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algorithm to be an effective tool for high dimensional data 
streams processing.
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1 Introduction

The widely used clustering techniques may use different kind 
of distances to measure the separation between data samples. 
The well-known Euclidean distance is currently the most 
frequently used metric space for the established clustering 
algorithms (MacQueen 1967; Fukunaga and Hostetler 1975). 
Other metric spaces, using the Mahalanobis (McLachlan 
1999), city block, Hamming, Minkowski types of distances, 
etc., are also widely used in different clustering algorithms 
for different purposes. It is often the case that clustering 
algorithms employing divergences, i.e. pairwise dissimilar-
ity, which does not obey all the properties of distances (e.g. 
cosine similarity), could generate meaningless conclusions.

One problem the traditional distance metrics are fac-
ing is the so-called “curse of dimensionality” (Domingos 
2012; Aggarwal et  al. 2001). Many clustering techniques, 
which use the traditional distance metrics work well in low 
dimensional space, however, become intractable for high 
dimensional problems. Research results have shown that 
in high dimensional space, the concept of distance may not 
even be qualitatively meaningful (Aggarwal et  al. 2001; 
Beyer et  al. 1999). Under certain reasonable conditions, 
it has been found that the distances of the nearest and far-
thest neighbours to a given data sample are the same for 
a number of distance metrics in high dimensional space 
(Beyer et al. 1999). This phenomenon is frequently seen in 
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the cases that some dimensions of the data are highly irrel-
evant. This is not hard to understand because our intuitions 
come from a three-dimensional world only, which may not 
be applicable to high dimensional ones.

Compared with the commonly used distance metrics 
including the Euclidean, Mahalanobis, Minkowski dis-
tances, etc., which measure the magnitude of vector dif-
ference, cosine similarity focuses much more on the direc-
tional similarity. Therefore, it is more often used in the 
natural language processing (NLP) problems (Allah et  al. 
2008; Dehak et  al. 2010, 2011; Setlur and Stone 2016; 
Senoussaoui et al. 2013). In NLP problems, machine learn-
ing algorithms, for example, k-means (Allah et  al. 2008; 
Setlur and Stone 2016), mean shift (Senoussaoui et  al. 
2013), etc., are used to cluster very high dimensional vec-
tors representing the documents together based on the 
cosine similarity. Nonetheless, the cosine similarity is a 
pseudo metric because it does not obey the triangle ine-
quality [it obeys the Cauchy–Schwarz inequality (Callebaut 
1965)]. Consequently, the cosine similarity between two 
vectors can be misleading and hides information, especially 
in cases where the vectors are sparse or orthogonal.

In this paper, a new “direction-aware” distance is intro-
duced. This new metric space is a combination of a dis-
tance (in this paper, we consider Euclidean), and an angu-
lar/directional component, which is based on the cosine 
similarity. Therefore, it takes the advantages of the both 
components while still obeys all the properties of a distance 
metric (McCune et al. 2002) as we will demonstrate.

The proposed distance in this paper is applicable to vari-
ous machine learning algorithms including the recently pub-
lished ones (Angelov et  al. 2014; Rong et  al. 2006, 2011; 
Precup et al. 2014; Lughofer et al. 2015) as an alternative dis-
tance measure and can enhance the ability of the algorithms 
to handle high dimensional problems. A new evolving clus-
tering algorithm is also proposed for streaming data process-
ing. This algorithm employs the new direction-aware distance 
only and is able to start “from scratch”. Therefore, it is very 
suitable for handling the high dimensional data streams.

Numerical examples using benchmark datasets demon-
strate the potential of the direction-aware distance against 
many traditional metrics in high dimensional problems. It 
is also shown that the proposed clustering algorithm is able 
to produce top quality clustering results on various prob-
lems with high computational efficiency.

The remainder of this paper is organised as follows. Sec-
tion 2 describes the newly proposed direction-aware distance 
and provides the proof for the proposed distance to be a full 
metric. Section 3 introduces the application of the newly pro-
posed direction-aware distance to traditional clustering algo-
rithms. The new evolving clustering algorithm based on the 
proposed distance is presented in Sect. 4. Section 5 presents 
numerical examples. The paper is concluded by Sect. 6.

2  Direction‑aware distance and proof of metric 
axioms

2.1  The new direction‑aware distance

In this section, we introduce the direction-aware distance, 
and prove that it is a distance over the space of real num-
bers. If no specific declaration is provided, all the deriva-
tions in this paper are conducted over the real numbers.

First of all, let us define a metric space, �m, xand y are 
two data points within the space, m is the dimensionality 
of the metric space �m. The newly introduced direction-
aware distance, dDA(x, y) consists of two terms:

1. A Euclidean component, dM(x, y), and
2. A direction-aware component, dA(x, y), and is 

expressed as:
 

where x =
[
x1, x2, ..., xm

]T and y =
[
y1, y2, ..., ym

]T, 
x, y ∈ �

m; �M,�
A
 are a pair of scaling coefficients and 

𝜆M > 0, 𝜆A > 0; d
M
(x, y) denotes the Euclidean dis-

tance between x and y, d
M
(x, y) =

�
(x − y)T(x − y) =

�
m∑
i=1

�
x
i
− y

i

�2
.

 The direction-aware component dA(x, y) is derived 
based on the cosine similarity expressed by:

where �xy is the angle between xand y. In the Euclid-
ean space, since ⟨x, y⟩ =

m∑
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√
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One can notice that, if x or y is equal to 0, dA(x, y) = 0.

2.2  Proof of metric axioms

In this subsection, we will prove that the proposed distance 
is a full metric. For a distance d(x, y) in the space to be a 
full metric, �m, it is required to satisfy the following prop-
erties for ∀x, y (13):

1. Non-negativity:

2. Identity of indiscernibles:

3. Symmetry:

4. Triangle inequality:

In this paper, we propose a new theorem as follows:

Theorem dDA(x, y)is a distance within the metric space 
over the domain Rm.

In the rest of this subsection, we will prove this theorem 
by proving that dDA(x, y) obeys the four distance axioms 
stated in Eqs. (5–6) and inequalities (4) and (7) one by one.

Lemma 1 ∀x, y ∈ �
m, dDA(x, y) ⩾ 0

Proof It can be seen directly from the Eq.  (5) that 
dDA(x, y) is always non-negative.

Lemma 2 ∀x, y ∈ �
m, dDA(x, y) = 0 iff x = y.

Proof It is clear that if x = y, then dA(x, y) =
√
1 − 1 = 0, 

dM(x, y) = 0 and dDA(x, y) = 0.

The directional component dA(x, y) alone does not obey 
this property because as we can see from equations (2) and 
(3), if x and y are nonzero and orthogonal, dA(x, y) = 0, 
so it is not true. However, in this case, due to the fact 
that if x ≠ y, dM(x, y) ≠ 0, dDA(x, y) will still be non-
zero as 𝜆M , 𝜆A > 0. Therefore, one can still conclude that 
dDA(x, y) = 0 if and only if x = y.

Lemma 3 ∀x, y ∈ �
m,dDA(x, y) = dDA(y, x)

Proof For the Euclidean metric, it is true that: 

(4)d(x, y) ⩾ 0;

(5)d(x, y) = 0 iff x = y;

(6)d(x, y) = d(y, x);

(7)d(x, z) + d(z, y) ⩾ d(x, y).

Therefore, dDA(x, y) = dDA(y, x).

Lemma 4 ∀x, y, z ∈ �
m,dDA(x, z) ⩽dDA(x, y)+dDA(y, z)

Proof Firstly, let us assume that there is a triplet data sam-
ples x, y, z, which make dDA break the triangle rule, namely: 

By including Eq.  (3) in Eq.  (2), the direction-aware 
distance dDA(x, y) can be rewritten as:

where, � =

�
�
M
x
T,

�
A
x
T

√
2‖x‖

�T
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�
�
M
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2‖x‖
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A
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A
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�
A
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�
A
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Similarly, for � =

�
�Mz

T,
�Az

T

√
2‖z‖

�T
, we can see that 

dDA(x, z) = dM(� , �), dDA(y, z) = dM(� , �).

Considering an auxiliary algebraic data space �2m, for 
� ,� , �, it follows that:

As we can see from inequalities (9) and (11), the two 
equations have the same algebraic form, but there are dif-
ferent signs (> and ⩽). For Euclidean distance in �2m, the 
triangle rule is always conformed, therefore, we can con-
clude that dDA(x, y) always satisfies the triangle inequal-
ity: dDA(x, z) ⩽ dDA(x, y) + dDA(y, z).

Based on the proofs of the four Lemmas, the proposed 
Theorem is proven. Therefore, we can conclude that the 
proposed direction-aware distance, dDA is a full distance 
in the Euclidean space.
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2.3  The property of the proposed distance

The proposed direction-aware distance metric is a com-
bination of two components: (1) the traditional Euclidean 
distance and (2) an angular/directional divergence, derived 
from the cosine similarity. It defines a metric space as a 
combination of Euclidean metric space and cosine similarity 
pseudo-metric space, and consequently, can effectively com-
bine information extracted from both spaces and takes into 
account both spatial and angular divergences. Therefore, the 
direction aware distance can serve as a more representative 
distance metric than the traditional distance metric.

3  The application of the proposed distance 
to traditional clustering approaches

In this section, we will describe the applications of 
the proposed distance to the traditional offline cluster-
ing approaches. First of all, let us define the dataset in 
the metric space as {x}N =

{
x1, x2, ..., xN

}
∈ �

m, xi =[
xi,1, xi,2, ..., xi,d

]T
∈ �

d, i = 1, 2, ...,N, where N is the num-
ber of data samples in the dataset.

The newly proposed direction-aware distance can be 
used in various clustering, classification as well as regres-
sion approaches. For example, the k-means (Allah et  al. 
2008; Setlur and Stone 2016), mean-shift clustering 
(Comaniciu and Meer 2002), k nearest neighbour clas-
sification (Keller and Gray 1985) algorithms may use the 
newly introduced direction-aware distance to enhance the 
ability in dealing with high dimensional data.

Since the traditional offline algorithms have been studied 
well for many years, in this paper, we will not focus on the 
algorithm themselves. Instead, we will look at the direc-
tion-aware distance and introduce the strategy of using the 
proposed distance in the algorithms for different purposes.

The direction-aware distance has a pair of scaling factors, 
the values of which can be adjusted for various problems. For 
example, if without losing generality, we want to allocate the 
same importance to the Euclidean and directional compo-
nents, �M and �

A
 can be set as the inverse of average dM and 

d
A
, respectively (the data is taken without pre-processing):

(12a)
�M =

1�
N∑
i=1

N∑
j=1

d2
M(xi,xj)

N2

,

(12b)
�
A
=

1�
N∑
i=1

N∑
j=1

d2
A(xi,xj)

N2

.

Alternatively, if the data has been re-scaled to the range 
[0, 1] in advance, the values of dM and dA are within the 
ranges 

�
0,
√
m

�
 and [0, 1], respectively, thus, the pair of the 

scaling coefficients within the proposed distance can be set 
to �M =

1√
m

and �A = 1 if we aim to allocate the same 

importance to each component.
While for some problems like NLP, where the direc-

tional similarity plays a more important role compared 
with magnitude differences, we can enhance the impor-
tance of the directional component in the distance measures 
by increasing the value of �A, and vice versa. The scaling 
factors �M and �A that allow the clustering approaches to 
achieve the best performance with the proposed direction-
aware distance are always problem-specific, which incorpo-
rates the prior knowledge of the problem. We believe that 
this choice is out of the scope of this paper.

4  The applications of the proposed distance 
to evolving clustering

Similarly, the direction-aware distance can also be 
employed in the evolving clustering approaches. In this 
section, we propose a new evolving clustering approach 
with the direction-aware distance. This algorithm is able 
to “start from scratch” and consistently evolves its system 
structure and updates the meta-parameters based on the 
newly arrived data samples.

The main procedure of the proposed algorithm 
is described as follows. In this section, we consider 
{x}k =

{
x1, x2,… , xk

}
∈ �

m as a data stream and the 
subscript indicates the time instance that the data sample 
arrives.

Stage 1 Initialization

The first data sample x1 in the data stream is used for ini-
tializing the system and its meta-parameters. In the pro-
posed algorithm, the system has the following initialized 
global meta-parameters:

1. k ← 1, the current time instance;
2. C ← 1, the number of exiting clusters;
3. �M ← x1, the global mean of {x}k;
4. XM ←

‖‖x1‖‖
2, the global average scalar product of {x}k;

5. �A ←
x1

‖x1‖, the global mean of 
�

x

‖x‖

�

k
, which is also 

the normalized global mean of {x}k.

6. XA ←

����
x1

‖x1‖
����

2

= 1, the global average scalar product 

of 
�

x

‖x‖

�

k
, which is always equal to 1.
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The local meta-parameters of the first cluster are initial-
ized as follows:

1. �
1
←

{
x1
}
, the first cluster;

2. f 1
M
← x1, the centre of the first cluster, which is also 

the mean of �1;
3. X1

M
←

‖‖x1‖‖
2, the average scalar product of �1;

4. f 1
A
←

x1

‖x1‖, the normalized mean of �1;

5. X1
A
← 1, the normalized average scalar product of �1, 

which is always equal to 1 as well;
6. S1 ← 1, the support (population) of the first cluster.

After the initialization of the system, the proposed algo-
rithm updates the system structure and meta-parameters with 
the arrival of each new data samples.

Stage 2 System structure and meta-parameters update
With each newly arrived data sample, the system’s global 

meta-parameters, �M, XM and�A are updated using the fol-
lowing equations (Angelov et al. 2017):

Then, the condition A is checked to see whether the new 
data sample denoted by xk is associated with a new cluster:

Based on the previous subsection, without a loss of gener-
ality, we use the inverse of the average dM between the exist-
ing data samples as �M and the inverse of the average dA as 
�
A
, correspondingly. However, for streaming data processing, 

it is less efficient to keep all the observed data samples in the 
memory and recalculate �M and �A, every time when a new 
data sample is observed. Therefore we introduce the recursive 
forms for calculating the pair of scaling coefficients as fol-
lows (Angelov et al. 2017):

(13a)�M ←

k

k + 1
�M +

1

k + 1
xk+1,

(13b)XM ←

k

k + 1
XM +

1

k + 1
‖‖xk+1‖‖

2
,

(13c)�A ←

k

k + 1
�A +

1

k + 1

xk+1
‖‖xk+1‖‖

,

(13d)k ← k + 1.

(14)Condition A:
IF

(
dDA

(
xk,�M

)
> max

j=1,2,...,C

(
dDA

(
f
j

M
,�M

)))
OR

(
dDA

(
xk,�M

)
< min

j=1,2,...,C

(
dDA

(
f
j

M
,�M

)))

THEN
(
xk creates a new cluster

) .

(15a)
�M =

1�
k∑

i=1

k∑
j=1

d2
M(xi,xj)

k2

=
1�

2
�
XM − ���M

��
2
� ,

If condition A is satisfied, a new cluster is added with xk 
as its centre:

1. C ← C + 1, the number of existing clusters;
2. �

C
←

{
xk
}
, the new cluster;

3. fC
M
← xk, the centre of the new cluster/ mean of �C;

4. XC
M
←

‖‖xk‖‖
2, the average scalar product of �C;

5. fC
A
←

xk

‖xk‖, the normalized centre of the new cluster/ 

normalized mean of �C;
6. XC

A
← 1, the normalized average scalar product of �C,

7. SC ← 1, the support of the new cluster.

In contrast, if condition A is not met, xk is assigned to 
the cluster with the nearest centre, denoted by f n

M
 as:

The meta-parameters of the cluster with the nearest cen-
tre are updated as follows (Angelov et al. 2017):

After the update of the global and local meta-parame-
ters, the system is ready for the arrival of the next data sam-
ple and begins a new processing cycle.

Stage 3 Clusters adjusting

In this stage, all the existing clusters will be examined and 
adjusted to avoid the possible overlap. For each existing 

(15b)
�
A
=

1�
k∑

i=1

k∑
j=1

d2
A(xi,xj)

k2

=
1�

1 − ���A
��
2

.

(16)f n
M
= argmin

i=1,2,...,C

(
dDA

(
xk, f

i

M

))
.

(17a)1. �
n
← �

n ∪
{
xk
}
,

(17b)2. f n
M
←

Sn

Sn + 1
f n
M
+

1

Sn + 1
xk,

(17c)3. Xn
M
←

Sn

Sn + 1
Xn
M
+

1

Sn + 1
‖‖xk‖‖

2
,

(17d)4. f n
A
←

Sn

Sn + 1
f n
A
+

1

Sn + 1

xk
‖‖xk‖‖

,

(17e)5. Sn ← Sn + 1.
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cluster �i (i = 1, 2, ...,C), firstly, we find its neighbouring 
clusters, denoted by {�}i

neighbour
 based on the following 

condition:

 where 
�
�
p

DA

�2
=

∑
x∈�p

∑
y∈�p

d2
DA

(x,y)

S2
p

= 2

�
X
p

M
−
���f

p

M

���
2
�

+

(
1 −

‖‖‖f
p

A

‖‖‖
2
)

 is the average square direction-aware dis-

tance between all the members within the pth cluster.
For each cluster centre, f i

M
 (i = 1, 2, ...,C), we calculate 

its weighted unimodal density as (Angelov et al. 2017):

(18)Condition B: IF

⎛
⎜
⎜⎝
dDA

�
f i
M
, f

j

M

�
>

C∑
p=1

𝜎
p

DA

C

⎞
⎟
⎟⎠
THEN

�
{�}

i

neighbour
← �

j ∪ {�}
i

neighbour

�
,

(19)DW
�
f i
M

�
= Si

C∑
l=1

C∑
j=1

d2
DA

�
f l
M
, f

j

M

�

2C
C∑
j=1

d2
DA

�
f i
M
, f

j

M

� ,

 and we also compare DW
(
f i
M

)
 with the DW of its neigh-

bouring clusters denoted by 
{
DW

(
f
M

)}i

neighbour
, to identify 

the local maxima of the weighted unimodal density,DW:

By identifying all the local maxima, denoted by 
{
f
M

}
o
 

and assigning each data sample to the cluster with the near-
est centre using Eq.  (16), the whole clustering processing 
is finished. The parameters of the clusters can be extracted 
post factum.

The main procedure of the algorithm is summarised in 
the form of pseudo code as follows.

(20)

Condition C:
IF

(
DW

(
f i
M

)
> max

({
DW

(
f
M

)}i

neighbour

))

THEN
(
f i
M
is one of the local maxima of DW

) .

i. While a new data sample kx of the data stream is available (or until interrupted)

* If (it is the first data sample) Then

- Initialise global meta-parameters: k , C µ

µ µ

µ, M , MX , A , AX ;

- Initialise local meta-parameters of the first cluster: 1 , 1
Mf , 1

MX , 1
Af , 1

AX , 1S ;

* Else

- Update M , MX , A and k using equation (13);

- If (Condition A is met) Then

1. 1C C ;

2. Initialise local meta-parameters of the new cluster: C , C
Mf , C

MX , C
Af , C

AX , CS ;

- Else

1. Find the nearest cluster n using equation (16);

2. Update the meta-parameter of this cluster using equation (17): n , n
Mf , n

MX , n
Af , nS .

- End If

* End If

ii. End While

iii. Find the neighbouring clusters 
i

n for each existing cluster i using equation (18) ( 1,2,...,i C ).

iv. Calculate the weighted unimodal densities at the centres of the clusters using equation (19);

v. Identify the local maxima of the weighted unimodal density using equation (20);

vi. Assign each data sample to the cluster with the nearest centre using equation (16).

Ξ

Ξ

Ξ

Ξ

ΞΞ
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5  Numerical examples and analysis

In this section, a number of numerical experiments are con-
ducted to demonstrate the performance of the newly pro-
posed direction-aware distance for high dimensional prob-
lems. Analysis based on the numerical examples will be 
provided.

Firstly, we use the standard k-means algorithm as a 
benchmark. We consider the following problems to test the 
performance of the k-means algorithm with different type 
of distance/similarity including Euclidean distance, cosine 
similarity, cityblock distance and the proposed direction-
aware distance:

1. Dim256 dataset (22);
2. Dim512 dataset (22);
3. Dim1024 dataset (22);
4. Dim15 dataset (22);
5. Steel plate faults dataset (23);
6. Pen-based recognition of handwritten digits dataset 

(24);
7. Optical recognition of handwritten digits dataset (25);
8. Cardiotocography dataset (26);

The dim256, dim512, dim1024 and dim15 datasets are 
sampled from Gaussian distributions, and, thus, the four 
datasets are ideal for testing the ability of the algorithms 
in separating high dimensional data samples from different 
classes. The other five datasets are real benchmark prob-
lems and we use them to evaluate the performance of the 
algorithms on real, non-Gaussian problems. The details of 
the benchmark datasets are given in Table 1.

Because of the complexity of the high-dimensional 
problems, the clustering results of the k-means algorithm 
may exhibit some degree of randomness, for each dataset 
and each type of distance/similarity, we did 100 Monte 
Carlo experiments and tabulated the average values of the 
five different measures in Table 2. The algorithms used in 
this paper were implemented within MATLAB 2015b; the 

performance was evaluated on a PC with dual core Intel i7 
processor with clock frequency 3.4 GHz each and 16 GB 
RAM. In the experiment, without loss of generality, the 
pair of the scaling parameters of the direction-aware dis-
tance is set by Eq. (12) and we consider the Calinski-Hara-
basz (CH) index (Caliński and Harabasz 1974) to evaluate 
the quality of the clustering results. Higher Calinski-Hara-
basz (CH) index indicates a better clustering quality.

As we can see from Table  2, in the previous section, 
the performance of the k-means algorithm is largely influ-
enced by the choice of the type of distance/similarity. 
Based on the Calinski-Harabasz (CH) indexes of the clus-
tering results, one can see that the k-means algorithm with 
the proposed direction-aware distance can produce higher 
quality clusters compared with the one with traditional 
distances/dissimilarities.

Then, numerical experiments for the same benchmark 
problems as tabulated in Table  1 are conducted to evalu-
ate the performance of the evolving algorithm employing 
the direction-aware distance. To better demonstrate the 
performance of the evolving algorithm using the direction-
aware distance, we involve the following algorithms for 
comparison:

1. Subtractive clustering algorithm (Chiu 1994);
2. Mean-shift clustering algorithm (Comaniciu and Meer 

2002);
3. DBScan clustering algorithm (Ester et al. 1996);
4. Mode identification based clustering algorithm (Li 

et al. 2007);
5. Random swap algorithm (Franti et al. 2008);
6. Density peak algorithm (Rodriguez and Laio 2014).

As the k-means algorithm exhibits certain degree of ran-
domness, we exclude it from the comparison. In the experi-
ments, due to the insufficient prior knowledge, we use the 
recommended settings of the free parameters from the 
published literature. The experimental setting of the free 
parameters of the algorithms are presented in Table 3.

To objectively compare the performance of different 
algorithms, we consider the following measures:

1. Number of clusters (C), which should be equal or 
larger than the number of classes in the dataset. 
However, if C is too large (in our paper, we consider 
C > 0.1 × Numberof Samples as too large) or is smaller 
than the number of classes in the dataset, the cluster-
ing result should be considered as an invalid one. The 
former case indicates that there are too many trivial 
clusters generated which are hard for users to under-
stand. The latter case implies that the clustering algo-
rithm fails to separate the data samples from different 
classes.

Table 1  Details of the datasets

Abbreviation Dataset Samples Classes Attributes

D256 dim256 1024 16 256 + 1 label
D512 dim512 1024 16 512 + 1 label
D1024 dim1024 1024 16 1024 + 1 label
D15 dim15 10125 9 15 + 1 label
ST Steel plates faults 1941 7 27 + 1 label
PE Pen-based recogni-

tion
10992 10 16 + 1 label

OP Optical recognition 5620 64 64 + 1 label
CA Cardiotocography 2126 3 22 + 1 label
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2. Calinski Harabasz index (CH) (Caliński and Harabasz 
1974), the higher the Calinski Harabasz index is, the 
better the clustering result is;

3. Purity (P) (Dutta Baruah and Angelov 2012), which is 
calculated based on the result and the ground truth:

where Si
D
 is the number of data samples with the domi-

nant class label in the ith cluster. The higher purity the 
clustering result has, the stronger separation ability the 
clustering algorithm exhibits.

4. Davies–Bouldin (DB) index (Davies and Bouldin 
1979), the lower Davies–Bouldin index is, the better 
the clustering result is.

5. Time: the execution time (in seconds) should be as 
small as possible.

(21)
P =

N∑
i=1

Si
D

K
,

The experiment results obtained by the proposed evolv-
ing algorithm as well as other clustering algorithms are 
given in Table 4. The clustering results of the dim15, Pen-
based recognition and Cardiotocography datasets obtained 
by the proposed algorithm are depicted in Fig.  1, where 
dots in different colours represent data samples in different 
clusters.

From Table  4 one can see that the subtractive cluster-
ing algorithm is able to produce high quality clustering 
results on the datasets with Gaussian distribution. How-
ever, for the more complex benchmark datasets, it fails to 
give valid results. The mean-shift clustering algorithm is 
one of the most efficient algorithms, but it can only per-
form high-quality clustering with low dimensional datasets. 
The DBScan algorithm is very efficient as well, but the 
quality of its clustering results is very limited in terms of 
the three clustering quality measures. Mode identification 
based clustering algorithm is a so-called “non-parametric” 

Table 2  Experimental results

The best results in each example are bolded

Dataset Distance/dissimilarity CH Dataset Distance/dissimilarity CH

D256 Euclidean 405.2386 ST Euclidean 20.2314
Cosine 448.0036 Cosine 21.769
Cityblock 424.2804 Cityblock 17.4560
Direction-aware 509.2634 Direction-aware 25.8675

D512 Euclidean 373.8111 PE Euclidean 575.0739
Cosine 405.8308 Cosine 609.6965
Cityblock 410.8807 Cityblock 487.6149
Direction-aware 802.3132 Direction-aware 633.2244

D1024 Euclidean 368.2901 OP Euclidean 406.5342
Cosine 514.7207 Cosine 418.5355
Cityblock 721.6852 Cityblock 361.4222
Direction-aware 838.6839 Direction-aware 434.6537

D15 Euclidean 30834.3331 CA Euclidean 81.8571
Cosine 27464.4951 Cosine 109.6599
Cityblock 19788.1358 Cityblock 84.0488
Direction-aware 36783.2175 Direction-aware 115.3565

Table 3  Experimental settings of the algorithms

Algorithm Free parameter(s) Experimental setting

Subtractive Initial cluster radius, r r = 0.3 (Chiu 1994)
Mean-shift 1. Bandwidth, p

2. Kernel function type
1. r = 0.15 (Dutta Baruah and Angelov 2012)
2. Gaussian kernel

DBScan 1. Cluster radius, r
2. Minimum number of data samples within 

the radius, m

1. The value of the knee point of the sorted m-dist graph
2. m = 4 (Ester et al. 1996)

Mode identification Grid size Default (Li et al. 2007)
Random swap Number of class Number of class (Franti et al. 2008)
Density peak 1. Minimum distance, ρ

2. Local density, δ
1. Relatively high, ρ
2. High, δ (Rodriguez and Laio 2014]
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Table 4  Experimental results Dataset Algorithm C CH P DB Time Validitya

D256 The proposed 16 203865.1622 1.0000 0.0248 1.61 O
Subtractive 16 203865.1622 1.0000 0.0248 2.86 O
Mean-shift 103 44374.6685 1.0000 0.3728 0.19 O
DBScan 16 173.1715 0.7598 1.0104 0.21 O
Mode identification 112 41989.1015 1.0000 0.3736 66.68 ×
Random swap 16 1.0259 0.1221 15.2841 16.03 O
Density peak 14 597.5327 0.8750 0.6610 1.52 ×

D512 The proposed 16 330337.8605 1.0000 0.0204 2.15 O
Subtractive 16 330337.8605 1.0000 0.0204 4.22 O
Mean-shift 149 56283.7373 1.0000 0.3974 0.52 ×
DBScan 16 203.2336 0.7891 1.0046 0.32 O
Mode identification 1024 NaN 1.0000 0.0000 724.09 ×
Random swap 16 1.1962 0.1260 15.0519 30.76 O
Density peak 12 291.1243 0.7500 0.8889 1.66 ×

D1024 The proposed 16 718469.7967 1.0000 0.0132 3.66 O
Subtractive 16 718469.7967 1.0000 0.0132 11.37 O
Mean-shift 120 126798.4888 1.0000 0.4496 0.88 ×
DBScan 16 381.3919 0.8721 0.9975 0.57 O
Mode identification 1024 NaN 1.0000 0.0000 2080.58 ×
Random swap 16 0.9093 0.1152 16.3316 71.11 O
Density peak 14 529.5497 0.8750 0.6965 3.29 ×

D15 The proposed 9 302436.3684 1.0000 0.1177 13.18 O
Subtractive 9 302436.3684 1.0000 0.1177 11.28 O
Mean-shift 9 302436.3684 1.0000 0.1177 0.04 O
DBScan 9 20602.0570 0.9586 1.2317 10.82 O
Mode identification 3 4327.2420 0.3333 0.5837 141.34 O
Random swap 9 126.0758 0.2575 10.8063 7.54 O
Density peak 4 4533.2627 0.4444 0.6696 12.23 ×

ST The proposed 23 2784.0320 0.5064 1.8149 1.62 O
Subtractive 4 494.1967 0.3988 0.9100 0.66 ×
Mean-shift 1555 24.7451 0.9948 9.8535 2.92 ×
DBScan 18 57.8279 0.48583 1.7112 0.42 O
Mode identification 9 690.3357 0.3653 0.3034 69.05 O
Random swap 7 1.1539 0.4096 24.1123 2.15 O
Density peak 3 1224.2338 0.3478 0.4226 2.40 ×

PE The proposed 161 572.8011 0.9446 1.3937 10.09 O
Subtractive 187 382.6055 0.8454 1.9995 12.38 O
Mean-shift 8501 154.0923 0.9999 0.3652 169.14 ×
DBScan 38 312.9177 0.6209 1.4997 14.04 O
Mode identification 4316 46.6194 0.9968 0.4969 4243.31 ×
Random swap 10 1.1696 0.1160 77.2047 9.24 O
Density peak 7 2559.6071 0.5993 1.3044 12.65 ×

OP The proposed 139 80.4085 0.9247 2.0033 17.46 O
Subtractive 5620 NaN 1.0000 0.0000 42.07 ×
Mean-shift No result after 10 h ×
DBScan 5 80.5137 0.2190 5.5459 3.88 ×
Mode identification 5620 NaN 1.0000 0.0000 27368.18 ×
Random swap 10 1.7029 0.1142 31.2458 14.35 O
Density peak 8 71.5796 0.2962 1.4627 6.16 ×
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clustering algorithm. Nonetheless, its performance is very 
limited on high dimensional problems; its computational 
efficiency is also not very good. The quality of the cluster-
ing results obtained by the random swap algorithm is also 
very limited. In addition, this algorithm requires the num-
ber of classes to be known in advance in order to perform 
valid clustering results; its computational efficiency is also 
relatively lower. The density peak clustering algorithm 
is highly efficient, however, based on the recommended 
input selection, the algorithm failed to separate data sam-
ples from different classes in many cases. In addition, with 
the growth of the number of data samples, the difficulty of 
deciding the input selection for the users is also increasing.

In contrast, the proposed evolving clustering algorithm 
consistently produces the top quality clustering results on 
various problems. In the core of the method is the idea 
to incorporate into the direction-aware distance both the 
spatial divergence and the angular similarity. Its compu-
tational efficiency does not deteriorate with the increase 
of dimensionality. Therefore, one can conclude that the 
proposed evolving clustering algorithm is the top one in 
the comparison. Nonetheless, we have to admit that the 

computational complexity of some clustering algorithms 
using the direction-aware distance will be inevitably higher 
compared with the same ones using the traditional distance/
dissimilarity.

6  Conclusion

In this paper, a new type of distance, named “direction-
aware”, is proposed and proved to be a full metric. The pro-
posed distance is defined as a combination of two compo-
nents: (1) the traditional Euclidean distance and (2) a cosine 
similarity based angular/directional divergence. Therefore, 
it is able to consider both spatial and angular divergences. 
It is using the advantages of one of them to compensate 
for the disadvantages of the other. The proposed distance 
is applicable to various traditional machine learning algo-
rithms as an alternative distance measure. A new direction-
aware distance based evolving clustering algorithm is also 
proposed for streaming data processing. Numerical exam-
ples demonstrate that the proposed distance can improve 
the clustering quality of the k-means algorithm for high 

The best results in each example are bolded
a “×” stands for invalid results, “O” stands for valid result

Table 4  (continued) Dataset Algorithm C CH P DB Time Validitya

CA The proposed 113 231.0072 0.8758 1.0824 1.93 O
Subtractive 254 140.7584 0.9147 1.3239 0.65 ×
Mean-shift 1594 181.2899 0.9962 0.4175 2.91 ×
DBScan 13 35.8486 0.8053 1.5204 0.43 O
Mode identification 328 63.5207 0.9008 0.6740 40.26 ×
Random swap 3 47.2156 0.7785 5.2548 1.42 O
Density peak 3 63.5735 0.7813 0.5081 2.71 O

Fig. 1  Visualization of clustering results
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dimensional problems. They also show the validity and 
effectiveness of the proposed evolving algorithm for han-
dling high dimensional streaming data.

As future work, we will apply the proposed distance 
to various high dimensional problems including, but not 
limited to, the NLP, image processing problems, etc. We 
will also study the convergence of the evolving clustering 
algorithm.
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