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1 Introduction

A time series is a sequence of measurements recorded over 
time. Time series data account for a major part of data sup-
ply available today. These data appear in many applications 
ranging from medicine and finance, to sensory data, mete-
orology and economics.

Time series mining handles several tasks such as clas-
sification, clustering, query-by-content, anomaly detection, 
summarization, segmentation, motif discovery, and others.

The most prominent problem in managing time series is 
the high dimensionality of these data. Therefore, a high-level 
representation of time series is a key factor to implementing 
these tasks efficiently and effectively.

Most time series representation methods follow the 
Generic Multimedia Indexing (GEMINI) framework 
(Faloutsos et al. 1994) in which all the time series in the 
dataset are embedded into another lower-dimensional space 
where, under certain conditions, the different time series 
mining tasks can be handled more efficiently. More formally, 
let n be the dimensionality of the raw data, and N be the 
dimensionality of the transformed space. N should satisfy: 
N < n (ideally, N ≪ n). dNis said to be lower-bounding of 
dn if dN

(

S̄, T̄
)

⩽ dn(S, T), where S̄, T̄are the projections of 
the time series S, T , respectively, on the transformed space.

There have been several alternatives to applying differ-
ent time series data mining tasks directly to raw data. These 
alternatives can be divided into two main categories: land-
mark methods and data transformation-based methods.
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In a previous work (Muhammad Fuad 2016) we presented 
the outline of a third alternative that addresses the above 
problem differently. This method transforms the data into 
a low-dimensional space by choosing important points, but 
unlike landmark methods, the points in our method are not 
selected based on geometric properties, but on a classifica-
tion-error basis, where this classification is performed in 
the framework of an optimization process using differential 
evolution as optimizer. The direct result of this method, and 
because all the points in the transformed space are points 
in the original data, is that the distance between any two 
time series in the transformed space is a lower bound of the 
two corresponding time series in the original space. Conse-
quently, the GEMINI algorithm can be applied without any 
additional procedures.

In this text we extend our method presented in (Muham-
mad Fuad 2016) by using different optimizers applied to sev-
eral time series mining tasks. The outcome of the optimiza-
tion process is the timestamps that yield the best results in a 
time series mining task. The optimizers we use in this paper 
are differential evolution, genetic algorithm, and particle 
swarm optimization. The time series mining tasks we apply 
our method in this work to are classification and clustering. 
In addition, and this is a particular novelty of this paper, 
we show how our method can be built to optimize several 
time series mining tasks simultaneously. The optimizer we 
use in the multi-objective optimization process is the popu-
lar non-dominated sorting genetic algorithm-II (NSGA-II). 
All the variations of our method we present in this work 
are compared against traditional time series representation 
methods on a wide variety of datasets. The results show a 
clear superiority of our method over traditional time series 
representation methods.

This paper is organized as follows; Sect. 1 is a back-
ground section. Section 2 introduces traditional time series 
representation methods. Our new method is motivated and 
presented in Sect. 3. In Sect. 4 we conduct experiments 
that validate our method. Section 5 is a concluding section, 
where we discuss the outcome of our experiments and sug-
gest some directions for future research.

2  A brief introduction to data mining

Data mining is one of the branches of computer science that 
witnessed substantial progress in the last years. Data mining 
encompasses several tasks the main of which are (Bramer 
2007; Gorunescu 2006; Larose 2005; Mörchen 2006):

– Data pre-processing Most raw data are unprepared, 
noisy, or incomplete. For this reason, a preparation stage 
is required before handling data. This stage may include 
different processes such as data cleansing, normaliza-

tion, handling outliers, completion of missing values, 
and deciding which attributes to keep and which ones to 
discard.

– Prediction This task can be viewed as forecasting the 
future state of a phenomenon given its current state. Pre-
diction is similar to estimation, except that it concerns 
values that are beyond the range of already observed 
data.

– Query-by-content In this task the algorithm searches for 
all the objects in the database that are similar to a given 
pattern.

– Classification Classification is the task of assigning items 
to predefined classes. Classification is one of the main 
tasks of data mining and it is particularly relevant to the 
experimental section of this paper. There are a number 
of classification models, the most popular of which is 
k-nearest-neighbor (kNN). In this model the object is 
classified based on the k closest objects in its neighbor-
hood. Performance of classification algorithms can be 
evaluated using different methods. One of the widely 
used ones is leave-one-out cross-validation (LOOCV) 
- also known by N-fold cross-validation, or jack-knif-
ing, where the dataset is divided into as many parts as 
there are instances, each instance effectively forming a 
test set of one. N classifiers are generated, each from 
N − 1 instances, and each is used to classify a single test 
instance. The classification error is then the total number 
of misclassified instances divided by the total number of 
instances (Bramer 2007).

– Clustering It is the task of partitioning the data objects 
into groups, called clusters, so that the objects within a 
cluster are similar to one another and dissimilar to the 
objects in other clusters (Han et al. 2011). Clustering dif-
fers from classification in that there is no target variable 
for clustering. Instead, clustering algorithms attempt to 
segment the entire data set into relatively homogeneous 
subgroups or clusters (Larose 2005).

  There are several basic clustering methods such as: 
Partitioning Methods, Hierarchical Methods, Density-
Based Methods, and Grid-Based Methods.

  k-means is one of the most widely used and studied 
clustering formulations (Kanungo et al. 2002). k-means 
is a centroid-based partitioning technique which uses the 
centroid (also called center) of a cluster; ci, to represent 
that cluster. Conceptually, the centroid of a cluster is its 
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center point. The centroid is defined as the mean of the 
objects assigned to the cluster.

  In k-means clustering we have a set of n data points in 
d-dimensional space Rd and an integer k, the problem is 
to determine a set of k points in Rd, the centroids, so as 
to minimize the mean distance from each data point to 
its nearest center (Kanungo et al. 2002).

  More formally, the k-means clustering error can be 
measured by: 

  The number of clusters is decided by the user, applica-
tion-dependent, or given by some cluster validity meas-
ure.

3  Time series mining

Many data mining tasks involve temporal aspects. The most 
common example of these temporal data is time series. The 
main characteristic of time series data is their high-dimen-
sionality. Representation methods are widely used to manage 
the high- dimensionality of time series (hence they are also 
called dimensionality reduction techniques). In addition to 
reducing dimensionality, representation methods also help 
emphasize certain features of the data, in addition to remov-
ing noise and speeding up the different time series mining 
tasks (Mörchen 2006). They also reduce storage space.

Time series representation methods can be divided into 
two main categories: the first is what we call landmark meth-
ods (Hetland 2003). These methods are based on finding 
characteristic features in the target time series. In (Perng 
et al. 2000) the authors present a model which allows any 

(1)E =

k
∑

i=1

nj
∑

j=1

d
(

uij, ci
)

.

point of great importance to be identified as a landmark. 
The gist of the landmark model is to use landmarks instead 
of raw data. For instance, first-order landmarks are extreme 
points, second-order landmarks are inflection points, and so 
on. The model takes into account that local extreme points 
are not as important as global extreme ones. In Fig. 1 we 
illustrate the landmark model of (Perng et al. 2000). The 
data presented in this figure is taken from dataset (SonyAI-
BORobotSurfaceII) available at (Chen et al. 2015)—we 
took only the first 16 data points of each time series. The 
time series are shifted vertically in the figure for clarity. For 
each time series the landmark model selects the important 
points of each time series according to a geometric criterion 
as mentioned above (we took four points from each time 
series—shown in the figure as red bold dots). The main point 
to mention here is that in the landmark model the important 
points of each time series are selected independently of the 
selection of important points of the other time series in the 
dataset, as we can see from the figure. This, as we will see 
later, is one of the main differences between the landmark 
model and our method, which selects the important points 
on a dataset-level.

Landmark methods offer a low-dimension representa-
tion that is usually invariant to some transformations such 
as time-warping, shifting, uniform amplitude scaling, 
non-uniform amplitude scaling, and uniform time scaling 
(Wang and Megalooikonomou 2008). The main drawback 
of the landmark methods, in our opinion, is that the choice 
of important points is subjective and generic as it applies 
the same criteria to all the data without taking into account 
that what is considered an important landmark point for a 
certain dataset is not necessarily important for another. An 
extreme point, for instance, may be considered a landmark 
point because it reflects a change in time series behavior 
for a certain dataset, whereas it may simply be the result of 
noise for another dataset.

Fig. 1  The landmark model of 
four time series indicating-in 
bold red dots—the landmark 
points of each time series
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The second category of representation methods is based 
on data transformations. These methods apply the GEMINI 
algorithm which we presented in the previous section.

Several representation methods have been proposed in 
the literature. Examples of the most common ones include 
Discrete Fourier Transform (DFT) (Agrawal et al. 1993) and 
(Agrawal et al. 1995), Discrete Wavelet Transform (DWT) 
(Chan and Fu 1999), Singular Value Decomposition (SVD) 
(Korn et al. 1997), Adaptive Piecewise Constant Approxima-
tion (APCA) (Keogh et al. 2002), Piecewise Linear Approxi-
mation (PLA) (Morinaka et al. 2001), and Chebyshev Polyno-
mials (CP) (Cai and Ng 2004).

In the following we present a description of two dimension-
ality reduction techniques which are related to the experimen-
tal section of this paper:

(a) The piecewise aggregate approximation (PAA) PAA 
(Keogh et al. 2000) (Yi and Faloutsos 2000) divides a 
time series S of n-dimensions into equal-sized segments 
and maps each one to a point of a lower N-dimensional 
space, where each point in the reduced space is the 
mean value of the data points falling within that seg-
ment. The similarity measure given in the following 
equation: 

is defined on the N-dimensional space. This similarity 
measure is a lower bound of the Euclidean distance 
defined on the original n-dimensional space.

It is worth mentioning that the authors of PAA use a com-
pression ratio of 1:4 (i.e. every four points in the origi-
nal time series are represented by one point in the 
reduced space) when applying PAA. This remark is 
related to the experimental part of our paper.

(b) The symbolic aggregate approximation (SAX) SAX 
(Lin et al. 2003) is one of the most powerful symbolic 
representation methods of time series. The main advan-
tage of SAX is that the similarity measure it applies, 
called MINDIST, uses statistical lookup tables, which 
makes it easy to compute. SAX is applied as follows:

(1) The time series are normalized.
(2) The dimensionality of the time series is reduced 

using PAA.
(3) The PAA representation of the time series is dis-

cretized.

(2)dN(S, T) =

√

n

N

√

√

√

√

N
∑

i=1

(

s̄i − t̄i
)2
,

4  Time series dimensionality reduction 
by optimized selection of timestamps

4.1  Motivation and principle

The main drawback of traditional time series representa-
tion methods that we mentioned in the previous section 
is that the resulting lower-dimensional representation 
of the time series may have a strong smoothing effect 
that important local information can be lost. We give 
the following example to illustrate this point: given the 
four time series S1 = [+ 1,− 4,+ 11, 0,+ 3,− 9, + 4, 0], 
S2 = [− 1,+ 10,− 5,+ 4,− 5, + 5,− 3,+ 1], S3 = [+ 2, − 1,

+ 3, 0,− 5,− 4,− 2,− 1],  and S4 = [− 8,+ 10,+ 17,− 15,

− 18,+ 9,+ 4,− 7]. Let us use PAA (with a compression 
ratio of 1:4), which we introduced in the previous section, to 
reduce the dimensionality of these time series. When com-
paring S1 to S2 we see that their PAA representation is the 
same, which is PAA = [+ 2,− 0.5] (Fig. 2a), although, as we 
can see, S1 and S2 are not similar. This is also the case when 
comparing S3 to S4 (Fig. 2b), which have the same PAA rep-
resentation: [+ 1,− 3] although their shapes are very differ-
ent. This problem may also appear with other time series 
representation methods.

Our new approach of time series representation reme-
dies the drawbacks appearing in the landmark-based meth-
ods and data transformation-based methods. As in the case 
with landmark-based methods, our new method also keeps 
only the important points that we project onto a low-dimen-
sion space, but there are two main differences between our 
method and landmark-based methods:

1. The choice of important points in our method is objec-
tive and is not based on a priori knowledge of the data.

2. The choice of important points is not based on individ-
ual time series, i.e. it does not select important points for 
each time series individually, but it selects the important 
points on a dataset level. In other words, we select the 
indices of important timestamps for the whole dataset 
and we reduce the dimensionality by keeping, for each 
time series, the data points of that time series that corre-
spond to those timestamps. This dataset-based selection 
strategy of important timestamps is one of the two main 
features of our method and it has several advantages:

– Since each time series in the dataset will be projected 
on the low-dimension space by keeping the points 
of that time series that correspond to the indices of 
the important timestamps of the dataset, and given 
that the distance defined on the original space is the 
Euclidean distance, one can easily prove that the dis-
tance defined on the low-dimension space is a lower 
bound of the original distance because it is simply 
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a sub-sum of the original distance. This important 
condition is not maintained in traditional landmark 
methods.

– Selecting the important timestamps on a dataset level 
will have a positive smoothing effect, as this will 
eliminate noise. This smoothing effect is different 
from the one we discussed earlier in this section as it 
will still keep the general pattern of the time series.

– This choice is in fact an intuitive one. Time series 
datasets record how a certain observation is meas-
ured at different timestamps, where each time series 
records how a phenomenon is observed on a specific 
entity. For example, in gene expression data each 
time series in the dataset may express how a specific 
process progresses over time for a certain organism 
or individual, so the timestamp represents an event, 

Fig. 2  PAA representation
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and the observer is interested in examining the value 
of each time series in the dataset at a certain “impor-
tant” event.

– Whereas other dimensionality reduction techniques 
apply standard compressions ratios (1:4, 1:6, etc.) 
our method applies a fully customized dimensional-
ity reduction defined by the number of kept points 
determined by the user. As a matter of fact, and 
although we use certain compression ratios in the 
experimental section of this work, we only do this 
to compare the performance of our method to that 
of other methods. But the concept of a “compres-
sion ratio” does not make sense in our method as 
it is based on the number of timestamps which is 
independent of the original dimensionality of the raw 
data.

The second main feature of our method is that the impor-
tant timestamps are selected through an optimization pro-
cess. But before we introduce our method, we first start by 
giving a brief introduction to optimization.

Optimization is the process of finding the best solution 
to a problem under certain constraints. More formally, opti-
mization can be defined as follow; given a function f  of nbp 
parameters:

f ∶ U ⊆ ℝ nbp
→ ℝ which we call the fitness function, 

find the solution ���⃗X∗ =

[

x∗
1
, x∗

2
,… , x∗

nbp

]

 which satisfies 

f
(

���⃗X∗

)

⩽ f
(

X⃗
)

∀X⃗ ∈ U.

Optimization algorithms can be classified in several ways, 
one of which is whether they are single solution-based algo-
rithms; these use one solution and modify it to get the best 
solution. The other category is population-based algorithms; 
these use several solutions which exchange information to 
find the best solution.

Optimization problems can be handled using determin-
istic algorithms or probabilistic ones. Metaheuristics are 
probabilistic optimization algorithms applicable to a large 
variety of optimization problems. Metaheuristics are usually 
applied when the search space is very large, or when the 
number of parameters of the optimization problem is very 
high, or when the relationship between the fitness function 
and the parameters is not clear. Many of these metaheuristics 
are inspired by natural processes, natural phenomena, or by 
the collective intelligence of natural agents, hence the term 
nature-inspired or bio-inspired optimization algorithms.

Nature-inspired optimization can be classified into two 
main families; the first is evolutionary algorithms (EA). 
This family is probably the largest family of nature-inspired 
algorithms. EA are population-based algorithms that use 
the mechanisms of Darwinian evolution such as selection, 
crossover and mutation. Of this family we mention: genetic 

algorithms (GA), genetic programming (GP), evolution 
strategies (ES), and differential evolution (DE). The other 
family is swarm intelligence (SI). This family uses algo-
rithms which simulate the behavior of an intelligent biologi-
cal system. Of this family we mention: particle swarm intel-
ligence (PSO), ant colony optimization (ACO), and artificial 
bee colony (ABC). Figure 3 shows the main nature-inspired 
optimization algorithms.

In the following we present a brief description of the opti-
mization algorithms we apply in this paper.

4.2  Genetic algorithm (GA)

GA is one of the most prominent global optimization algo-
rithms. Classic GA starts by randomly generating a popula-
tion of chromosomes that represent possible solutions to the 
problem at hand. Each chromosome is a vector whose length 
is equal to the number of parameters, denoted by nbp. The 
fitness function of each chromosome is evaluated in order 
to determine the chromosomes that are fit enough to survive 
and possibly mate. In the selection step a percentage sRate 
of chromosomes is selected for mating. Crossover is the next 
step in which the offspring of two parents are produced to 
enrich the population with fitter chromosomes. Mutation, 
which is a random alteration of a certain percentage mRate 
of chromosomes, enables GA to explore the search space. 
In the next generation the fitness function of the offspring 
is calculated and the above steps repeat for a number of 
generations nGen.

Bio-inspired Optimization

Swarm IntelligenceEvolutionary Algorithms

Genetic Algorithms

Differential Evolution

Genetic Programming

Evolution Strategies

Particle Swarm Optimization

Artificial Ant Colony

Artificial Bee Colony

Fig. 3  The two main families of natura-inspired optimzation algo-
rithms
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4.3  Differential evolution (DE)

DE is one of the most powerful evolutionary optimization 
algorithms. DE starts with a population of popSize vectors 
each of which is of nbp dimensions. Next, for each individual 
T⃗i (called the target vector) of the population three mutually 
distinct individuals V⃗r1, V⃗r2, V⃗r3 and different from T⃗i are chosen 
randomly from the population. The donor vector ���⃗D  is formed 
as a weighted difference of two of V⃗r1, V⃗r2, V⃗r3 added to the 
third, i.e. ���⃗D = V⃗r1 + F

(

V⃗r2 − V⃗r3

)

. F is called the mutation 

factor. The trial vector ��⃗R is formed from elements of the target 
vector T⃗i and elements of the donor vector ���⃗D  according to 
different schemes. In this paper we choose the crossover 
scheme presented in (Feoktistov 2006). In this scheme an inte-
ger Rnd is chosen randomly among the dimensions 

[

1, nbp
]

. 
Then the trial vector ��⃗R  is formed as follows: 

 where i = 1,… , nbp. Cr is the crossover constant.
In the next step DE selects which of the trial vector and the 

target vector will survive in the next generation and which will 
die out. This selection is based on which of T⃗i and ��⃗R yields a 
better value of the fitness function. The algorithm iterates for 
a number of generations nGen.

4.4  Particle swarm optimization (PSO)

PSO is inspired by the social behavior of some animals, such 
as bird flocking or fish schooling (Haupt and Haupt 2004). In 
PSO individuals, called particles, follow three rules (a) Sepa-
ration: each particle avoids getting too close to its neighbors. 
(b) Alignment: each particle steers towards the general head-
ing of its neighbors, and (c) Cohesion: each particle moves 
towards the average position of its neighbors.

PSO starts by initializing a swarm of popSize par-
ticles at random positions X⃗0

i
 and velocities V⃗0

i
 where 

i ∈ {1,… , popSize}. In the next step the fitness function of 
each position, and for each iteration, is evaluated. The posi-
tions X⃗k+1

i
 and velocities V⃗k+1

i
are updated at time step (k + 1) 

according to the following formulae: 

 w h e r e  �G = rG.aG ,  �L = rL.aL , rG, rL → U(0, 1) , 
�, aL, aG ∈ ℝ. L⃗k

i
 is the best position found by particle i, G⃗k

is the global best position found by the whole swarm, � is 
called the inertia, aLis called the local acceleration, and aG

(3)

ti =

{

ti,r1 + F
(

ti,r2 − ti,r3
)

if
(

randi,j[0, 1[ < Cr

)

∨ (Rnd = i)

ti,j otherwise

(4)V⃗k+1
i

= 𝜔V⃗k
i
+ 𝜑G

(

G⃗k − X⃗k
i

)

+ 𝜑L

(

L⃗k
i
− X⃗k

i

)

(5)X⃗k+1
i

= X⃗k
i
+ V⃗k

i

is called the global acceleration. The algorithm continues 
for a number of iterations nGen.

4.5  Non-dominated sorting genetic algorithm II 
(NSGA-II)

Although single-objective optimization problems are 
widely-encountered, many practical optimization problems 
have to satisfy several criteria that are conflicting in many 
cases. This class of optimization problems is called multi-
objective optimization (MOO). An m-dimensional MOO 
problem can be formulated as follows: 

Where X⃗ ∈ ℝnbp.
The optimal solution for MOO is not a single solution as 

for single-objective optimization problems, but a set of solu-
tions defined as Pareto optimal solutions (El-Ghazali 2009), 
also called a non-dominated solution. A solution is Pareto 
optimal if it is not possible to improve a given objective 
without deteriorating at least another objective.

The non-dominated sorting genetic algorithm (NSGA) 
(Srinivas and Deb 1995) is one of the most popular algo-
rithms to solve MOO. In NSGA, all non-dominated indi-
viduals are classified into one category, with a dummy fit-
ness value proportional to the population size. This group is 
then removed and the remaining population is reclassified. 
The process is repeated until all the individuals in the entire 
population are classified. A stochastic remainder proportion-
ate selection is used (Maulik et al. 2011).

NSGA, however, has been criticized for its high compu-
tational cost, its lack of elitism, and for its need to specify 
the sharing parameter. For these reasons, NSGA-II was 
proposed in (Deb et al. 2002). NSGA-II can be summa-
rized as follows (Ma et al. 2007): a random parent popula-
tion is initialized. The population is sorted based on non-
domination in two fronts, the first front being completely a 
non-dominant set in the current population and the second 
being dominated by the individuals in the first front only. 
Each solution is assigned a rank equal to its non-domina-
tion level based on the front it belongs to. Individuals in the 
first front are assigned a fitness value of 1 and individuals 
in the second are assigned a fitness value of 2 and so on. 
The authors of NSGA-II introduce a new parameter called 
the crowding distance. This parameter measures how close 
every individual is to its neighbors. The crowding distance is 
calculated for each individual of the population. Parents are 
selected from the population by using a binary tournament 
selection based on the rank and the crowding distance. An 
individual is selected if its rank is less than that of the other 
or if its crowding distance is greater than that of the other. 
The selected population generates offspring from crossover 

min
{

f1

(

X⃗
)

, f2

(

X⃗
)

,… , fm

(

X⃗
)}
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and mutation operators. The population with the current 
population and current offspring is sorted again based on 
non-domination and only the best popSize individuals are 
selected, where popSize is the population size. The selec-
tion is based on the rank and on the crowding distance on 
the last front.

The process repeats to generate the subsequent 
generations.

4.6  Our proposed method

In the following we present a detailed description of our 
method as presented in Fig.  4. The algorithm designer 
selects the optimization algorithm to be used for the opti-
mization process and the corresponding control parameters 
of that optimizer. We tested three optimizers in the experi-
mental section of this paper.

However, other appropriate optimizers can be used.
The algorithm designer also selects the time series min-

ing task that will be used as a fitness function for the opti-
mization process. In other words, this fitness function will 
serve as a criterion for selecting the important timestamps 
of the dataset in question. This can also be handled as a 
multi-objective optimization problem where more than one 
criterion is used to select the important timestamps. The 
algorithm designer also selects the desired value for nbp
, which corresponds to the reduced dimensionality of the 
time series.

The optimization process, whose purpose is to find the 
important timestamps of that dataset, is applied to the train-
ing set of the dataset. The outcome of the optimization pro-
cess—the optimal timestamps—is then applied to the cor-
responding testing set for validation.

The optimization process starts by randomly generat-
ing a population of chromosomes whose size is popSize. 
Each chromosome is a vector of timestamps of that dataset. 
The length of the chromosome is nbp. Its components are 
integers of ascending order chosen randomly between 1 and 
the dimension of the time series dataset. The chromosome 
represents a potential solution of the optimization problem, 
i.e. the timestamps that yield the optimal value of the fit-
ness function. In order to calculate the fitness function (1NN 
classification error, k-means clustering quality) that corre-
sponds to that chromosome, each time series in the dataset 
is projected onto the timestamps defined by that chromo-
some. In other words, for each time series, we discard all the 
data points except those that correspond to the timestamps 
indicated by that chromosome. We apply the selected time 
series mining task on this reduced dataset to calculate the 
value of the fitness function that corresponds to that chromo-
some. We proceed in the same manner for each chromosome 

to calculate the fitness function that corresponds to each 
chromosome.

Depending on the optimizer we selected, we proceed by 
applying the optimization operations that correspond to that 
optimizer (mutation, selection, crossover, etc). By continu-
ing to do so we obtain fitter chromosomes, which correspond 
to timestamps that yield better results in the classification or 
clustering task. These timestamps are the important times-
tamps that establish the reduced space of the time series for 
that dataset.

Algorithm: Optimization Algorithm for Time Series Dimensionality    
Reduction

Input: The selected optimizer (GA,DE,PSO,
NSGA-II).

Input: The selected fitness function (1NN 
classification error , k-means 
clustering quality). 

Input: Control parameters (popSize, nGen, 
Nbp, etc).

Data: The training set of the dataset 
in question.

Output: The timestamps of that dataset   
which yield the optimal value of 
the fitness function on the   
training set. 

1: Randomly initialize popSize chromosomes 
of length nbp. Each chromosome is a 
vector whose components are integers, 
between 1 and the dimension of the 
time series, in ascending order. The 
chromosome corresponds to timestamps
of the dataset.  

2: For each chromosome, reduce the    
dimensionality of the dataset by keeping 
, from each time series, only the    
data points that correspond to the 
timestamps indicated by that chromosome.

3: Calculate the fitness function of each 
chromosome by performing the selected 
time series mining task (1NN 
classification error , k-means 
clustering quality) on the timestamps   
that correspond to each chromosome.

4: Apply the optimization operations 
related to the selected optimizer    
(ranking, selection, mutation,   
crossover, etc) on the chromosomes.

5: Repeat steps 2-4 for a number of   
generations nGen

Fig. 4  Nature-inspired optimization algorithm for reducing time 
series dimensionality
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The above steps are repeated for a number of generations 
nGen.

In Fig. 5 we show an example of the chromosomes of our 
algorithm where the dimension of the original time series is 
32, whereas the dimension of the reduced space, i.e. nbp is 8.

5  Experiments

We conducted three experiments on a large number of 
time series datasets available at UCR (Chen et al. 2015). 
This archive contains datasets of different sizes and dimen-
sions and it makes up between 90 and 100% of all publicly 

available, labeled time series data sets in the world and it 
represents the interest of the data mining/database commu-
nity, and not just one group (Ding et al. 2008).

The experiments were conducted on Intel Core 2 Duo 
CPU with 3G memory using MATLAB.

In our experiments we compared the performance of our 
method, which uses nature-inspired optimization, against 
that of traditional time series dimensionality reduction tech-
niques. We implemented our method in three variations that 
correspond to the three nature-inspired optimization algo-
rithms we presented in Sect. 4, i.e. GA, DE, and PSO in the 
case of single-objective optimization, and NSGA-II in the 
case of multi- objective optimization. As for the traditional 
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The original dataset – The dimension is 32 

Each chromosome is a vector of timestamps – the red bold dots in the 
figures. The timestamps are selected on a dataset- level. 

The reduced space - The dimension is 8. The original time series are projected on the timestamps 
corresponding to each chromosome. The fitness function is calculated on these data points.  

5 10 15 20 25 30
-1

-0.5

0

0.5

1

5 10 15 20 25 30-1

-0.5

0

0.5

1

5 10 15 20 25 30-1

-0.5

0

0.5

1

5 10 15 20 25 30-1

-0.5

0

0.5

1

5 10 15 20 25
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8
1

Fig. 5  Illustration of three chromsomes in our method. The dimension of the reduced spaces in this figure is 8, which is nbp in our algorithm
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dimensionality reduction techniques we compared our 
method to, we chose PAA and SAX that we presented in 
Sect. 4. The main reason why we chose these two dimen-
sionality reduction techniques is, in addition to their popu-
larity, that they both apply compression ratios explicitly.

We chose 30 datasets out of the datasets available in the 
archive. We meant to choose a variety of datasets to avoid 
“cherry-picking”. The length of the time series on which we 
conducted our experiments varied between 24 (ItalyPow-
erDemand) and 1639 (CinC_ECG_torso). The size of the 
training sets varied between 16 (DiatomSizeReduction) and 
390 (Adiac). The size of the testing sets varied between 20 
(BirdChicken), (BeetleFly) and 3840 (ChlorineConcentra-
tion). The number of classes varied between 2 (Gun-Point), 
(ECG200), (Coffee), (ECGFiveDays), (ItalyPowerDemand), 
(MoteStrain), (TwoLeadECG), (BeetleFly), (BirdChicken), 
(Strawberry), (Herring), (Earthquakes), (ShapeletSim), 
(Wine), and 37 (Adiac). So as we can see, we tested our 
method on a diverse range of datasets of different lengths 
and sizes to avoid getting biased results.

We also have to point out that the results of all our experi-
ments are the average of five runs (except in the case of 
using PAA and SAX in classification where the results will 
be the same for all runs so we ran them once only). The 
control parameters of the three nature-inspired optimiza-
tion algorithms we applied are shown in Table 1. In order 
to get unbiased results we chose the same values for the 
control parameters that the three algorithms GA, DE, and 
PSO share. These are popSize and nGen, and of course nbp.

Each experiment corresponds to a particular data mining 
task.

The protocol of the three experiments is the same and 
it consists of two stages: the training stage and the testing 
stage. In the training stage we perform an optimization pro-
cess on that dataset to obtain the timestamps which opti-
mize the data mining task in question on that dataset. In 
the testing stage we strip off of the testing datasets all the 
data except those that correspond to the optimal timestamps, 

which we obtained in the training stage, and we perform that 
data mining task on those reduced datasets.

Applying SAX requires different procedures. In the train-
ing stage we search for the alphabet size, among all other 
values of the alphabet size, that yields the minimum classifi-
cation error/maximum clustering quality. Then in the testing 
stage we apply SAX to the corresponding testing dataset 
using the alphabet size that gives the minimal classification 
error/maximal clustering quality in the training stage.

The first experiment is a classification task one, i.e. the 
objective function of the optimization problem is the 1NN 
classification error, which we aim to minimize. As indicated 
above, during the training stage we apply the optimization 
problem on each training dataset and return the timestamps, 
for that dataset, that minimize the classification error, and 
then in the testing stage we keep of each time series the data 
points that correspond to those timestamps, and we classify 
the resulting data to get the results we show in Table 2. The 
best result (the minimum classification error—the lower the 
better) for each dataset is shown in bold printing. A prelim-
inary comparison shows that nature-inspired optimization 
algorithms outperform PAA and SAX.

In detail, PSO seems to be the best optimizer for this 
problem as it gave the best result in 16 datasets out of the 30 
datasets tested. This outcome was actually surprising to us 
because the PSO version we used was a simple one, so may 
be other versions, particularly adapted to handling integer 
parameters, could give even better results.

The second best optimizer for this problem is GA, which 
gave the best result for 13 datasets.

The third best optimizer is DE [which is the optimizer we 
used in the (Muhammad Fuad 2016)]. It turns out this opti-
mizer is not as good as the two other optimizers for this task. 
DE gave the minimum classification error in ten datasets.

The performance of the two tested traditional dimension-
ality reduction techniques is much inferior to that of nature-
inspired algorithms. PAA gave the best result for one dataset 
only (Coffee) and it is in fact the same result obtained when 

Table 1  The control parameters 
of GA, DE, and PSO

cGen∗: current generation

Symbol Name Related Algorithm Value

popSize Population size GA, DE, PSO 16
nGen Number of generations GA, DE, PSO 100
nbp Number of parameters GA, DE, PSO varies
sRate Crossover rate GA 0.5
mRate Mutation rate GA 0.2
F Differentiation constant DE 0.9
Cr Crossover constant DE 0.5
aL Local acceleration PSO 2
aG Global acceleration PSO 2
� Inertia PSO � = (nGen − cGen∗)∕ (nGen)
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using the three nature-inspired optimization algorithms, 
whereas SAX gave the best result for two datasets; one 
(Earthquakes) is even the same result obtained when apply-
ing PSO, and the other is (CinC_ECG_torso).

An interesting phenomenon that we notice from the table 
is that the performance of the three tested nature-inspired 
algorithms is almost stable even for compression ratios 
higher than 1:4. In fact, their good performance seems 
independent of the compression ratio, which is not the 
case with traditional dimensionality reduction techniques 
whose performance decreases the higher the compression 
ratio increases. The explanation that our method, which 
uses nature-inspired algorithms, gives good results even at 
higher compression ratios is that our method does not per-
form any form of direct smoothing, unlike traditional dimen-
sionality reduction techniques which are based on direct 
smoothing. In other words, the optimization process in our 
method (whatever the optimizer is) either keeps a data point, 
which corresponds to an important timestamp, or discards 
it, whereas traditional dimensionality reduction techniques 
keep smoothened versions of all the points whether they are 
important or not. This actually emphasizes the notion of 
“important points” on which our method is based.

It is important to mention here that while processing 
time can be one of the main downsides of applying nature-
inspired optimization algorithms to data mining, our method 
is in fact quite fast for the three optimizers we used. In 
Table 3 we show the training time of the classification task 
for the experiments we presented in Table 2. The results 
shown are those of compression ratio 1:4 (the most time-
consuming compression ratio). As we can see from the table, 
the training time takes between few seconds to few minutes. 
In fact, for some datasets the training time of 100 genera-
tions was almost instantaneous and took less than a second 
(these are the datasets with running time 00 m 00 s in the 
table). As a matter of fact, the longest training time did not 
exceed 19 m 32 s (ChlorineConcentration with DE). We also 
have to take into account that our codes were not optimized 
for speed. Besides, we are using MATLAB, which is not 
very fast.

The second experiment was on clustering, i.e. the objec-
tive function of the optimization problem is the k-means 
clustering quality, which we aim to maximize (we however, 
process this as a minimization optimization problem, which 
is a convention in optimization). During the training stage, 
we apply the optimization problem on each training dataset 
to obtain the timestamps that optimize the clustering quality, 
and then in the testing stage we cluster the testing datasets 
based on the data that correspond to those timestamps. In 
Table 4 we present the results we obtained. The best result 
(the maximum clustering quality—the higher the better) for 
each dataset is shown in bold printing. As we can see from 
the table, the best clustering results are obtained by using 

DE as this optimization algorithm gives the best result in 15 
datasets. The second best optimization algorithm is PSO as 
it gives the best result in 12 datasets. GA comes third as it 
gives the best results in eight datasets. The performance of 
PAA and SAX is quite inferior to the three nature-inspired 
methods. In fact, PAA gives the best clustering quality in 
one dataset only (Earthquakes), which is the same result 
obtained by using the three nature-inspired optimization 
methods.

The third experiment is a multi-objective optimization 
one, i.e., we have two objective functions: classification 
error and clustering quality. The optimizer that we choose is 
NSGA-II that we presented in Sect. 4. Performance evalua-
tion in this case is not trivial because a method A can outper-
form another method, B, on one task whereas method B can 
outperform method A on the other task. In order to evaluate 
the performance of the three methods, NSGA-II, PAA and 

Table 3  The training time of the classification task for GA, DE, and 
PSO

Datasets GA DE PSO

Gun_Point 00 m 07 s 00 m 03 s 00 m 14 s
OSULeaf 04 m 03 s 04 m 12 s 03 m 50 s
Trace 01 m 00 s 01 m 02 s 00 m 59 s
FaceFour 00 m 06 s 00 m 05 s 00 m 05 s
ECG200 00 m 55 s 00 m 58 s 00 m 54 s
Adiac 13 m 36 s 13 m 28 s 13 m 14 s
FISH 03 m 07 s 03 m 04 s 02 m 57 s
Plane 01 m 01 s 01 m 03 s 00 m 59 s
Car 00 m 29 s 00 m 26 s 00 m 25 s
Beef 00 m 10 s 00 m 07 s 00 m 07 s
Coffee 00 m 00 s 00 m 00 s 00 m 06 s
CinC_ECG_torso 00 m 31 s 00 m 17 s 00 m 17 s
ChlorineConcentration 19 m 16 s 19 m 32 s 18 m 49 s
DiatomSizeReduction 00 m 04 s 00 m 03 s 00 m 02 s
ECGFiveDays 00 m 04 s 00 m 04 s 00 m 04 s
Haptics 03 m 11 s 03 m 12 s 03 m 03 s
ItalyPowerDemand 00 m 25 s 00 m 26 s 00 m 23 s
MALLAT 00 m 35 s 00 m 27 s 00 m 24 s
MoteStrain 00 m 03 s 00 m 03 s 00 m 03 s
TwoLeadECG 00 m 04 s 00 m 04 s 00 m 04 s
ArrowHead 00 m 10 s 00 m 09 s 00 m 11 s
BirdChicken 00 m 07 s 00 m 04 s 00 m 04 s
Herring 00 m 30 s 00 m 28 s 00 m 30 s
ProximalPhalanxTW 03 m 39 s 03 m 45 s 04 m 00 s
DistalPhalanxOutlineAgeGroup 01 m 42 s 01 m 44 s 01 m 52 s
Earthquakes 02 m 02 s 02 m 02 s 02 m 38 s
MiddlePhalanxOutlineAgeGroup 02 m 07 s 02 m 10 s 02 m 46 s
ShapeletSim 00 m 06 s 00 m 04 s 00 m 04 s
Wine 00 m 00 s 00 m 00 s 00 m 20 s
Strawberry 12 m 11 s 12 m 27 s 12 m 09 s
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SAX, we adopted a criterion which is similar to the one we 
applied in (Muhammad Fuad 2015) that we explain in the 
following: for each dataset, and for each task, we give the 
method (NSGA-II, PAA or SAX) that yields the best result 
for that task 2 points, then 1 point for the second best and 0 
for the last one. In case where two methods yield the same 
result we give them the same points and we skip the points 
for the following rank. So for the two tasks together each 
method can obtain a maximum of 4 points, then we take 
the sum of all the points each method obtained on all the 
datasets tested. The final results are shown in Table 5. As we 
can see from the results, for the two tasks together, k-means 
clustering and 1NN classification, the best performance is 
that of NSGA-II as this method obtains 118 points out of 

120 possible points. This is much better than the perfor-
mance of the second best method, PAA, which obtains 53 
points. SAX comes last with 18 points only.

6  Conclusion

In this work we presented a new method for time series 
dimensionality reduction through an optimization process. 
Unlike traditional time series representation methods based 
on landmark points or on data transformations, our method 
combines the advantages of these two categories by handling 
the dimensionality reduction process as an optimization 
problem whose outcome is the timestamps of all the time 

Table 5  The total score (Ps) of the 1-NN classification error (CE) and k-means clustering quality (CQ) of NSGA-II, PAA, and SAX quality of 
GA, DE, and PSO

Datasets NSGA-II PAA SAX

C.E C.Q Ps C.E C.Q Ps C.E C.Q Ps

C.E C.Q C.E C.Q C.E C.Q

Gun_Point 0.080 0.709 2 2 0.093 0.519 1 1 0.147 0.512 0 0
OSULeaf 0.455 0.417 2 1 0.488 0.418 0 2 0.475 0.341 1 0
Trace 0.130 0.569 2 2 0.250 0.569 1 2 0.370 0.474 0 0
FaceFour 0.170 0.659 2 2 0.205 0.544 1 1 0.227 0.527 0 0
ECG200 0.100 0.776 2 2 0.130 0.620 0 1 0.120 0.584 1 0
Adiac 0.358 0.475 2 2 0.404 0.415 1 0 0.867 0.419 0 1
FISH 0.200 0.509 2 2 0.217 0.337 1 0 0.263 0.419 0 1
Plane 0.010 0.833 2 2 0.038 0.675 0 1 0.029 0.547 1 0
Car 0.233 0.613 2 2 0.267 0.528 1 1 0.267 0.448 1 0
Beef 0.200 0.485 2 2 0.333 0.444 1 1 0.433 0.385 0 0
Coffee 0.000 0.964 2 2 0.000 0.857 2 1 0.286 0.482 0 0
CinC_ECG_torso 0.073 0.505 2 2 0.104 0.458 0 1 0.073 0.402 2 0
ChlorineConcentration 0.214 0.408 2 2 0.390 0.399 1 1 0.582 0.395 0 0
DiatomSizeReduction 0.049 0.961 2 2 0.065 0.821 1 1 0.082 0.482 0 0
ECGFiveDays 0.075 0.793 2 2 0.146 0.520 1 0 0.150 0.600 0 1
Haptics 0.581 0.363 2 2 0.643 0.325 1 1 0.643 0.292 1 0
ItalyPowerDemand 0.034 0.970 2 2 0.068 0.456 1 0 0.192 0.510 0 1
MALLAT 0.080 0.870 2 1 0.089 0.873 1 2 0.143 0.612 0 0
MoteStrain 0.144 0.854 2 2 0.190 0.805 1 1 0.212 0.707 0 0
TwoLeadECG 0.231 0.621 2 2 0.283 0.543 1 1 0.309 0.436 0 0
ArrowHead 0.189 0.613 2 2 0.206 0.537 1 1 0.246 0.437 0 0
BirdChicken 0.250 0.520 2 2 0.450 0.520 0 2 0.350 0.500 1 0
Herring 0.391 0.606 2 2 0.484 0.593 0 1 0.406 0.540 1 0
ProximalPhalanxTW 0.262 0.545 2 2 0.280 0.479 1 1 0.370 0.465 0 0
DistalPhalanxOutlineAgeGroup 0.205 0.742 2 2 0.235 0.653 1 1 0.267 0.632 0 0
Earthquakes 0.180 0.621 2 2 0.311 0.621 0 2 0.180 0.585 2 0
MiddlePhalanxOutlineAgeGroup 0.247 0.656 2 2 0.277 0.633 0 1 0.242 0.618 1 0
ShapeletSim 0.417 0.552 2 2 0.472 0.521 0 1 0.428 0.521 1 1
Wine 0.315 0.667 2 2 0.370 0.533 1 1 0.500 0.491 0 0
Strawberry 0.044 0.612 2 2 0.062 0.536 1 1 0.328 0.535 0 0

118 53 18



27Evolving Systems (2019) 10:13–28 

1 3

series in the dataset that yield the optimal performance of a 
time series mining task on that dataset. This approach has 
several advantages; the first is that the Euclidean distance 
defined on the low-dimension representation of the data is 
a lower bound of the Euclidean distance defined on the raw 
data, which allows the application of the GEMINI algorithm. 
The other advantage is that we can have a fully customized 
low-dimension representation of the data as the user can 
define beforehand the exact dimension of the reduced space 
instead of having this dimension determined indirectly by 
means of a compression ratio. Another advantage is the high 
performance of this method in performing time series tasks.

We implemented our method using three widely known 
nature-inspired optimizations algorithms: GA, DE, and PSO, 
in addition to NSGA-II in the case of multi-objective opti-
mization. However, other nature-inspired optimization algo-
rithms can also be used for this purpose. We showed how 
the optimization process itself can be performed quite fast.

We chose to apply our method to the two main time series 
mining tasks; classification and clustering, but our method 
can be applied to other tasks that require dimensionality 
reduction, whether on individual time series mining tasks, 
using single-objective optimization, or on several tasks 
simultaneously, using multi-objective optimization.

In the future, we hope to extend our method to other data 
types. Another direction of future research is to perform the 
optimization process in a more data-oriented manner.
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