithm (GA) (Coello Coello 2000; Deb 1991, 2000), Har-
mony Search (HS) (Lee and Geem 2005) and mathematical 
approaches (Ragsdell and Phillips 1976) can be seen. SIO 
overcomes all other schemes except of GWO. Although, it 
is slightly worse, there are no statistical results to compare 
the performance between them.

In both problems, SIO successfully find high quality near 
optimal solutions without violating any constraint. In Ten-
sion/Compression Spring Design problem overcame the 
other algorithms. In Welded Beam Design problem was a 
lot better than most of the other scheme and slightly worse 
than GWO, but the lack of statistical performance of GWO 
does not give the chance to export safe conclusions. Also, 
the statistical results show that SIO consists a powerful opti-
mization tool, which manages to provide optimal or near 
optimal solutions.

Table 2  Comparison of results 
for tension/compression spring 
design problem

Bold values show the best value found within all schemes, which coped with the corresponding problem

Algorithm Optimum variables Optimum weight Mean Std

d D L

SIO 0.051354 0.405225 7.554277 0.0102104 0.0116751 7.8400e−3
GWO 0.05169 0.356737 11.28885 0.012666 N/A N/A
CPSO 0.051728 0.357644 11.244543 0.0126747 0.012730 5.1985e−5
ES 0.051989 0.363965 10.890522 0.0126810 0.012923 5.9200e−4
GA 0.051480 0.351661 11.632201 0.0127048 0.012769 5.9000e−5
HS 0.051154 0.349871 12.076432 0.0126706 N/A N/A
CDE 0.051609 0.354714 11.410831 0.0126702 0.012703 2.7000e−5
Mathematical optimization 0.053396 0.399180 9.1854000 0.0127303 N/A N/A
Constrained correction 0.050000 0.315900 14.250000 0.0128334 N/A N/A

Table 3  Comparison of results for welded beam design problem

Bold values show the best value found within all schemes, which coped with the corresponding problem

Algorithm Optimum variables Optimum cost Mean Std

h l t b

SIO 0.331482 2.017442 9.045926 0.208865 1.7621466 2.075521 0.449052
GWO 0.205676 3.478377 9.03681 0.205777 1.72624 N/A N/A
GA N/A N/A N/A N/A 1.8245 N/A N/A
GA N/A N/A N/A N/A 2.3810 2.383 N/A
GA 0.2489 6.1730 8.1789 0.2533 2.4331 N/A N/A
HS 0.2442 6.2231 8.2915 0.2443 2.3807 N/A N/A
Richardson’s random 0.4575 4.7313 5.0853 0.6600 4.1185 N/A N/A
Simplex 0.2792 5.6256 7.7512 0.2796 2.5307 N/A N/A
Davidon-Fletcher-Powell 0.2434 6.2552 8.2915 0.2444 2.3841 N/A N/A
Linear approximation 0.2444 6.2189 8.2915 0.2444 2.3815 N/A N/A
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5  Conclusions and future research

In this paper, a novel meta-heuristic algorithm named SIO 
(Sonar Inspired Optimization) was presented and tested in 
real world engineering optimization problems. Three new 
modifications were implemented to improve the performance 
of the algorithm; the maximum rotation angle is auto-tuned 
based on the fitness of the solution, the magnitude respectively 
alters the Intensity in every dimension and the relocation of 
the agents is done in a smarter way, so that exploration and 
exploitation balance remains until the end of the algorithm. 
The very limited parameterization that SIO needs, makes 
this algorithm useful for a wide range of problems. The most 
important feature of SIO is the balance between exploration 
and exploitation, which is achieved via the relocation rule and 
the full scan loop, respectively. As the results from this work 
show, SIO is proven to handle efficiently engineering opti-
mization problems. What is more, the first attempt to solve 
problems with constraints gave promising results.

SIO was tested in known constrained engineering opti-
mization problems, namely the Tension/Compression 
Spring Design problem and the Welded Beam Design 
problem. Also, compared with other nature-inspired 
metaheuristics, heuristics and mathematical approaches 
was found statistically comparable or superior in most 
of the cases. The lack of statistical analysis of the per-
formance of competitive algorithms make it difficult to 
extract further conclusions. Nevertheless, the correspond-
ing performance of SIO showed that this algorithm is con-
sistent and provides optimal or near optimal solutions.

Furthermore, the main SIO advantages should be high-
lighted; the minimal parameterization and the higher explo-
ration of the solution space. Especially the second feature, 
SIO’s agents search many possible positions around their 
current location in each iteration, while in other algorithms 
agents check only one new point. Additions and modifica-
tions of the mechanisms of the algorithm are presented 
here, resulting in improved performance of the algorithm.

Currently, work is underway on the application of Sonar 
Inspired Optimization in Decision Engineering problems. 
Experiments have already taken place in this direction, in 
financial and industrial engineering problems. A new hybrid 
scheme which contains SIO as a component is underway, 
too. Application of SIO in other Engineering and Structural 
Problems will take place in future.
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