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Abstract
Blind source separation (BSS) methods are used to separate sources from a mixed observations with very little prior knowl-
edge of the mixing coefficients or sources. In this paper we propose an evolutionary spectral representation to implement 
BSS. Introduced by Priestley, evolutionary spectral theory generalizes the definition of spectrum for nonstationary processes. 
Under certain conditions, the evolutionary spectrum at each instant of time can be estimated from a single realization of a 
process such that it is possible to study processes with changing spectral patterns. In particular we are interested in the prob-
lem of separation of individual biosignals from electrophysiological recordings mixed by volume conduction. As biosignals 
such as electrocardiogram and electroencephalogram recordings are prime examples of nonstationary signals, evolutionary 
spectral representations can be used for the analysis of them. Our proposed evolutionary spectral representation is based on 
the discrete prolate spheroidal sequences (DPSS). Also known as Slepian sequences, the DPSS are defined to be the sequences 
with maximum spectral concentration for a given duration and bandwidth. Using the relation between discrete evolutionary 
transform and evolutionary periodogram, we derive the Slepian evolutionary spectrum. After the evolutionary spectrum is 
computed, we implement it for the BSS problem and compare with the well known time-frequency methods (Wigner-Ville 
distribution and S-transform) for performance evaluation.

1  Introduction

It is well known that the Fourier transform provides repre-
sentation for signals in frequency domain when the spectral 
characteristics do not change with time. However, when the 
signal is nonstationary, to get the information about spec-
tral characteristics at different times, the Fourier transform 
needs to be replaced with a time-frequency representation 
(TFR). TFRs characterize signals over a time-frequency 
plane by combining time-domain and frequency domain 
analyses and reveal the temporal localization of spectral 
components. We can obtain the spectral characteristics at 
different times via the short time Fourier transform (STFT). 
The bilinear distributions and evolutionary spectrum (ES) 
are other approaches to obtain spectral characteristics 
Boashash (2003). Priestley’s ES theory, generalizes the 
definition of spectra for nonstationary signals Priestly 
(1967). Accordingly, the Wold-Cramer ES, considers a 

nonstationary signal as the output of a linear time-varying 
(LTV) system driven by a stationary white noise Kayhan 
et al. (1992). There have been different approaches to esti-
mate the ES such as the evolutionary periodogram (EP) 
Kayhan et al. (1994). The EP is based on projections of 
the spectrum onto the time and frequency domains using 
an orthonormal basis set Kayhan et al. (1994). In the case 
of deterministic nonstationary signals, the discrete evolu-
tionary transform (DET) allows the computation of a ker-
nel and the corresponding ES Suleesathira et al. (1998). 
Similarly, in array signal processing, the signal received 
by each sensor of the array can be modeled as a sum of 
complex sinusoids with time-varying complex amplitudes 
Kayhan and Moeness (2000). As shown in Kayhan and 
Moeness (2000), the time-varying amplitudes can be esti-
mated using linear estimators obtained via minimum mean-
squared error criteria. These estimates are then used for the 
estimation of time-varying cross-power distributions of the 
data across the array.

In this paper we propose a representation for evolution-
ary spectrum of nonstationary signals that can be applied 
for the Blind Source Separation (BSS) problem. In the sim-
plest form, the BSS problem can be defined as recovering 
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n mutually independent unknown sources from m linear 
observations (mixtures) of them Johnson and Dudgeon 
(1993). The BSS methods are used to extract important 
information from the mixture of sources for applications 
such as speech processing, image processing, biomedical 
signal processing and telecommunications. For example, 
in the case of Electroencephalography (EEG) recordings, 
voltage fluctuations resulting from ionic current within the 
neurons of the brain are measured non-invasively. As all 
the electrodes are placed along the scalp, what we actu-
ally observe from EEG data is a mixture of all the active 
sources. Since the electrical signals must travel through 
human tissue to reach the electrodes, each measured signal 
can be assumed to be a linear mixture of source signals 
Makeig et al. (1996). In addition, scalp-recorded EEG sig-
nals include non-brain sources such as electroculographic 
(EOG) and electromyographic (EMG) activities. It was 
shown in Delorme et al. (2007) that the BSS methods are 
very useful for extracting these sources from the EEG 
recordings. Separation of these sources from a mixture 
of observations is crucial in analysis of recordings. The 
unmixing matrix’s inverse can also be used to provide a 
spatial illustration of each BSS-extracted signal’s associ-
ated scalp location Delorme et al. (2012). If the number of 
sources are unknown, they can be estimated using methods 
such as Fujita (2012); Yuan et al. (2008).

The BSS algorithms can be classified as the ones that 
are based on using statistical information available on the 
source signals Coivunen et al. (2001); Everson and Roberts 
(2018) and those that are exploiting the difference in the 
time-frequency signatures of the sources to be separated 
Pal et al. (2013). An example for the over-deteminded case 
i.e., the number of observations are greater than the num-
ber of sources n ≤ m , based on second-order statistics and 
joint-diagonalization of set of covariance matrices can be 
found in Belouchrani et al. (1997). Another example, on 
spatial time-frequency distributions (TFDs) as a generali-
zation of bilinear TFDs, in the case of nonstationary sig-
nals, is in Belouchrani and Amin (1998); Sekihara et al. 
(1999). Although the bilinear TFDs have good localization 
property, they display cross-terms and positivity of spectral 
estimates are not guaranteed Cohen (1995). Alternatively, 
the EP as an estimator of the Wold-Cramer ES was extended 
for array processing in semi-homogeneous random fields 
Bohme (1979).

The evolutionary spectral representation we propose is 
based on the discrete prolate spheroidal sequences (DPSS) 
Slepian (1962). The DPSS are defined to be the sequences 
with maximum spectral concentration for a given duration 
and bandwidth. We will use a combination of the spatial 
evolutionary Slepian spectrum with whitening technique to 

estimate the mixing matrix and separate the source signals. 
The paper is organized as follows. In the next section, we 
review the evolutionary spectrum and provide the funda-
mental equations of signal representation. In Sect. 3, we 
present the proposed evolutionary Slepian transform. We 
review the BSS problem and related formulation in Sect. 4. 
In Sect.  5, we present experimental results. Conclusions 
follow.

2 � Review of evolutionary spectrum 
and periodogram estimator

Introduced by Priestley Priestley (1981), the evolutionary 
spectrum (ES) theory describes the local power frequency 
distribution at each instant of time Priestly (1967). In par-
ticular, the Wold-Cramér ES considers a nonstationary 
signal as the output of a linear time-varying (LTV) system 
driven by a stationary white noise Melard and Schutter 
(1989) and the evolutionary periodogram (EP) is proposed 
for the estimation of the Wold-Cramér ES Kayhan et al. 
(1994). In order to review the Wold-Cramér ES, we can 
start with the representation of a discrete-time nonstationary 
process as the output of a casual, LTV system with impulse 
response h[n, m] as

here {�[m]} is a stationary, zero-mean, unit-variance, white 
noise process. The representation in (1) is known as the 
Wold-Cramér decomposition Priestley (1981). {�[m]} can 
be expressed as a sum of sinusoids with random amplitudes 
and phases.

Accordingly, the nonstationary process {x[n]} can be 
expressed as

where

(1)x[n] =

n∑

m=−∞

h[n,m]�[m],

(2)�[m] =

�

∫
−�

ej�mdZ(�).

(3)x[n] =

�

∫
−�

H(n,�)ej�ndZ(�),

(4)H(n,�) =

n∑

m=−∞

h[n,m]e−j�(n−m),
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for Z(�) being a process with orthogonal increments. The 
variance of x[n]

provides the power distribution of the nonstationary process 
{x[n]} at each time n, as a function of the frequency parame-
ter � . The Wold-Cramér ES is defined as S(n,�) = |H(n,�)|2 
and the cross-power ES for two processes {x[n]} and {y[n]} 
is given as Sxy(n,�) = Hx(n,�)H

∗
y
(n,�) . This definition was 

also proposed in Melard and Schutter (1989) as a special 
case of Priestley’s ES, if one restricts the function H(n, w) 
to the class of oscillatory functions that are slowly-varying 
in time. In Kayhan et al. (1994), a similar condition was 
applied to model the component of x[n] for a particular fre-
quency of interest, �0 as

such that

where A(n,�0) = H(n,�0)dZ(�0) and represents time-var-
ying complex amplitude. y[n] is the zero-mean modeling 
error which includes the components of x[n] at frequencies 
different from �0 . It can be derived that

and using x[n] and A(n,�0) , S(n,�0) can be estimated Kay-
han et al. (1994). Repeating this process for all frequen-
cies � , an estimate of the time-dependent spectral density 
S(n,�) was obtained Kayhan et al. (1994). In this case, 
assuming that A(n,�0) also varies with time, a representa-
tion as an expansion of orthonormal functions {�i[n]} over 
0 ≤ n ≤ N − 1 is

T h e  v e c t o r s  � = [a0, ..., aM−1]
T  a n d 

�[n] = [�0[n], ..., �M−1[n]]
T  represent a vector of random 

expansion coefficients and a vector of orthonormal functions 
at time n, respectively. The number of expansion functions 
M ≤ N depends on the frequency �0 and indicates the degree 
to which A(n,�0) varies with time. For small M,  A(n,�0) is 
slowly varying and for large values of M, A(n,�0) is rapidly 
varying. Then, any time behavior of A(n,�0) can be approxi-
mated by changing M. The order of expansion must be kept 
at a minimum to improve frequency resolution Kayhan et al. 
(1994). The minimum MSE estimate for A(n,�0) is given as

(5)E{|x[n]|2} =
1

2�

�

∫
−�

|H(n,�)|2d�,

(6)x0[n] = H(n,�0)e
j�ndZ(�0),

(7)x[n] = x0[n] + y[n] = A(n,�0)e
j�n + y[n],

(8)E{|A(n,�0)|2} = S(n,�0)
d�0

2�
,

(9)A(n,�0) =

M(�0)−1∑

i=0

�∗
i
ai = �[n]H�.

and for all possible values of frequency, the time-varying 
spectral density is called the EP Kayhan et al. (1994). There-
fore, the relation between the estimator and the time-varying 
spectral density is

Rewriting

here Ŝ can be interpreted as the magnitude square of the Fou-
rier transform of x[k] windowed by a sequence v[n, k] where 
v[n, k] =

∑M−1

i=0
�∗
i
[n]�i[k] . Using the model in (7) at fre-

quency �0 , the derivations above can be expanded for array 
processing as in Kayhan and Moeness (2000). For example, 
considering signals {xl[n]} , 1 ≤ l ≤ L,   0 ≤ n ≤ N − 1 , where 
L is the number of sensors and N is the number of the data 
snapshots, {Al(n,�o)} can be represented as an expansion 
of M orthogonal basis functions for the sensor data xl[n] as

and xl[n] can be expressed over the observation interval in 
vector form

where �(�0) is a matrix with entries �n+1,i+1 = �∗
i
[n]ej�0n , 

Kayhan and Moeness (2000). A precise representation 
can be obtained in the joint TF domain, if we have enough 
knowledge in the spectral characteristics of the signals, Oth-
erwise, we can use some bandwidth estimation techniques 
such as Tsiakoulis et al. (2013); Wang and Yong (2016); 
Marques (2006); Liebeherr et al. (2016, 2007) to obtain M. 
Letting �[n] = �[n]H� be a vector of amplitudes at time n, 
the estimates of the time-varying amplitudes are obtained as 
𝐚̂[n] = 𝐛[n]H𝐅H𝐱 via MSE estimator. Then, in array signal 
processing, the cross-power evolutionary spectral density 
estimator can be computed as

which is also

(10)Â(n,𝜔0) =

M−1∑

i=0

𝛽∗
i
[n]

N−1∑

k=0

𝛽i[k]x[k]e
−j𝜔0k,

(11)

Ŝ =
2𝜋

d𝜔
|Â(n,𝜔)|2 = N

M
|
M−1∑

i=0

𝛽∗
i
[n]

N−1∑

k=0

𝛽i[k]x[k]e
−j𝜔k|2.

(12)Ŝ =
N

M
||
N−1∑

k=0

v[n, k]x[k]e−j𝜔k||
2
,

(13)Al(n,�o) =

M(�0)−1∑

i=0

�∗
i
ai,

(14)�l = �(�0)�l(�0) + �l(�0),

(15)𝐒̂xx(n,�) = E{𝐚̂[n]H 𝐚̂[n]},

(16)𝐒̂xx(n,𝜔) = (𝐛[n]H𝐅H)⊗l 𝐑⊗r (𝐅𝐛[n]),
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here ⊗l and ⊗r are the left and right block Kronecker prod-
uct, respectively and � = E{��H} for E being the expecta-
tion operation. The cross-power evolutionary spectral den-
sity estimator at time n and frequency �0 between the data 
at sensors � and m can be obtained as 𝐒̂x

�
xm
(n,�) Kayhan 

and Moeness (2000).

3 � Proposed evolutionary spectrum

3.1 � Discrete evolutionary transform

In this section, we briefly review the discrete evolutionary 
transform (DET). In Suleesathira et al. (1998), DET was 
defined to represent a nonstationary signal and its spectrum. 
The DET can be thought of as a generalization of the short 
time Fourier transform (STFT) and can be connected to the 
EP Suleesathira et al. (1998). Using the Gabor or the Malvar 
representations with the Wold-Cramér representation, an evo-
lutionary kernel can be obtained and the ES is the magnitude 
square of the evolutionary kernel Suleesathira et al. (1998).

The Wold-Cramér representation, similar to (1) can be 
written as

where �k = 2�k∕K  , 0 ≤ n ≤ N − 1 and X(n,�k) is called 
the evolutionary kernel Suleesathira et al. (1998). The DET 
can be obtained by expressing the kernels directly from the 
signal by considering the Gabor and the Malvar representa-
tions of x[n]. In this case associating with the sinusoidal 
representation in (1)

is an inverse discrete transformation that provides the evo-
lutionary kernel, X(n,�k) in terms of the signal. Wk(n,�) 
is in general, a time and frequency dependent win-
dow Suleesathira et al. (1998). Here the ES is defined as 
SE(n,�k) = |X(n,�k)|2 . It becomes obvious that the DET 
is a generalization of the STFT and SE(n,�k) is a generali-
zation of the spectrogram. A similar representation for the 
kernel was obtained in Kayhan et al. (1994) when develop-
ing the EP by expressing the time-varying window as a set 
of orthogonal functions.

(17)x[n] =

K−1∑

k=0

X(n,�k)e
j�kn,

(18)X(n,�k) =

N−1∑

�=0

x(�)Wk(n,�)e
−j�k� ,

3.2 � Evolutionary Slepian transform and spectrum

Stationary and nonstationary random processes can be rep-
resented by general orthogonal expansions as proposed by 
Priestley Priestley (1981). Discrete form of prolate spheroi-
dal wave functions (PSWF) Slepian (1962) can be used effi-
ciently for signal decomposition Oh et al. (2010) and called 
discrete prolate spheroidal sequences (DPSS). They are also 
known as Slepian sequences. The PSWF have been used in 
time series analysis Moghtaderi et al. (2009). Indeed, PSWF 
have been used in many applications, one example is in com-
munication theory Moore and Cada (2004), Wavelet-like 
properties is in Simons et al. (2018) and their mathematical 
properties and computation are presented in Walter and Shen 
(2003). Discrete form of the PSWF i.e., DPSS resulted from 
the work of Slepian about the problem of concentrating a sig-
nal jointly in temporal and spectral domains Slepian (1962).

Given N and 0 < Ω < 1∕2 , the DPSS are a collection of N 
real valued, strictly bandlimited |f | ≤ Ω discrete time 
sequences �N,Ω =

[
�
(1)

N,Ω
,�

(2)

N,Ω
,⋯ ,�

(N)

N,Ω

]
 with their corre-

sponding eigenvalues 1 > 𝜆
(1)

N,Ω
> 𝜆

(2)

N,Ω
⋯ 𝜆

(N)

N,Ω
> 0 . The sec-

ond Slepian sequence maximizes the ratio and is orthogonal 
to the first Slepian sequence. The third Slepian sequence 
maximizes the ratio of integrals and is orthogonal to both the 
first and second Slepian sequences. Continuing in this way, 
the Slepian sequences form an orthogonal set of bandlimited 
sequences. There are 2NΩ − 1 Slepian sequences with energy 
concentration ratios approximately equal to one and for the 
rest, the concentration ratios begin to approach zero, (See 
Fig.1). For a given integer K ≤ N , we can get N × K matrix 
formed by taking the first K columns of �N,W  . When 
K ≈ 2NW , it is a highly efficient basis that captures most of 
the signal energy. The performance of ES depend on how well 
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Fig. 1   Left: First four Slepian sequences for chosen N=512 and N Ω
=3; right: energy concentrations i.e., eigenvalues
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the signals are represented using the DPSS. Details on how 
many DPSS are needed for optimum representation can be 
found in Oh et al. (2010); Moore and Cada (2004); Walter and 
Shen (2003).

In general, a signal x[n] can be represented in terms of an 
orthogonal basis {�k[n]} as,

We showed in Oh et al. (2010) that rewriting x[n] as follows:

where �k = 2�
k

N
 , the evolutionary kernel X(n,�k) can be 

expressed in terms of x[n] as

where Wk(n,m) = �k[n]�
∗
k
[m]e−j�k(n−m). To obtain the evolu-

tionary kernel, specifically the window Wk(n,m) , we consid-
ered DPSS {�k[n]} as the bases of the representation in Oh 
et al. (2010). Accordingly, by taking the magnitude square 
as |X(n,�k)|2 , we obtain the evolutionary Slepian spectrum.

3.3 �  Windowed evolutionary Slepian transform 
and spectrum

Starting from the general definition of DET and multiplying 
with a Gaussian window h(n), we define the windowed evolu-
tionary Slepian transform as follows:

modifying (22) by multiplying with both e−j�kn and ej�kn (i.e., 
no effect as e−j�knej�kn = 1 ), we can compute the evolution-
ary kernel X(n,�k) as follows:

The coefficients dm,� can be calculated as

(19)

x[n] =

K−1∑

k=0

d
k
�
k
[n], 0 ≤ n ≤ N − 1,

d
k
=

N−1∑

n=0

x[n]�∗
k
[n], 0 ≤ k ≤ K − 1.

(20)
x[n] =

K−1∑

k=0

[
dk�k[n]e

−j�kn

]

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
X(n,�k)

ej�kn,

(21)X(n,�k) = dk�k[n]e
−j�kn =

N−1∑

m=0

x[m]Wk(n,m)e
−j�km,

(22)x[n] =

M−1∑

m=0

K−1∑

k=0

dm,k�k[n]h(n − mL),

(23)
x[n] =

K−1∑

k=0

[M−1∑

m=0

dm,k�k[n]h(n − mL)e−j�kn

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
X(n,�k)

ej�kn.

Rewriting X(n,�k) , we obtain

where �[n,�] = h(n − mL)�∗(� − mL) for h(n − mL) and 
�∗(� − mL) being Gaussian functions. Arranging the terms 
by multiplying with e−j�k� and ej�k� and rearranging

(24)
dm,� =

N−1∑

�=0

x[�]�∗
k
[�]�∗(� − mL).

(25)X(n,�k) =

N−1∑

�=0

M−1∑

m=0

x(�)�∗
k
[�]�k[n]�[n,�]e

−j�kn,
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gives us an expression similar to STFT for the evolution-
ary kernel X(n,�k) and also the EP for the time-frequency 
dependent window W(n,�) where

(26)X(n,�k) =

N−1∑

�=0

x(�)W(n,�)e−j�k� ,

(27)

W(n,�) =

M−1∑

m=0

�∗
k
[�]�∗(� − mL)ej�k��k[n]h(n − mL)e−j�kn.

Accordingly, we can obtain the evolutionary Slepian spec-
trum (ESS) which we call windowed evolutionary Sle-
pian spectrum (WESS) by taking the magnitude square as 
S = |X(n,�k)|2 and illustrate in the simulations.

4 � Blind source separation problem

4.1 � Problem formulation

Blind source separation (BSS) covers a wide range of appli-
cations in diverse fields such as digital communications, pat-
tern recognition, biomedical engineering, and financial data 
analysis, among others. Separation of unknown signals that 
have been mixed in an unknown way has been a topic of 
great interest in the signal processing community, as well. 
In general, the available BSS methods use the following data 
model for each signal received at each sensor Belouchrani 
et al. (1997):

such that

–	 �[n] = [x1[n],… , xp[n]]
T is a p vector of observations,

–	 �[n] = [s1[n],… , sq[n]]
T is a q vector of unknown sources,

–	 � is a p × q mixing or array matrix,
–	 �[n] is a zero-mean, �2 variance white noise vector.

The objective is to obtain an estimate 𝐂̂ of � and obtain 
sources as

(28)�[n] = ��[n] + �[n],

(29)𝐬̂[n] = 𝐂̂#𝐱[n] ≈ 𝐆𝐬[n] + 𝐂̂#𝛍[n]
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Fig. 5   a Ground truth simulated EEG signals, b Observations of ground truth simulated EEG signals using random mixing matrix for n = 3 and 
m = 4 and SNR = 20dB



291Evolving Systems (2019) 10:285–294	

1 3

where # represents pseudoinverse and � is a matrix with 
only one nonzero entry per row and column Belouchrani 
et al. (1997). In particular, the approaches using time-fre-
quency signal representations for BSS involve the following 
steps Fevotte and Doncarli (2004):

–	 Estimation of the spatial time-frequency spectra,
–	 Estimation of whitening matrix and noise variance,
–	 Joint-diagonalization of the noise compensated and whit-

ened spatial time-frequency spectra matrices.

The details of these steps and full implementation of the BSS 
can be found in Belouchrani et al. (1997); Belouchrani and 
Amin (1998); Fevotte and Doncarli (2004); Cardoso and Sou-
loumiac (1993).

4.2 � Spatial evolutionary transform and BSS

In time-frequency approach for BSS, using the data model 
received at each sensor, the cross-power spectral estimate 
can be written as Kayhan and Moeness (2000),

In this paper, in the equation above, 𝐒̂xx(n,�) is spatial evolu-
tionary Slepian spectrum representation. Representing � as 
the p × q whitening matrix and letting � = �� be unitary, 
whitened and noise compensated matrices

where � is unitary and diagonalizes the cross-power spectral 
estimate 𝐒̃xx(n,�) for any (n,�)Tong et al. (1991); Fevotte 

(30)𝐒̂xx(n,�) = 𝐂𝐒̂ss(n,�)𝐂
H + �2𝐛[n]H𝐛[n]𝐈.

(31)𝐒̃xx(n,�) = 𝐖(𝐒̂xx(n,�) − �2𝐈)𝐖H = 𝐔𝐒ss(n,�)𝐔
H
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Fig. 6   Separated sources using a MST based BSS, b WESS based BSS, c SWVD based BSS
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and Doncarli (2004); Cardoso and Souloumiac (1993). The 
unitary matrix can be estimated from the eigenvectors of any 
𝐒̃xx(n,�) with distinct eigenvalues and the mixing matrix is 
obtained using � = �#� . The source signals are then esti-
mated as in (29) Fevotte and Doncarli (2004).

5 � Experimental results

In our experiments, we test the applicability of our proposed 
evolutionary Slepian spectrum (ESS) in the BSS problem. 
We first apply our method for a time varying autoregressive 
moving average (TVARMA) process (See Fig. 2). Based on 
the time-frequency representation based BSS algorithm in 
Fevotte and Doncarli (2004), we can simulate an overde-
termined case (i.e., m ≤ n ) and use three sources and four 
observations. Overdetermined case can be an example for 
speech signal processing or telecommunications applications 
where there are typically more sensors than the number of 
sources. We chose random matrices as the mixing matrices 
to generate observations. The observations we simulated are 
noise free and noisy (20 dB SNR). The separation of three 
sources and estimation from noise free observations using 
the proposed method is presented in Fig. 3. Then we test the 
estimation of sources using noisy observations for SNR 20 
dB (See Fig. 4).

In the second set of experiments, we used signals (which 
are simulations of typical biosignals that are observed in 
recordings of EEG such as eyeblink, muscle movement of 

limbs and heart, etc.) provided by ICALAB Cichocki et al. 
(2007) which can be used to test the performance of evo-
lutionary Slepian spectrum in the BSS problem. By using 
a random mixing matrix, we obtained one example of mix 
signals for the overdetermined case ( m = 3, n = 4 and 
m = 4, n = 5 ) shown in Figs. 5a–b and 7a–b shows the sepa-
rated result via our proposed evolutionary Slepian spectrum. 
It can be seen from the results that sources can be separated 
from the mixtures.

We evaluated the performance of the WESS by compar-
ing it to the modified S-Transform (MST) and smoothed 
Wigner-Ville Distribution (SWVD) (See Figs. 6 and 8.) 
We chose the MST for its being an adaptive form of the 
STFT and continuous Wavelet Transform (CWT) and the 
WVD was chosen for its being a high resolution TF repre-
sentation Stankovic (1994); Boashash (1991). All time-fre-
quency distributions (TFDs) can be derived from the WVD 
by convolving the WVD with a signal dependent kernel. 
Although the WVD offers high energy concentration for lin-
early mono-component frequency modulated signals, any 
nonlinear modulation or multi-components make the WVD 
suffer from cross-terms. Cross-terms can be suppressed by 
smoothing with a two-dimensional kernel. In the ST the 
mother wavelet-like term is separated into a slowly vary-
ing term (the Gaussian function) and an oscillatory expo-
nential kernel. The Gaussian function localizes in time the 
amplitude modulated (AM) component while the oscillatory 
exponential kernel selects the frequency being localized, fre-
quency modulated (FM) component. The modification can 
be obtained by changing a scaling parameter linearly with 
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Fig. 7   a Ground truth simulated EEG signals, b Observations of ground truth simulated EEG signals using random mixing matrix for n = 4 and 
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the frequency to get better control of the window width and 
the MST is obtained. In our simulations, we observed from 
the separated sources in Figs. 6 and 7 that evolutionary Sle-
pian spectrum performs better than the WVD and S-T in the 
BSS problem.

6 � Conclusions

In this paper, we defined a spectrum representation method 
using Slepian sequences similar to the evolutionary peri-
odogram and showed that Slepian evolutionary spectrum 
can be used for blind source separation problem for non-
stationary and in particular for simulated biosignals. Evo-
lutionary spectrum provides a novel and useful approach 

for separation of individual signals (biosignals and/or non-
biosignals) from electrophysiological recordings and can 
be used for removal of artifacts by subtracting the sources 
from the recordings. Some advantages of the proposed 
method: 1.) The algorithm is computationally efficient and 
easy to implement. 2.) After the source separation post 
processing methods, i.e., filtering, wavelet transform or 
time-frequency methods can be applied for precise analy-
sis of the individual source signals. 3.) In addition to arti-
fact removal, evolutionary spectrum based BSS can be 
useful for analyzing changes in the biological activities in 
a way similar to nonstationary processes without making 
the stationarity assumption for the sources. As our future 
work, we will expand our experiments to larger data sets 
for the BSS problem and also explore methods that can 
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Fig. 8   Separated sources using a MST based BSS, b WESS based BSS, c SWVD based BSS
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enable us to determine the number of sources in the obser-
vation mixtures.
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