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sets with different characteristics and under two different 
applications settings (transductive, inductive) convey a con-
sistent advantage of our proposed approach against the rest 
of the approaches and, most importantly, against passive 
supervised learning and reveal interesting aspects related 
mainly to the properties of the data sets, and secondarily to 
the application settings.

Keywords Supervised learning · Multi-label learning · 
Active learning · Pool-based strategies · Knowledge 
discovery

1 Introduction

Most of present-day applications involve operation in 
dynamically and drastically ever-changing environments. 
In such settings, systems that have the ability to adapt to the 
new conditions and evolve can have a decisive advantage 
over static and monolithic structures. More specifically, in 
the area of knowledge discovery and supervised learning, 
models that have the ability to continually take advantage 
of new data as they become available, can have a significant 
edge over conventional static approaches.

Active learning is a characteristic paradigm of such a 
dynamic approach, with the ability of constructing learn-
ing models that will be able to fully adapt to new data. As 
opposed to conventional supervised learning, it allows the 
model, in other words the classifier, to interactively ask for 
supervision from an oracle (most usually a human). The 
motivation is twofold: first, when dealing with learning tasks 
from domains with few labeled and abundant unlabeled data, 
this approach can effectively bypass the expensive task of 
labeling, since the classifier, based on some strategy, will 
only request manual annotation for a few characteristic 
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a learning model to evolve and adapt to new data unlike 
conventional supervised learning. Although active learn-
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be annotated. Extensive experiments on 13 multi-label data 
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instances. Second, this approach allows for classifiers that 
receive data in a stream-like fashion and dynamically choose 
which of this new data should be annotated to be used for 
their training (Zliobaite et al. 2011).

Furthermore, evolving predictive systems usually oper-
ate in domains where data is received in real time, continu-
ously and changing over time. In such settings, it is often 
unfeasible to store data and it is critical to constantly update 
the model with the new training data. Obtaining such data 
though, can often be costly. Active learning is a technology 
for making the best of an annotation budget in such cases.

There has been a substantial body of work regarding 
active learning for single-label classification in the litera-
ture (McCallumzy and Nigamy 1998; Tong and Koller 2001; 
Settles 2010). However, this is not the case for multi-label 
learning, where each object can be associated with multiple 
labels simultaneously (Tsoumakas et al. 2012).

In this work, we present the general framework for apply-
ing active learning to multi-label tasks, studying the main 
aspects of an active learning model and discussing the key 
issues that need to be taken into account in such a configu-
ration. We focus on the pool-based active learning scenario 
(Settles 2010), in which all unlabeled data are first evaluated 
and choices for which instances to be annotated are made 
subsequently by the model. Such an approach is suitable for 
a large number of real-world problems, such as text classi-
fication, image classification and retrieval, video classifica-
tion, speech recognition and cancer diagnosis (Settles 2010; 
Zhang et al. 2014; Ye et al. 2015; Huang et al. 2015). Given 
that in a stream-based scenario new data arrive most often 
in batches that can be essentially treated with pool-based 
approaches, it is reasonable to assume that our work is, with 
minor adjustments, applicable to stream-based active learn-
ing as well.

An earlier and significantly shorter version of this work, 
has been previously presented in Cherman et al. (2016). We 
here extend this line of work, by substantially extending our 
experiments: we consider thirteen data sets instead of two 
in the previous paper, we employ two additional algorithms 
and consider also transductive inference apart from inductive 
inference for experiments that use the remaining examples 
in the query pool for testing,

Furthermore, in this work we propose a novel aggrega-
tion function that evaluates examples to be picked for active 
labeling. This approach considers the scores and the rank-
ing of labels delivered by a given algorithm to assess if an 
example is to be picked for active labeling. The motivation 
behind this approach, is to try identifying the certainty of 
the algorithm in differentiating positive and negative labels 
for a given example. Our results show a consistent advantage 
of our proposed method with respect to passive supervised 
learning and to the rest of the methods as well.

To summarize, the contributions of this work are as 
follows:

– we present the key issues that have to be considered when 
applying active learning on multi-label data and we thor-
oughly describe the existing approaches regarding these 
issues in the literature (Sect. 2)

– we propose a novel aggregation method regarding the 
evaluation and subsequent choice of the unlabeled 
instances to be manually annotated (Sect. 2.4).

– we conduct extensive experiments on 13 multi-label data 
sets, with two multi-label algorithms and for both induc-
tive and transductive inference, studying the performance 
and behavior of the different methods and approaches on 
a variety of conditions and comparing them with conven-
tional passive supervised learning (Sect. 3).

2  Active learning for multi‑label data

In this section, we first briefly present the concepts of active 
learning and multi-label learning and then focus on the key 
issues that need to be considered when attempting to apply 
active learning on multi-label data.

2.1  Active learning

In conventional supervised learning, the learner is passively 
given a set of labeled data points to be trained on. Active 
learning on the other hand, permits the learner to interac-
tively request supervision, or labeling in other words, for the 
data points of its own choice.

There are mainly three active learning approaches (Settles 
2010; Aggarwal et al. 2014)

1. Membership query synthesis;
2. stream-based;
3. pool-based.

In the first case, the learner may query any unlabeled 
instance in the input space. That also includes queries gener-
ated by the learner de novo (synthesis). In the second setting, 
data points are made available continuously in a stream-like 
fashion, and therefore decisions about whether an unlabeled 
instance should or not be labeled are made individually or 
in small batches. The pool-based scenario assumes that a 
pool of unlabeled data is made available from the onset of 
training. All instances from this unlabeled pool are evaluated 
before selecting which of them are to be labeled.
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2.2  Multi‑label learning

Unlike single-label or multi-class learning, multi-label 
learning concerns supervised learning tasks in which there 
exist multiple target variables and a subset of them can be 
assigned to an instance simultaneously. Formally, let D be a 
training set composed of N examples Ei = (�i, Yi), i = 1…N. 
Each example Ei is associated with a feature vector 
�i = (xi1, xi2,… , xiM) described by M features Xj, j = 1…M, 
and a subset of labels Yi ⊆ L, where L = {y1, y2,… , yq} is 
the set of q labels. A multi-label learning task consists of 
generating a classifier H, which given an unlabeled instance 
E = (�, ?), is capable of accurately predicting its subset of 
labels Y, i.e., H(E) → Y .

In the general setting, a multi-label learning model can 
produce a ranking of labels, relevance scores or marginal 
probabilities per label, or even the full joint probability dis-
tribution of labels per instance.

Multi-label learning methods are divided into two broad 
classes, algorithm adaptation and problem transformation 
methods (Tsoumakas et al. 2009). Methods in the first cat-
egory extend specific single-label learning algorithms to 
deal with multi-label data directly. Methods in the second 
category transform a multi-label problem into one or more 
single-label problems in which any traditional single-label 
learning algorithms can be applied. Binary Relevance (BR), 
is one of the most widely employed problem transforma-
tion methods, that proceeds by decomposing the multi-label 
problem into q binary single-label problems, one for each 
label in L.

2.3  Manual annotation

A first key issue concerning an active learning system relates 
to the manual annotation of the instances selected by the 
learner. Most often, instances are annotated in batches, e.g. 
ground truth acquisition for the ImageCLEF 2011 photo 
annotation and concept-based retrieval tasks was achieved 
via crowd-sourcing in batches of 10 and 24 images (Nowak 
et al. 2011). An annotator can accomplish this task either 
instance-wise (for each instance the annotator determines 
the relevancy to each label) or label-wise (for each label the 
annotator determines relevancy to each instance).1

Let us consider a request for the annotation of n instances 
with q labels. Let co be the average cost of understanding 
an instance, cl be the average cost of understanding a label 
and clo be the average cost of deciding whether an instance 
should be annotated with a particular label or not. Set-
ting aside the cognitive and psychological aspects of the 

annotation process, such as our short-term memory capacity, 
a rough estimate of the total cost of instance-wise annotation 
will be given by:

Similarly, a rough estimate of the total cost of label-wise 
annotation will be:

Assuming that the cost of label-wise annotation is smaller 
than that of instance-wise annotation, we have:

In other words, the choice of the annotation approach, 
largely depends on the instance and label understanding 
costs.

2.4  Evaluation of unlabeled instances

The most fundamental part of an active learning algorithm 
concerns the way it evaluates the informativeness of unla-
beled instances. In a multi-label setting, the evaluation func-
tion (query) comprises two important parts:

1. a scoring function to evaluate instance-label pairs; and
2. an aggregating function to aggregate these scores.

Algorithm 1 shows the general procedure for a batch-size = 
t, i.e., t examples are annotated in each round. The evaluation 
function query calculates the evidence value of each exam-
ple Ei ⊂ Du and returns the t most informative instances, 
according to the evidence value used. In each round, these 
t examples will be labeled by the oracle and included in the 
set Dl of labeled examples.

n[co + q(cl + clo)] = nco + nqcl + nqclo

q[cl + n(co + clo)] = qcl + nqco + nqclo

qcl + nqco + nqclo < nco + nqcl + nqclo

qcl + nqco < nco + nqcl

n(q − 1)co < q(n − 1)cl

co <
q(n − 1)

n(q − 1)
cl ≈

qn

nq
cl = clkey

1 Instance-wise and label-wise annotation have been called global 
and local labeling respectively in Esuli and Sebastiani (2009).
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Algorithm 2 shows the query function of a multi-label 
active learning procedure. The scoring function consid-
ers instance-label pairs (Ei, yj) and evaluates the participa-
tion (ei,j) of label yj in instance Ei. It returns an evidence 
value ei,j for all instances Ei ⊂ Du and for each label 
yj ∈ L = {y1, y2,… , yq}. The aggregating function consid-
ers the q evidence values ei,1, ei,2,… , ei,q of each instance Ei 
given by the scoring function, and combines these values 
into a unique evidence value ei.

The following three families of measures have been pro-
posed in the literature for evaluating instance-label pairs 
(scoring):

1. Confidence-based score (Brinker 2006; Esuli and Sebas-
tiani 2009; Singh et al. 2010). The distance of the confi-
dence of the prediction from the average value is used. 
The nature of this value depends on the bias of learner. 
It could be a margin-based value (distance from the 
hyper-plane), a probability-based value (distance from 
0.5) or other. The value returned by this approach repre-
sents how far an example is from the boundary decision 
threshold between positive and negatives examples. We 
are interested in examples that minimize this score. In 
the following, we will denote this method as conf.

2. Ranking-based score (Singh et al. 2010). This strat-
egy works like a normalization approach for the val-
ues obtained from the confidence-based strategy. The 
confidences given by the classifier are used to rank the 
unlabeled examples for each label. We are interested in 
examples that maximize this score. This score will be 
represented by rank in the rest of the paper.

3. Disagreement-based score (Hung and Lin 2011; Yang 
et al. 2009). Unlike the other approaches, this strategy 
uses two base classifiers and measures the difference 
between their predictions. We are interested in maximiz-
ing this score. The intuitive idea is to query the exam-
ples that most disagree in their classifications and could 
be most informative. In the literature, there have been 
proposed three ways to combine confidence values from 
two base classifiers:

 I. The Maximum Margin Reduction (MMR) criterion 
uses a major classifier which outputs confidence val-
ues and an auxiliary classifier that outputs decisions 
(positive/negative). The auxiliary classifier is used to 
determine how conflicting the predictions are.

 II. The Hamming Loss Reduction (HLR) approach con-
siders a more strict disagreement using the decisions 
output by both classifiers to decide if there is disagree-
ment or agreement between each label prediction of an 
example.

 III. The soft Hamming Loss Reduction (SHLR) method 
tries to make a balance between MMR and HLR 
through a function that defines the influence of each 
approach in the final score.

In the experiments, we do not consider the disagreement-
based strategies, due to the inferior results that were 
obtained in previous work (Cherman et al. 2016). After hav-
ing obtained the instance-label scores, there are two main 
aggregation strategies for combining the instance-label 
scores to an overall instance score:

1. averaging of the instance-label scores across all labels 
(avg). Thus, given the q instance-label scores ei,j of 
instance Ei, the overall instance-label score of instance 
Ei is given by: 

2. considering the optimal (minimum or maximum) of the 
instance-label scores (min/max), given by: 

 Note that for HLR, only the average aggregation strat-
egy makes sense, as taking the maximum would lead to 
a value of 1 for almost all unlabeled instances and would 
not help in discriminating among them. We here pro-
pose a new aggregation strategy which we will denote 
as dev.

3. dev is based on the differences (deviations) between the 
values of evidence ei,j of each instance. The motivation 
behind this strategy is that an instance that contains 
small differences in the values between the evidences 
of the labels predicted as positive and the evidence of 
the labels predicted as negative indicate uncertainty in 
the prediction of the instance, which makes it a potential 
candidate for oracle active labeling. Equation 1 defines 
the dev strategy. 

ei = aggregatingavg

��
ei,j

�q

j=1

�
=

∑q

j=1
ei,j

q

ei = aggregatingmin∕max

({
ei,j

}q

j=1

)

= min∕max
({

ei,j
}q

j=1

)
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where the avgpos function returns the average value 
of the labels evidences classified as positive and the 
firstneg function returns the evidence value of the label 
closest to being classified as positive but is actually clas-
sified as negative.

Thus, the lower the value of the aggregatingdev function, 
the higher the instance’s priority to be selected for oracle 
active labeling. We should note that this strategy is appro-
priate when applied directly to the raw score produced from 
the given classifier (in the rest we denote this approach as 
score) and therefore is not applicable to confidence or rank-
ing-based scoring strategies that manipulate the raw scores. 
To illustrate how the methods proceed, Tables 1, 2, 3, 4, 5 

(1)
aggregatingdev

({
ei,j

}q

j=1

)
= ei = avgpos

({
ei,j

}q

j=1

)

−firstneg
({

ei,j
}q

j=1

)

and 6 depict some characteristic examples of each of the 
scoring and aggregation methods.

2.5  Experimental protocol

Besides the multi-label active learning strategies themselves, 
the way that they are evaluated is another important issue 
to consider. Some aspects to be considered are the size of 
the initial labeled pool, the batch’s size, the set of examples 
used as testing, the sampling strategy and also the evaluation 
approach. Next, these aspects are described with references 
to previous work in the literature.

Regarding the initial labeled pool, different papers built 
it in different ways. In Singh et al. (2010), the examples are 
chosen to have at least one example positive and one nega-
tive for each label. In Yang et al. (2009), 100–500 examples 
were selected randomly to compose the initial labeled pool. 
In Esuli and Sebastiani (2009), the first 100 chronologi-
cally examples were selected. In Brinker (2006), the author 
choose randomly ten examples to compose the initial labeled 

Table 1  Illustrative example of 
the evaluation method conf 

In this example, the threshold 0:5 is used to process the raw values of score toobtain the confidence values

Raw score Scoringconf

f (y1) f (y2) f (y3) ei,1 ei,2 ei,3

E1 0.70 0.30 0.31 0.20 0.20 0.19
E2 0.35 0.42 0.60 0.15 0.08 0.10
E3 0.45 0.51 0.80 ⇒ 0.05 0.01 0.30
E4 0.48 0.52 0.80 0.02 0.02 0.30
E5 0.20 0.30 0.49 0.30 0.20 0.01

Table 2  Illustrative example of 
the evaluation method score 

In this case, the actual values of score are used as the evaluation function

Raw score Scoringscore

f (y1) f (y2) f (y3) ei,1 ei,2 ei,3

E1 0.70 0.30 0.31 0.70 0.30 0.31
E2 0.35 0.42 0.60 0.35 0.42 0.60
E3 0.45 0.51 0.80 ⇒ 0.45 0.51 0.80
E4 0.48 0.52 0.80 0.48 0.52 0.80
E5 0.20 0.30 0.49 0.20 0.30 0.49

Table 3  Illustrative example of 
the evaluation method rank 

The threshold 0.5 and uniform distribution of labels (without imbalance) are considered

Raw score Scoringrank

f (y1) f (y2) f (y3) ei,1 ei,2 ei,3

E1 0.70 0.30 0.31 0.5 1.5 1.5
E2 0.35 0.42 0.60 2.5 0.5 0.5
E3 0.45 0.51 0.80 ⇒ 1.5 0.5 2.5
E4 0.48 0.52 0.80 0.5 1.5 2.5
E5 0.20 0.30 0.49 3.5 1.5 0.5
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pool. Gao et al. (2016) randomly sample 5% of the instances 
from the unlabeled pool as initial training labeled data.

The batch size defines how many examples are queried 
in each round of active learning. In Singh et al. (2010) and 
Brinker (2006), only one example was queried per round. 
Esuli and Sebastiani (2009) chose 50 examples in each 
round, while Yang et al. (2009) performed experiments 
with both 50 and 20 examples. Finally, Gao et al. (2016) 
perform five fold cross-validation to choose for each data set 
the batch size taking values between five and ten instances 
per round.

There are basically two different ways to define the 
test set. The first one is to consider a totally separated test 
set. This was followed by Esuli and Sebastiani (2009) and 
though not explicitly mentioned, it seems to have also been 
followed by Brinker (2006). The second way is to use the 
remaining examples in the unlabeled pool for testing. This 

approach was used by Singh et al. (2010), Yang et al. (2009) 
and Gao et al. (2016).

It is worth noting that the quality of the model assessed 
using this second approach holds for examples in the unla-
beled pool, and does not necessarily hold for new unlabeled 
data. Although there is a lack of discussion about this topic 
in the active learning literature, the decision of which evalu-
ation approach to use depends on the application’s nature. 
Most learning applications are interested in building a gen-
eral model from a training set of examples to predict future 
new examples, e.g., this kind of application uses inductive 
inference algorithms to make its predictions. An experimen-
tal protocol using a separate test set is the correct evaluation 
approach for the performance assessment in the inductive 
inference setting. The remaining evaluation approach is 
biased by the active learner and hence the evaluation on 
these remaining examples will not be representative of the 

Table 4  Illustrative example of 
the evaluation method conf with 
application of avg and MIN 
aggregation functions

Bold objects would be those selected for oracle labeling

Raw score Scoringconf Aggregating

f (y1) f (y2) f (y3) ei,1 ei,2 ei,3 AVG MIN

E1 0.70 0.30 0.31 0.20 0.20 0.19 0.20 0.19
E2 0.35 0.42 0.60 0.15 0.08 0.10 0.11 0.08
E3 0.45 0.51 0.80 ⇒ 0.05 0.01 0.30 ⇒ 0.12 0.01
E4 0.48 0.52 0.80 0.02 0.02 0.30 0.11 0.02
E5 0.20 0.30 0.49 0.30 0.20 0.01 0.17 0.01

Table 5  Illustrative example 
of the score evaluation method 
with application of avg, MIN 
and dev aggregation functions

For dev, only the evidence with the highest score value was considered positive. Bold objects would be 
those selected for oracle labeling

Raw score Scoringrank Aggregating

f (y1) f (y2) f (y3) ei,1 ei,2 ei,3 AVG MIN div

E1 0.70 0.30 0.31 0.70 0.30 0.31 0.44 0.30 0.39
E2 0.35 0.42 0.60 0.35 0.42 0.60 0.46 0.35 0.18
E3 0.45 0.51 0.80 ⇒ 0.45 0.51 0.80 ⇒ 0.59 0.45 0.29
E4 0.48 0.52 0.80 0.48 0.52 0.80 0.60 0.48 0.28
E5 0.20 0.30 0.49 0.20 0.30 0.49 0.33 0.20 0.19

Table 6  Illustrative example 
of the evaluation method rank 
with application of aggregation 
functions avg and MIN

Bold objects would be those selected for oracle labeling

Raw score Scoringrank  Aggregating

f (y1) f (y2) f (y3) ei,1 ei,2 ei,3 AVG MIN

E1 0.70 0.30 0.31 0.5 1.5 1.5 1.17 0.50
E2 0.35 0.42 0.60 2.5 0.5 0.5 1.17 0.50
E3 0.45 0.51 0.80 ⇒ 1.5 0.5 2.5 ⇒ 1.50 0.50
E4 0.48 0.52 0.80 0.5 1.5 2.5 1.50 0.50
E5 0.20 0.30 0.49 3.5 2.5 3.5 1.83 0.50
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actual distribution of new unseen examples, which is the 
case for inductive inference.

However, there are active learning applications that want to 
predict labels of an a priori known specific set of examples. 
For example, in a real world personal image annotation sce-
nario, the user would like to annotate some images of his/her 
collection and after few rounds of active learning, the system 
would annotate the remaining image in the collection (Singh 
et al. 2010). For such an application, the learning assessment 
should use the remaining examples in the query pool.

The learning curve is the most common evaluation 
approach used to assess active learning techniques. A learn-
ing curve plots the evaluation measure considered as a func-
tion of the number of new instance queries that are labeled 
and added to Dl. Thus, given the learning curves of two 
active learning algorithms, the algorithm which dominates 
the other for more or all the points along the learning curve 
is better than the other. Besides the learning curve, Singh 
et al. (2010), Yang et al. (2009) and Esuli and Sebastiani 
(2009) also used the value of the evaluation measure in the 
end of some specific number of rounds to assess the active 
learning techniques.

3  Experiments

We here describe the experiments performed, presenting the 
data sets, evaluation measures, experimental setup and the 
relevant results. The active learning algorithms described 
in Sect. 2.4, as well as the active learning evaluation frame-
work, were implemented under Mulan2 (Tsoumakas et al. 

2011), a Java package for multi-label learning based on 
Weka.3 Our implementation is publicly available at http://
www.labic.icmc.usp.br/pub/mcmonard/Implementations/
Multilabel/active-learning.zip.

3.1  Data sets

We employed 13 data sets from different domains. Specifi-
cally, bibtex, cal500, corel16k, corel5k, emotions, enron, 
medical, scene, tmc2007 and yeast were obtained from 
Mulan’s website,4 while llog and slashdot were obtained 
from Meka’s website.5 Finally, ohsumed is a widely used 
data set that is a subset of the MEDLINE database from 
years 1987–1991, with a labelset of the 23 Medical Subject 
Headings (MeSH) tags of cardiovascular diseases group.

In Table 7, we show the data sets statistics, with Instances 
denoting the number of total instances, Features the num-
ber of features and #Dist the number of distinct label sets. 
Similarly, |L| stands for the number of labels, Cardinality for 
the average number of labels of the examples in D, Density 
for the the average number of labels of the examples in D 
divided by |L| while Min, Med and Max refer to the mini-
mum, average and maximum label frequencies respectively. 
Finally, the first and third quartiles of the label distributions 
are represented by 1Q and 3Q.

3.2  Evaluation measures

For the evaluation of the multi-label classification models, 
we employed three measures in total, Micro-F, Macro-F and 

Table 7  Statistics of the data sets used throughout the experiments

Labels

Name Domain Instances Features #Dist |L| Cardinality Density Min 1Q Med 3Q Max

bibtex Text 7395 1836 2856 159 2.402 0.015 51 61 82 129 1042
cal500 Music 502 68 502 174 26.044 0.150 5 15 39 109 444
corel16k Image 13811 500 4937 161 2.867 0.018 25 67 115 264 3170
corel5k Image 5000 499 3175 374 3.522 0.009 1 6 15 39 1120
emotions Music 593 72 27 6 1.869 0.311 148 166 170 185 264
enron Text 1702 1001 753 53 5.31 0.064 1 13 26 107 913
llog Text 1460 1004 304 75 1.18 0.02 1 4 11 22 171
medical Text 978 1449 94 45 1.245 0.028 1 2 8 34 266
ohsumed Text 13929 1002 1147 23 1.663 0.007 135 386 712 1220 3952
scene Image 2407 294 15 6 1.074 0.179 364 404 429 432 533
slashdot Text 3782 1079 156 22 1.18 0.05 0 26 179 250 584
tmc2007 Text 28596 500 1341 22 2.158 0.098 403 548 1483 2914 16918
yeast Biology 2417 103 198 14 4.237 0.303 34 324 659 953 1816

2 http://mulan.sourceforge.net.

3 http://www.cs.waikato.ac.nz/ml/weka.
4 http://mulan.sourceforge.net/data sets.html.
5 http://meka.sourceforge.net/.

http://www.labic.icmc.usp.br/pub/mcmonard/Implementations/Multilabel/active-learning.zip
http://www.labic.icmc.usp.br/pub/mcmonard/Implementations/Multilabel/active-learning.zip
http://www.labic.icmc.usp.br/pub/mcmonard/Implementations/Multilabel/active-learning.zip
http://mulan.sourceforge.net
http://www.cs.waikato.ac.nz/ml/weka
http://mulan.sourceforge.net/data%20sets.html
http://meka.sourceforge.net/
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Ranking Loss. The first two measures essentially consist two 
different averaging schemes of the F-measure, which is used 
for single-label classification. Specifically, the F-measure is 
defined as

with TP denoting the true positives, FP the false positives and 
FN the false negatives. The F-measure combines both the 
Precision and Recall measures, being the harmonic mean of 
them and obtains values between zero and one, with F-meas-
ure = 1 signifying a perfect classification.

The Micro-F and Macro-F measures are defined as the 
micro- and macro- averages of the F-measure respectively:

We note that, by definition, Micro-F typically favors frequent 
labels while Macro-F is more influenced by rare labels.

Finally, Ranking Loss expresses the number of times that 
irrelevant labels are ranked higher than relevant labels and 
is defined as:

In the experiments, we consider the respective learning 
curves for each of the above measures and use the Final 
Value (FV) (Yang et al. 2009) and the Area Under the Learn-
ing Curve (AULC) (Settles and Craven 2008). Specifically, 
FV represents a measure’s value for the last iteration of the 
learning curve for each active learning method, while AULC 
is calculated by summing over all points of the learning 
curve, since we are using a discrete curve and all points are 
equally spaced in the x-axis (the number of iterations) for 
all learning curves.

3.3  Setup

As mentioned earlier, the multi-label active learning algo-
rithms are instantiated with two functions:

1. a scoring function to evaluate object-label pairs; and
2. an aggregating function to aggregate these scores.

(2)F-measure =
2TP

2TP + FP + FN

(3)Micro-F =
2 ×

∑�L�
l=1

tpl

2 ×
∑�L�

l=1
tpl +

∑�L�
l=1

fpl +
∑�L�

l=1
fnl

(4)Macro-F =
1

|L|

|L|∑

l=1

2 × tpl

2 × tpl + fpl + fnl

(5)

Ranking - Loss =
1

N

N∑

d=1

1

|Yd||Yd|

||||

{
(ya, yb) ∶ rd(ya) > rd(yb),

× (ya, yb) ∈ Yd × Yd

}||||

Three strategies were considered for the scoring function:

– Confidence-based score (conf)
– raw score (score)
– Ranking-based score (rank)

For the aggregation function, two strategies were considered:

– Average (avg)
– Deviation (dev)

The other strategies were not considered since they exhib-
ited inferior results in Cherman et al. (2016). In Table 8, we 
present the combinations of the scoring and aggregating 
functions employed throughout our experiments.

With respect to the multi-label learning algorithms 
used throughout the experiments, we employed both an 
inductive and a transductive algorithm. Specifically, the 
inductive algorithm, Binary Relevance with Linear SVMs 
as binary classifiers (BR SVMs), is used in experiments 
with the separated protocol. Regarding the remaining 
protocol, we chose to employ a multi-label classifica-
tion algorithm with transductive inference, LPBHN 
with RCut. Even if both algorithms could be used for 
the remaining protocol, a transductive algorithm is bet-
ter suited with the nature of that protocol, which calls for 
transductive inference.

Table 8  Different combinations 
of multi-label active learning 
strategies considered in this 
work

Scoring function Aggrega-
tion func-
tion

Conf Avg
Rank Avg
Score Avg
Score Dev

Table 9  Active learning settings used in experiments

Experimental protocol

Separated
BR SVMs

Remain-
ing
LPBHN 
+ RCut

Random ✓ ✓

Conf avg ✓ –
Rank avg ✓ –
Score avg ✓ ✓

Score dev ✓ ✓
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BR SVMs were implemented based on the LIBLINEAR 
library.6 This implementation is optimized to handle effi-
ciently and effectively sparse data, a crucial feature for active 
learning experiments due to the time cost involved in train-
ing a large number of models: we need to train one model 
for each label and for each iteration of the active learning 
procedure. In addition, the library can output normalized 
values of probability for the predictive confidence. In our 
experiments, we kept all parameters for the SVMs at default 
values, setting C = 1, e = 0.01 and employing the L2-loss 
SVC dual solver.

LPBHN was proposed by Rossi et al. (2013). The algo-
rithm is based on graphs and more specifically on the Gauss-
ian Fields and Harmonic Functions (GFHF) algorithm and 
is optimized for sparse data. Since the algorithm originally 
outputs a ranking of labels for each new instance to be 
predicted, we employed the RCut ranking strategy (Yang 
2001), in order to apply a threshold. This method proceeds 
by choosing the t first labels of the ranking, with t being the 
closest integer to the training data set’s cardinality (aver-
age number of labels of the examples). Table 9 presents the 
active learning settings used in our experiments and pre-
sented in this work.

All experiments were performed using tenfold cross val-
idation. In the transductive context, where the remaining 
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Fig. 1  Learning curves for BR-SVMS and the separated protocol on bibtex. The left plots are for N
i
ni = 1 while the ones in the right are for 

N
i
ni = 5

6 http://www.csie.ntu.edu.tw/~cjlin/liblinear/.

http://www.csie.ntu.edu.tw/%7ecjlin/liblinear/
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protocol is used, the independent test partitions of each of 
the ten folds are discarded, since the remaining examples of 
the query set are used to evaluate the predictive performance.

Finally, the initial labeled pool of examples was built by 
randomly choosing examples until having Nini × q positive 
single labels, i.e.. until Nini × q ≥

∑�Dl�
i=1

Yi, where Nini is user-
defined. This strategy allows for fairer comparison across the 
data sets. We used Nini = 1, 5 in order to evaluate the influ-
ence of different sizes of the initial labeled pool.

3.4  Results

In this section we present the results of our experiments. We 
show the learning curves and the results in terms of Micro-F 
and Macro-F (for the separated protocol) and Ranking Loss 
(for the remaining protocol) for all data sets, using the FV 
and the AULC measures. The random method represents 
the baseline (passive learning) strategy and the score dev 
method refers to our proposed approach, while the rest of 

Table 10  FV represents the performance value for the last iteration of the learning curve for each active learning method

The values in parentheses refer to the ranking of the method. Experimental protocol: separated

Nini = 1

Micro-F Macro-F

Random Conf avg Rank avg Score avg Score dev Random Conf avg Rank avg Score avg Score dev

#1 bibtex .15 (2.5) .10 (5.0) .15 (2.5) .13 (4.0) .18 (1.0) .02 (3.0) .02 (3.0) .02 (3.0) .02 (3.0) .02 (3.0)
#2 cal500 .34 (4.5) .34 (4.5) .36 (2.0) .36 (2.0) .36 (2.0) .20 (3.0) .19 (5.0) .21 (1.0) .20 (3.0) .20 (3.0)
#3 corel16k .03 (4.0) .02 (5.0) .04 (2.0) .04 (2.0) .04 (2.0) .01 (3.0) .01 (3.0) .01 (3.0) .01 (3.0) .01 (3.0)
#4 corel5k .04 (3.0) .03 (5.0) .04 (3.0) .05 (1.0) .04 (3.0) .31 (3.0) .31 (3.0) .31 (3.0) .31 (3.0) .31 (3.0)
#5 emotions .58 (4.0) .60 (3.0) .61 (2.0) .57 (5.0) .64 (1.0) .54 (4.0) .56 (3.0) .58 (2.0) .53 (5.0) .61 (1.0)
#6 enron .47 (4.0) .40 (5.0) .48 (3.0) .52 (1.0) .49 (2.0) .26 (3.0) .25 (4.5) .27 (1.5) .27 (1.5) .25 (4.5)
#7 llog .03 (2.0) .03 (2.0) .02 (4.0) .01 (5.0) .03 (2.0) .39 (3.0) .39 (3.0) .39 (3.0) .39 (3.0) .39 (3.0)
#8 medical .55 (5.0) .57 (4.0) .60 (2.5) .61 (1.0) .60 (2.5) .56 (5.0) .58 (2.5) .58 (2.5) .60 (1.0) .57 (4.0)
#9 ohsumed .12 (4.0) .11 (5.0) .15 (2.5) .24 (1.0) .15 (2.5) .04 (3.5) .03 (5.0) .05 (2.0) .08 (1.0) .04 (3.5)
#10 scene .55 (4.0) .43 (5.0) .58 (1.0) .57 (2.5) .57 (2.5) .54 (4.0) .39 (5.0) .58 (1.5) .57 (3.0) .58 (1.5)
#11 slashdot .09 (4.0) .23 (1.0) .12 (3.0) .06 (5.0) .16 (2.0) .18 (4.5) .21 (1.0) .19 (3.0) .18 (4.5) .20 (2.0)
#12 tmc2007 .51 (3.0) .47 (5.0) .50 (4.0) .56 (1.5) .56 (1.5) .19 (2.5) .13 (5.0) .18 (4.0) .31 (1.0) .19 (2.5)
#13 yeast .58 (3.0) .56 (5.0) .60 (1.0) .58 (3.0) .58 (3.0) .32 (3.0) .28 (5.0) .33 (2.0) .34 (1.0) .30 (4.0)
avg ranking 3.6 4.2 2.5 2.6 2.1 3.4 3.7 2.4 2.5 2.9
better/equal random – 38% 85% 69% 100% – 54% 92% 92% 85%

Nini = 5

Micro-F Macro-F

Random Conf avg Rank avg Score avg Score dev Random Conf avg Rank avg Score avg Score dev

#1 bibtex .19 (3.5) .20 (2.0) .19 (3.5) .18 (5.0) .21 (1.0) .03 (4.0) .04 (1.5) .03 (4.0) .03 (4.0) .04 (1.5)
#2 cal500 .34 (4.0) .33 (5.0) .35 (3.0) .36 (1.5) .36 (1.5) .19 (4.5) .19 (4.5) .20 (2.0) .20 (2.0) .20 (2.0)
#3 corel16k .06 (3.0) .05 (5.0) .06 (3.0) .07 (1.0) .06 (3.0) .01 (3.0) .01 (3.0) .01 (3.0) .01 (3.0) .01 (3.0)
#4 corel5k .08 (3.5) .08 (3.5) .08 (3.5) .09 (1.0) .08 (3.5) .32 (3.0) .32 (3.0) .32 (3.0) .32 (3.0) .32 (3.0)
#5 emotions .59 (4.0) .62 (2.0) .58 (5.0) .60 (3.0) .64 (1.0) .54 (5.0) .60 (2.0) .55 (4.0) .57 (3.0) .62 (1.0)
#6 enron .49 (4.0) .48 (5.0) .51 (2.5) .53 (1.0) .51 (2.5) .28 (3.0) .28 (3.0) .28 (3.0) .29 (1.0) .27 (5.0)
#7 llog .06 (3.5) .07 (2.0) .06 (3.5) .04 (5.0) .09 (1.0) .39 (3.5) .39 (3.5) .39 (3.5) .39 (3.5) .40 (1.0)
#8 medical .68 (5.0) .70 (3.0) .69 (4.0) .72 (1.5) .72 (1.5) .63 (4.0) .64 (2.0) .63 (4.0) .65 (1.0) .63 (4.0)
#9 ohsumed .19 (2.0) .15 (4.5) .15 (4.5) .23 (1.0) .18 (3.0) .06 (2.5) .05 (4.5) .05 (4.5) .08 (1.0) .06 (2.5)
#10 scene .57 (4.0) .49 (5.0) .60 (2.0) .61 (1.0) .58 (3.0) .56 (4.0) .47 (5.0) .61 (1.5) .61 (1.5) .59 (3.0)
#11 slashdot .19 (4.0) .26 (2.0) .23 (3.0) .12 (5.0) .28 (1.0) .22 (4.0) .23 (2.0) .23 (2.0) .20 (5.0) .23 (2.0)
#12 tmc2007 .54 (3.5) .53 (5.0) .56 (1.5) .56 (1.5) .54 (3.5) .22 (4.0) .19 (5.0) .24 (2.0) .28 (1.0) .23 (3.0)
#13 yeast .59 (4.0) .59 (4.0) .60 (1.5) .60 (1.5) .59 (4.0) .31 (4.5) .32 (3.0) .34 (1.5) .34 (1.5) .31 (4.5)
avg ranking 3.7 3.7 3.1 2.2 2.3 3.8 3.2 2.9 2.3 2.7
better/equal random – 54% 85% 77% 92% – 77% 92% 92% 92%
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the methods refer to the ones previously proposed in the 
literature.

3.4.1  Experiments with the separated test protocol: 
inductive inference

Figure 1 present the learning curves for the algorithms con-
sidered in this work using the bibtex data set. The learning 
curves for the rest of the data sets are presented in an on-line 
appendix.7

From the plots, we can easily observe that our proposed 
method score dev is consistently outperforming conventional 
supervised learning (random) for all four considered sce-
narios. The score avg method shows also a steady advantage 
compared to random in all scenarios, except for Nini = 1 and 
for the Micro-F measure, in which case it performs worse 
than all other methods. The other active learning methods 
show mixed results, not being able to exhibit a steady advan-
tage compared to the random method in any scenario.

Table 10 shows the results for all data sets and the sep-
arated protocol, in terms of Micro-f and Macro-F. As we 
can see, several of the active learning methods have FV 
values equal to or greater than those presented by the ran-
dom method. The conf avg method, however, is inferior to 
random for Nini = 1 for both evaluation measures (Micro-F 
/ Macro-F) and for Nini = 5 for Micro-F. The other active 
learning methods have average ranking values higher than 
the one for random in all cases.

An important aspect to be evaluated in an active learn-
ing method is its consistency in outperforming the random 
method, since, unlike the evaluation of standard learning 
algorithms, one does not have the data labeled beforehand, 
and the purpose of active learning is to obtain good labeled 

examples. Thus, it is not possible to predict the effective-
ness of various active learning methods beforehand in a way 
similar to the one followed for standard supervised learning 
algorithms. Thus, in an effort to measure the stability of the 
active learning method, the better or equal to random value 
is displayed in the last line of Table 10. This value refers 
to the percentage of data set where the active method was 
greater than or equal to the random method.

score dev presents the best stability values considering 
Micro-F as the evaluation measure. This method obtained 
results better than or equal to random for 100 and 92% of 
the data sets for Nini = 1 and Nini = 5, respectively. score 
dev, along with rank avg and conf avg, also presented the 
best stability value for Macro-F and Nini = 5, with 92% of 
cases better than or equal to random. In the scenario with 
Macro-F and Nini = 1, rank avg and score avg presented the 
best stability values with 92%, followed by the score dev 
method with 85%.

In summary, conf avg did not perform in a satisfying 
manner regarding stability for any scenario; The rank avg 
method showed the best stability value in 2 / 4 out of sce-
narios, the score avg method also had the best stability value 
in 2 / 4 out of scenarios and the score dev method, our pro-
posed method, exhibited the best result for 3 / 4 out of the 
cases, that is, presented the best stability ratio.

Figure 2 presents the average ranking plotted against the 
FV measure of each Friedman test with a Nemenyi post hoc 
test with a significance level of 95% to identify statistically 
significant differences between the methods (Demšar, 2006).

Although there are consistent differences between the 
active learning methods and the baseline random, no active 
method showed improvement with a statistically significant 
difference compared to the random method. The only differ-
ence observed is between score dev and conf avg for Nini = 1 
and Micro-F1, which again indicates the difficulty of conf 
avg in obtaining satisfying results.

Fig. 2  Friedman ranking with 
Nemenyi post-test for the BR 
SVMs and FV measure. Experi-
mental protocol: separated 

(a) (b)

(c) (d)

7 https://www.dropbox.com/s/cxyf27wzp9xzlxr/appendix.pdf?dl=0.

https://www.dropbox.com/s/cxyf27wzp9xzlxr/appendix.pdf?dl=0
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In Table 11, we present the results for AULC as the evalu-
ation method.

rank avg, score avg and score dev show better average 
rankings than random for all setups and evaluation measures, 
whereas conf avg has worse average ranking than random for 
Micro-F for both Nini parameter choices.

Regarding stability (equal or better than random), we 
observe a similar behavior to the one for the FV measure. 

For Nini = 1, the score dev method was the only one to be 
better or equal to random in all data sets, for both Micro-F 
and Macro-F. For the scenario with Nini = 5 and Micro-F, 
the score dev method showed the best stability (85%). The 
score avg method was higher for the scenario with Nini = 5 
and Macro-F, where it was better than or equal to the ran-
dom method in 92% of the data sets. The other three methods 
showed a stability of 85%.

Table 11  AULC values for each active learning method using the separated experimental protocol

The values in parentheses refer to the rankingposition of the method

Nini = 1

Micro-F Macro-F

Random Conf avg Rank avg Score avg Score dev Random Conf avg Rank avg Score avg Score dev

#1 bibtex .14 (2.5) .12 (4.5) .14 (2.5) .12 (4.5) .17 (1.0) .02 (3.0) .02 (3.0) .02 (3.0) .02 (3.0) .02 (3.0)
#2 cal500 .35 (5.0) .36 (3.0) .36 (3.0) .37 (1.0) .36 (3.0) .20 (4.5) .20 (4.5) .21 (2.0) .21 (2.0) .21 (2.0)
#3 corel16k .03 (2.5) .02 (5.0) .03 (2.5) .03 (2.5) .03 (2.5) .01 (3.0) .01 (3.0) .01 (3.0) .01 (3.0) .01 (3.0)
#4 corel5k .03 (4.0) .03 (4.0) .04 (1.5) .04 (1.5) .03 (4.0) .31 (3.0) .31 (3.0) .31 (3.0) .31 (3.0) .31 (3.0)
#5 emotions .54 (3.5) .54 (3.5) .57 (1.5) .52 (5.0) .57 (1.5) .49 (3.0) .47 (4.5) .52 (1.5) .47 (4.5) .52 (1.5)
#6 enron .43 (4.0) .32 (5.0) .45 (2.0) .49 (1.0) .44 (3.0) .25 (3.0) .23 (5.0) .25 (3.0) .26 (1.0) .25 (3.0)
#7 llog .03 (3.0) .04 (1.5) .02 (4.5) .02 (4.5) .04 (1.5) .39 (3.0) .39 (3.0) .39 (3.0) .39 (3.0) .39 (3.0)
#8 medical .47 (4.0) .45 (5.0) .51 (2.5) .53 (1.0) .51 (2.5) .54 (4.5) .54 (4.5) .56 (2.0) .57 (1.0) .55 (3.0)
#9 ohsumed .09 (4.0) .07 (5.0) .10 (3.0) .17 (1.0) .14 (2.0) .03 (4.0) .02 (5.0) .04 (2.5) .05 (1.0) .04 (2.5)
#10 scene .46 (3.5) .38 (5.0) .48 (2.0) .49 (1.0) .46 (3.5) .44 (3.5) .34 (5.0) .47 (1.0) .46 (2.0) .44 (3.5)
#11 slashdot .06 (4.0) .18 (1.0) .07 (3.0) .05 (5.0) .13 (2.0) .18 (4.0) .20 (1.0) .18 (4.0) .18 (4.0) .19 (2.0)
#12 tmc2007 .46 (3.0) .42 (5.0) .43 (4.0) .50 (1.5) .50 (1.5) .15 (2.5) .11 (5.0) .13 (4.0) .23 (1.0) .15 (2.5)
#13 yeast .56 (3.5) .53 (5.0) .58 (1.0) .56 (3.5) .57 (2.0) .29 (3.5) .26 (5.0) .30 (2.0) .31 (1.0) .29 (3.5)
Avg ranking 3.4 4.0 2.6 2.3 2.7 3.3 3.2 3.0 2.5 3.0
Better/equal random – 38% 85% 69% 100% – 54% 92% 92% 100%

Nini = 5

Micro-F Macro-F

Random Conf avg Rank avg Score avg Score dev Random Conf avg Rank avg Score avg Score dev

#1 bibtex .19 (3.0) .19 (3.0) .19 (3.0) .18 (5.0) .20 (1.0) .03 (3.5) .04 (1.0) .03 (3.5) .03 (3.5) .03 (3.5)
#2 cal500 .34 (4.5) .34 (4.5) .35 (2.5) .36 (1.0) .35 (2.5) .19 (4.5) .19 (4.5) .20 (2.0) .20 (2.0) .20 (2.0)
#3 corel16k .06 (2.5) .05 (5.0) .06 (2.5) .06 (2.5) .06 (2.5) .01 (3.0) .01 (3.0) .01 (3.0) .01 (3.0) .01 (3.0)
#4 corel5k .08 (3.0) .08 (3.0) .08 (3.0) .08 (3.0) .08 (3.0) .32 (3.0) .32 (3.0) .32 (3.0) .32 (3.0) .32 (3.0)
#5 emotions .56 (3.5) .57 (1.5) .55 (5.0) .56 (3.5) .57 (1.5) .52 (3.5) .54 (2.0) .51 (5.0) .52 (3.5) .55 (1.0)
#6 enron .48 (4.5) .48 (4.5) .49 (2.5) .51 (1.0) .49 (2.5) .27 (3.5) .27 (3.5) .27 (3.5) .28 (1.0) .27 (3.5)
#7 llog .06 (3.0) .06 (3.0) .06 (3.0) .05 (5.0) .07 (1.0) .39 (3.0) .39 (3.0) .39 (3.0) .39 (3.0) .39 (3.0)
#8 medical .67 (4.5) .68 (2.5) .67 (4.5) .69 (1.0) .68 (2.5) .62 (3.5) .62 (3.5) .62 (3.5) .63 (1.0) .62 (3.5)
#9 ohsumed .15 (3.0) .12 (5.0) .13 (4.0) .18 (1.0) .16 (2.0) .05 (3.5) .05 (3.5) .05 (3.5) .06 (1.0) .05 (3.5)
#10 scene .53 (3.0) .46 (5.0) .55 (1.5) .55 (1.5) .52 (4.0) .52 (3.0) .45 (5.0) .55 (1.0) .53 (2.0) .51 (4.0)
#11 slashdot .15 (4.0) .22 (1.5) .18 (3.0) .11 (5.0) .22 (1.5) .21 (3.5) .22 (1.5) .21 (3.5) .20 (5.0) .22 (1.5)
#12 tmc2007 .52 (2.0) .51 (4.0) .51 (4.0) .53 (1.0) .51 (4.0) .20 (2.0) .17 (5.0) .19 (3.5) .22 (1.0) .19 (3.5)
#13 yeast .58 (4.5) .59 (2.0) .59 (2.0) .59 (2.0) .58 (4.5) .31 (3.5) .31 (3.5) .32 (1.0) .31 (3.5) .31 (3.5)
Avg ranking 3.6 4.0 2.5 2.5 2.3 3.5 3.4 3.1 2.5 2.5
Better/equal random – 69% 77% 77% 85% – 85% 85% 92% 85%
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Figure 3 shows the average ranking plotted for the AULC 
measure of each method. Again, no active method showed 
improvement with statistically significant difference in rela-
tion to random. Significant differences considering AULC as 
evaluation measure were found only between score dev and 
conf avg in terms of Micro-F for Nini = 1 / and between score 
avg and conf avg in terms of Macro-F again for Nini = 1.

3.4.2  Experiments with the remaining test protocol: 
transductive inference

The experiments performed using the remaining protocol 
simulate applications that are intended to annotate examples 

in the context of transductive inference, i.e. applications in 
which the test data is observed a priori. Inductive inference 
methods, such as BR-SVMs method, could also be used in 
this context. However, inductive inference is intended to 
solve a more general problem than what is necessary in that 
case. Also, we should note that there are cases in which 
transductive inference may be more effective, such as a sce-
nario with extremely few labeled examples, with all unla-
beled data available beforehand.8

Fig. 3  Friedman ranking with 
Nemenyi as post-test for the 
BR-SVMs and the AULC meas-
ure. The experimental protocol 
separated is followed
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Fig. 4  Learning algorithm: LPBHN-Rcut. Experimental protocol: separated. Data set: corel5k 

8 https://en.wikipedia.org/wiki/Transduction_(machine_learning).

https://en.wikipedia.org/wiki/Transduction%5f%28machine%5flearning)
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In this round of experiments we employed the LPBHN 
algorithm, a transductive inference multi-label algorithm 
that outputs ranking of labels, additionally using the RCut 
method to apply a threshold on the ranking and obtain a hard 
assignment of labels for each test instance.

The Ranking Loss measure was used to evaluate the 
quality of predictions since LPBHN outputs rankings. 

As mentioned earlier in the paper, we also used the RCut 
method in this experimental setup, in order to obtain a hard 
assignment of labels from the rankings. We remind here that 
RCut selects the t first labels from the ranking, with t being 
the nearest integer to the training set cardinality. Since in 
the active learning setting the number of labeled examples 

Table 12  Results for the FV 
measure in the last iteration 
of the learning curve for each 
active learning method with the 
remaining protocol

Values in parentheses refer to the method’s ranking position

Ranking-loss

Nini = 1 Nini = 5

Random Score avg Score dev Random Score avg Score dev

bibtex 0.10 (2.0) 0.16 (3.0) 0.09 (1.0) 0.02 (1.5) 0.02 (1.5) 0.03 (3.0)
cal500 0.17 (3.0) 0.15 (1.5) 0.15 (1.5) 0.17 (3.0) 0.16 (1.5) 0.16 (1.5)
corel16k 0.14 (2.5) 0.14 (2.5) 0.13 (1.0) 0.10 (2.5) 0.10 (2.5) 0.09 (1.0)
corel5k 0.12 (2.0) 0.13 (3.0) 0.11 (1.0) 0.07 (1.5) 0.08 (3.0) 0.07 (1.5)
emotions 0.06 (2.5) 0.06 (2.5) 0.03 (1.0) 0.06 (2.5) 0.06 (2.5) 0.01 (1.0)
enron 0.15 (3.0) 0.13 (1.5) 0.13 (1.5) 0.14 (3.0) 0.12 (1.0) 0.13 (2.0)
llog 0.09 (2.0) 0.09 (2.0) 0.09 (2.0) 0.06 (3.0) 0.05 (1.5) 0.05 (1.5)
medical 0.05 (2.0) 0.06 (3.0) 0.04 (1.0) 0.04 (2.0) 0.04 (2.0) 0.04 (2.0)
ohsumed 0.15 (3.0) 0.12 (1.5) 0.12 (1.5) 0.13 (3.0) 0.10 (1.5) 0.10 (1.5)
scene 0.03 (1.0) 0.16 (2.5) 0.16 (2.5) 0.02 (2.0) 0.03 (3.0) 0.01 (1.0)
slashdot 0.05 (2.0) 0.09 (3.0) 0.04 (1.0) 0.04 (1.5) 0.05 (3.0) 0.04 (1.5)
tmc2007 0.14 (3.0) 0.11 (1.5) 0.11 (1.5) 0.14 (3.0) 0.12 (1.5) 0.12 (1.5)
yeast 0.06 (1.0) 0.07 (2.5) 0.07 (2.5) 0.07 (2.0) 0.06 (1.0) 0.08 (3.0)
avg ranking 2.2 2.3 1.5 2.3 2.0 1.7
better/equal random – 54% 85% – 77% 85%

Table 13  Results for the AULC 
measure in the last iteration 
of the learning curve for each 
active learning method with the 
remaining protocol

Values in parentheses refer to the method’s ranking position

Ranking-loss

Nini = 1 Nini = 5

Random Score avg Score dev Random Score avg Score dev

bibtex 1.73 (2.0) 1.95 (3.0) 1.70 (1.0) 0.28 (1.5) 0.28 (1.5) 0.29 (3.0)
cal500 1.90 (3.0) 1.81 (2.0) 1.80 (1.0) 1.75 (3.0) 1.69 (1.5) 1.69 (1.5)
corel16k 1.86 (2.0) 1.89 (3.0) 1.78 (1.0) 1.04 (3.0) 1.03 (2.0) 0.98 (1.0)
corel5k 1.40 (3.0) 1.37 (2.0) 1.31 (1.0) 0.76 (2.0) 0.79 (3.0) 0.73 (1.0)
emotions 1.05 (1.0) 1.32 (3.0) 1.28 (2.0) 0.72 (2.0) 0.83 (3.0) 0.39 (1.0)
enron 1.59 (2.5) 1.59 (2.5) 1.51 (1.0) 1.44 (3.0) 1.30 (1.0) 1.32 (2.0)
llog 1.18 (3.0) 1.17 (2.0) 1.09 (1.0) 0.64 (3.0) 0.61 (2.0) 0.59 (1.0)
medical 0.98 (3.0) 0.96 (2.0) 0.87 (1.0) 0.48 (3.0) 0.44 (2.0) 0.42 (1.0)
ohsumed 2.11 (3.0) 1.77 (2.0) 1.75 (1.0) 1.49 (3.0) 1.31 (1.0) 1.32 (2.0)
scene 0.87 (1.0) 1.94 (3.0) 1.92 (2.0) 0.39 (2.0) 0.40 (3.0) 0.28 (1.0)
slashdot 0.86 (2.0) 1.20 (3.0) 0.59 (1.0) 0.48 (2.0) 0.50 (3.0) 0.46 (1.0)
tmc2007 1.67 (3.0) 1.41 (2.0) 1.39 (1.0) 1.52 (3.0) 1.31 (2.0) 1.29 (1.0)
yeast 0.84 (3.0) 0.82 (2.0) 0.72 (1.0) 0.80 (1.0) 0.83 (2.0) 0.89 (3.0)
avg ranking 2.4 2.4 1.2 2.4 2.1 1.5
better/equal random – 62% 85% – 62% 85%
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is reduced, we expect that the estimation of the cardinality 
using the training set could be less precise in our case.

Figure 4 presents the learning curve for the corel5k data 
set. The figures referring to the learning curves of other 
data sets are, similar to the plots for the separated protocol, 
presented in an on-line appendix.9 from the plots we can 
observe that score dev is consistently superior to both ran-
dom and score avg for the two considered scenarios. score 
avg on the other hand, fails to consistently outperform the 
passive method, especially for Nini = 5.

Tables 12 and 13 presents results for the remaining pro-
tocol for all data sets concerning learning evaluation meas-
ures FV and AULC,10 respectively. score dev shows the best 
average ranking and the best stability (better or equal than 
random) for all scenarios (85%). furthermore, score avg has 
lower stability for the remaining protocol than the one exhib-
ited for the separated protocol.

Finally, Fig. 5 depicts the average ranking of each method 
together with the performed statistical significance test. 
Again, score dev shows the best values of average ranking 
for all scenarios, with a statistically significant difference to 
random when considering AULC as the evaluation measure. 
Additionally, we can observe a statistically significant dif-
ference between score dev and score avg when considering 
AULC for Nini = 1.

4  Conclusions

Dealing with learning tasks in constantly changing environ-
ments, requires approaches that, far from relying on static 
and passive learning models, enable effective evolving of 

the learning system when prompted with new data. Active 
learning is such an approach, enabling a given classifier 
to actively choose which of the new data will be manually 
annotated for training. In this manner, apart from reducing 
annotation costs and requiring fewer training examples, the 
classifier is capable of evolving to better represent new data.

Although active learning for single-label learning has 
been a well investigated topic of research, this is not the 
case for multi-label learning. In this work, we discussed 
key issues in pool-based multi-label active learning based 
on previous work in the literature. We presented the main 
approaches regarding the scoring and aggregation strate-
gies of multi-label active learning and proposed a novel 
aggregation approach, called score dev, We implemented 
all previously existing approaches, as well as our method 
in a common framework and performed extensive experi-
mental comparisons for two different multi-label learning 
algorithms, on thirteen multi-label data sets and under two 
different application settings (transductive, inductive).

The results on two different evaluation protocols, an 
inductive and a transductive learning scenario with BR-
SVMs and LPBHN as base classifiers respectively, show 
a consistent advantage of our aggregation method dev with 
score as the evaluation approach, compared to the rest of 
the methods and to conventional passive learning, followed 
by the average aggregating strategy, again with score for 
evaluation. It should be noted that the raw score used by 
dev is advantageous since one does not need to normalize 
or define thresholds to calculate it. rank and conf strategies, 
on the other hand, obtain their results using manipulated 
or normalized (by the base classifiers) scores, which make 
them more base classifier dependent.
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