
Vol.:(0123456789)1 3

Evolving Systems (2018) 9:245–254
DOI 10.1007/s12530-017-9194-8

ORIGINAL PAPER

Simulation evaluation of a relative frequency metric for web
cache replacement policies

Nadjette Benhamida1,2 · Louiza Bouallouche‑Medjkoune2 · Djamil Aïssani2

Received: 24 February 2016 / Accepted: 16 June 2017 / Published online: 1 July 2017
© Springer-Verlag GmbH Germany 2017

1 Introduction

World Wide Web (WWW) requests have continued to grow
at an exponential rate for the reason that it, already, consti-
tutes the dominant workload component for internet traffic
(Wang 1999). The main implications related to this fact are
the fastest and the easiest internet information access, the
cheapest in use, the variety of information domains such as:
scientific research, education, sport, teaching, business, etc.
(Wang 1999). Also, the physical infrastructure internet net-
work evolution represents another very important reason of
this growth.

Since the majority of web objects are requested by dif-
ferent clients, caching them improves, significantly, the
web performances by reducing (1) the server overload, (2)
the data volume transferred between servers and clients, (3)
the band-width consumption, (4) the network overload sur-
charge, (5) the clients’ average latency. Also, the caching
improves the information availability.

Nevertheless, the caching may increase, in some situa-
tions, (1) the data inconsistency rate, (2) the client latency
in the case of a miss, and (3) the clients’ average latency
because of the limited number of clients per proxy. Also,
the original server cannot have a clear idea about the cli-
ents’ access model and the most popular files.

Therefore, caching has become the important vari-
able to fully actualize the future internet dream by care-
fully solving the problems in frequency and recency in
objects (Abdullahi et al. 2015). The main key of the proxy
cache efficiency is the document replacement policy that
can reach high performances. Determining which part of
the content is to be cached? What is the most appropriate
time for caching? How the object would be cached (placed
and replaced) and also at what path would the object be
cached? (Abdullahi et al. 2015). All this is the main role of

Abstract In this paper, we interest in web cache replace-
ment policies namely “frequency-aware” policies that pro-
vide, generally, the best results in term of data movement
reduction in the network. For the simple reason that they
take into account one of the most significant web traffic
characteristic “the access frequency”. However, the access
frequency suffers from two main problems namely one-
timer documents existence and cache pollution. Therefore,
our aim is to replace the traditional frequency with a rela-
tive frequency; calculated using the access number and the
document lifetime in the cache. Although the idea already
exists in the literature, we strive to validate the relative
frequency efficiency for the web proxy replacement poli-
cies. In this work, we implement three replacement poli-
cies namely least frequently used (LFU), least frequently
used with dynamic aging (LFU-DA) and Greedy dual size
frequency (GDSF). As well, their versions enhanced with
relative frequency namely LFRU, LFRU-DA and GDSFR
respectively are implemented and evaluated using synthetic
and real workload. The simulation results show that the
relative frequency is more effective, in terms of hit rate and
byte hit rate, than the access number; i.e., the traditional
frequency. Moreover, the simulation proves that the relative
frequency solves the access frequency problems.

Keywords Caching · Performance evaluation · Proxy web
cache · Replacement policies · WWW

 * Nadjette Benhamida
 benhamida_nadjette@yahoo.fr

1 Doctoral School on Networking and Distributed Systems
(ReSyD), Faculty of Exact Sciences, University of Bejaia,
06000 Bejaïa, Algeria

2 Research Unit LaMOS, University of Bejaia, Bejaïa, Algeria

http://crossmark.crossref.org/dialog/?doi=10.1007/s12530-017-9194-8&domain=pdf

246 Evolving Systems (2018) 9:245–254

1 3

a replacement policy; i.e., it decides which documents to
keep in the cache, which documents to replace and which
future requests will have a cache hits. Many web caching
policies have been proposed, in the literature, based on var-
ious web traffic characteristics such as: the document size,
the access frequency, the access recency, the clients’ aver-
age latency, etc.

Hence, frequency-aware replacement policies are the
most effective, in the literature, for the reason that they take
into account an important traffic characteristic that is the
popularity of documents. However, the access frequency
performances are reduced through two principals’ disad-
vantages namely the cache pollution problem and the one-
timer documents existing.

In this paper, we enhance the cache policies with a new
principle called “the documents lifetime” in the cache.
It provides an exact idea about the access frequency and
recency. Hence, we replace the access frequency a relative
frequency in the policies namely frequency-aware in order
to improve the web caching performances.

The paper is made up of five sections. Section 2 presents
the related works. Section 3 defines the details of our pro-
posal. Then, Sect. 4 presents the evaluation of this work.
Finally, Sect. 5 concludes the paper.

2 Related work

In a dynamically changing and evolving environment
namely “the web”, the unpredictable requests continue to
evolve daily. For this reason, several web caching replace-
ment policies have been proposed in the literature and they
achieve an admissible work. Nonetheless, the question
that arises now is “is there a better policy forever and in
all domains?” which can provide the best performances.
The answer is “there is not a policy that is the best for-
ever (Wang 1999)”. However, each policy can improve the
web performances if it takes into a count the principal web
documents characteristics such as the access frequency, the
recency, the size, etc.

Moreover, various additional web traffic characteriza-
tions influence the web performances such as: the one-time
referencing, the file types, the file popularity, the file size
distribution, the correlation between the file size and the
popularity, the temporal locality, the references concentra-
tion and the hot set drift analysis. Two types of replacement
policies exist in the literature: the basic policies and their
enhanced versions.

2.1 Basic policies

The basic policies are size (Abrams et al. 1995), lowest
latency first (LLF) (Cao and Irani 1997), first in first out

(FIFO) (Yanev 2005), random (Yanev 2005), LFU (Yanev
2005) and least recently used (LRU) (Yanev 2005; Arlitt
et al. 1999). Generally, they perform well like LRU (Do
et al. 2014). However, they have one main inconvenient
that they rely, only, on one traffic characteristic, such as
the access frequency, the recency, the latency or a rand-
omized choice. Therefore, their performances are limited.
For this reason, several enhanced versions of the basic
policies are proposed and implemented.

2.2 Basic policies enhanced versions

Today, there exist various replacement policies based
on several web document characteristics. For example,
SzLFU(k) policy (Yanev 2005) is based on the access fre-
quency and the document size. The main inconvenient of
the SzLFU policy are: (1) the prior choice of the param-
eter k, which depends on the access model, and (2) its
vulnerability to the cache pollution.

Alternative functions-aware policies have been pro-
posed such as lowest relative value first (LRV) (Wang
1999), hybrid (Wang 1999), Greedy dual size (GDS)
(Arlitt et al. 1998), Greedy dual size frequency (GDSF)
(Arlitt et al. 1999), LFU-dynamic aging (LFU-DA) (Arlitt
et al. 1999), Least weighted usage (LWU) (cohen and
dabran 2002), MIX (Ali et al. 2011a, b), least recently
frequently used (LRFU) (Lee et al. 2001), Greedy dual*
(GD*) (Vakali 2000) and history LRU (HLRU) (Vakali
2000). All these policies use functions calculated using
several parameters and involve several additional treat-
ments compared to the basic policies.

Moreover, several solutions, based on the access
recency and the document size, exist in the literature
such as LRU-threshold (Abrams et al. 1995), LRU-size
(Abrams et al. 1995), LRU-min (Wang 1999; Cao and
Irani 1997), Log(size) + LRU (Cao and Irani 1997) and
Pitkow and Recker (1994). Their main inconvenient is
that they remove from the cache the biggest documents.
In this case, these policies risk of removing the most
popular documents or documents having the great cost of
downloading.

Others proposed policies are based on the access fre-
quency and the recency such as segmented LRU (SLRU)
(Arlitt et al. 1998; ElAarag 2013), LFU-aging (Vakali
2000), LFU*-aging (Arlitt and Williamson 1997), LRU-K
(Arlitt et al. 1998) and frequency based replacement (FBR)
(Arlitt and Williamson 1997). The main problem of the
cited policies is the choice of the parameters values that can
provide the best results.

Moreover, all the previous policies, cited in this section,
increase the client latency and the space reserved to its exe-
cution compared to the basic policies.

247Evolving Systems (2018) 9:245–254

1 3

2.3 Most recent works

In Ali et al. (2011a, b), several intelligent web cach-
ing algorithms have been presented and summarized.
In addition, authors in Sajeev and Sebastian (2011)
have proposed a novel classification scheme for web
cache objects that uses a multinomial logistic regres-
sion (MLR) technique. In Ali et al. (2014), LRU policy
have been enhanced using popular supervised machine
learning techniques such as a support vector machine,
a naïve Bayes classifier and a decision tree. Further-
more, authors in (Kumar and Norris 2008) have pro-
posed a new proxy-level web caching mechanism that
takes into account aggregate patterns observed in user
object requests. Also, authors in (Kaya et al. 2009) have
evaluated an admission-control policy for proxy server
caching that augments the LRU algorithm. In (Ali et al.
2011), support vector machine (SVM) is used to enhance
the performance of conventional web proxy caching such
as LRU and GDSF. Moreover, a replacement policy has
been proposed based on mobile insertion position “MIP”
(Abad et al. 2015).

2.4 Frequency‑aware policies performances discussion

LFU versions, which exist in the literature, use several
specific parameters or complex function compared to the
basic policies, which decreases their performances. For
example, the LFU-aging and LFU*-aging policies use
two additional parameters the references maximum value
(Mref) and the documents average age (Amax). LRU-K pol-
icy uses the parameter K that requires the storage of K
last access dates of each document in the cache, LFU-
DA policy is based on the parameter K and its choice
is very difficult. SLFU policy uses an additional param-
eter to define the percentage of each partition space that
augments the policy complexity and execution time.
LRFU is based principally on a function which deter-
mines the influence of the access frequency and recency
on the probability that a document will be requested in
the future. HLRU uses the parameter h which requires
the storage of the h last access dates for each document.
FBR is based, principally, on the two parameters Fnew
and Fold used in partitioning the cache space.

The main common inconvenient of all these policies
is the choice of the parameter values that can provide
the best performances. Moreover, they increase the vol-
ume of data transferred in the network (as SLFU policy).
However, policies based on a performance index such as
LWU and LRV increase the clients’ average latency.

3 Proposal

3.1 Problematic formulation

LFU policy and their enhanced versions are among the
most-used replacement policies and the most effec-
tive efficient in the literature. This policy provides bet-
ter performances than other basic policies such as Ran-
dom and FIFO. The reason is that it takes into account
an important traffic characteristic which is the documents
popularity. However, LFU has two principal deficiencies
that affect its performances: the cache pollution problem
and the existence of one-timer documents. The first point
means that LFU prevents unpopular documents having
large frequency from being removed. The second point
means that the one-timer documents remain in the cache
for a long period. Several LFU versions have been pro-
posed in order to improve the performances by taking
into account LFU benefits and other traffic characteristics
such as the access recency, the document size, etc. Unfor-
tunately, that increases the execution time of these poli-
cies and consequently the client latency.

Also, another interesting feature is that the document
having the greatest frequency is not always the most pop-
ular one, because its frequency can be obtained during a
caching time (its lifetime) larger than the lifetime of other
documents having lower frequencies.

In order to solve the problems of frequency-aware pol-
icies previously explained, we propose a new mechanism
namely “the relative frequency”. This mechanism will
replace the access frequency, which means the access
number, in the frequency-aware policies.

3.2 Solution based relative frequency

In this paper, we propose as a novelty a new mechanism
to replace the traditional access frequency with a relative
frequency calculated using the documents access number
and its lifetime in the cache. Consequently, our aim is to
ensure an improvement of the frequency-aware policies
using a relative frequency (called Fr

i in the Formula 1).
The relative frequency depends on the number of access
for each document i and calculated as follows:

 where Di is the date of entrance of the document i to the
cache, Fi is the document frequency and now is the current
system date.

As a result, we obtain the access frequency to a docu-
ment for each unit of time. In this way, we avoid many

(1)Fr
i
=

Fi

now − Di

,

248 Evolving Systems (2018) 9:245–254

1 3

overheads by using a very simple function which does not
require many additional treatments and which improves
the caches replacement policies performances. Moreo-
ver, by using the relative frequency, we will be able to
solve the problem related to the one-timer documents.
In fact, by using the relative frequency function; the fre-
quencies of one-timer documents remain constant (equal
to one) but the documents lifetimes in the cache con-
tinue to increase. Consequently, their relative frequencies
decrease. Also, the cache pollution problem should disap-
pear for the reason that the relative frequency of the doc-
uments having the great values of the access frequency
will increase over the time.

3.3 Implementation

The relative frequency is proportional to one of the two
following parameters the time or the access number to the
cache. In the first case, the relative frequency represents a
time period obtained from a physical timer. In the second
case, it represents the access occurrences number to the
cache after the last access to this document i.e., concept of
the logical timer (Formula 2). Therefore, for each period of
time tc we calculate:

 where Di represents the access occurrence number to i.
Afterwards, we perform for each document j in the

cache:

In fact, Formula (3) provides the relative frequency of
the document j.

3.4 Illustrative example

Let’s assume two documents A and B in the cache,
where frequency (A) = 3 and frequency (B) = 2. Whereas,
the lifetime of A in the cache is 10 time units and
the lifetime of B is 4 time units. For the reason that
frequency(A) > frequency(B), the frequency-aware policies
will remove B before A. However, actually B is more popu-
lar than A because FA

r = 3/10 = 0.3 and Fb
r = 2/4 = 0.5.

Consequently, B is the most probably re-requested in the
future.

3.5 Relative frequency advantages

We summarize the advantages of the relative frequency
solution as follows:

• It solves the cache pollution problem, because it
depends on the documents lifetime. Therefore, it will

(2)D(min) = min(Di) ∀i in the cache,

(3)Dj = Dj − D(min).

be impossible to find a document with a great relative
frequency during all its lifetime in the cache.

• It solves the problem of the existence of one-timer
documents for a long period of time in the cache for
the reason that the lifetime increases and the fre-
quency still equal to one. Consequently, the one-timer
documents will disappear.

• It provides a very clear idea on the documents popu-
larity in the cache proxy. Indeed, it is possible to com-
pare documents according to the relative frequencies
because the access frequency of every document is
given by one unit of time.

• It reduces the client latency because it increases the
number of requested served directly from the cache.
Consequently, the information availability will
increase.

• It reduces the bandwidth consumption for the reason
that it decreases the network traffic.

• It reduces the servers overload because it decreases
the number of request sent towards the web servers.

4 Evaluation

In order to evaluate the efficiency of our solution, we
implement our simulator in C++ language. Three fre-
quency-aware policies are implemented LFU, LFU-DA
and GDSF in addition to their versions enhanced with
relative frequency namely LFRU, LFRU-DA and GDSFR
respectively. In order to validate our simulator, we use
short log files that can be checked by hand. Afterwards,
we compare the results obtained in the both cases. This
procedure is repeated several times. Moreover, we com-
pare our original policies results with the results of some
existing studies.

Furthermore, we use both simulations; execution-driven
and trace-driven. Execution-driven simulation is used in
order to demonstrate the efficiency of our solution in the
proxy caches. In fact, the web traffic used, in this case, is
generated using ProWGen (Busari and Williamson 2002).
Knowing that, authors in (Williams et al. 2005) confirm
that there are no dramatic changes in web server workload
characteristics. The obtained results are presented and dis-
cussed in the Sect. 4.3.1.

Trace-driven simulation is used in order to reveal the
efficiency of the relative frequency for mobile clients. Con-
sequently, a real log are recorded and used by our simula-
tor. The results obtained are presented and discussed in the
Sect. 4.3.2.

Moreover, a real experimental test is used in order to
prove the efficiency of our solution and the exactitude of
the simulation results mentioned in this paper.

249Evolving Systems (2018) 9:245–254

1 3

4.1 Performances metrics

In order to evaluate our simulator, we use two metrics
called the hit rate and the byte hit rate because they are the
most used in this domain (ElAarag 2013).

The hit rate (HR): provides the percentage of the
requests served directly from the cache among the total
number of requests (Formula 4) (Cao and Irani 1997; Arlitt
et al. 1999):

where m is the total number of requests, θ is a param-
eter that determines if the requested document exists in the
cache (=1) or does not exist (=0).

The byte hit rate (BHR): provides the percentage of
bytes transferred directly to clients from the cache among
the total size of requests (Formula 5) (Cao and Irani 1997;
Arlitt et al. 1998, 1999):

 where sizei is the size of the documents i.

4.2 Model and factors

In this study, we use a model with one level of web proxy
(Fig. 1). This model operates as follows, when the proxy
receives a client request, it must search the requested file
in its cache. In the case of a hit, the answer is turned to
the applicant else the required document must be requested
from the original server. While receiving the server
response, the proxy must send it to the applicant and store

(4)HR =

∑m

i=1
�i

m
,

(5)BHR =

∑m

i=1
sizei �i

∑m

i=1
sizei

,

a copy in its cache. If the free space is not sufficient for this
new document, a replacement policy must be executed in
order to release space. Therefore, in our model, the replace-
ment policy is always executed in demand.

Moreover, various factors influence the replacement pol-
icies performances such as:

4.2.1 Document size

When the documents that visit the cache have small sizes,
the cache capacity (in term of the number of files that it can
contain) is increased. This increases the requests hit rate
and the opposite is true. For this reason, it is very important
to respect the real distribution of the web document size. In
fact, this distribution is of type “heavy-tailed” (Busari and
Williamson 2002). The Fig. 2 shows the document size dis-
tribution in our simulation.

4.2.2 Requests number/time

The number of used requests generated in each interval of
time (100 s) is shown in Fig. 3.

4.2.3 Cache size

Obviously, the cache performances depend on its size;
when the cache size increases the replacement policies per-
formances increase (Figs. 4, 5). However, when the cache
size increases, extremely, the entire replacement policies
have the same performances and the documents time access

Fig. 1 The web proxy model Fig. 2 The document sizes distribution

250 Evolving Systems (2018) 9:245–254

1 3

increases (search time, processing time, etc.). In this case,
the advantages of using caches memories may decrease.

4.2.4 Warm‑up period

In this period, the cache remains not completely full and the
majority of misses appeared during this period are of type

“cold miss”. Moreover, it is possible to find a few misses of
type “consistency miss” but misses of type “capacity miss”
do not appear. Warm-up period depends basically on the
sizes of documents referenced in this period and the cache
size. The Figs. 4 and 5 show that the replacement policies
performances have two phases: during warm-up period [0,
100] and after this period [100, 10,000,000]. During the
first phase, all the replacement policies have the same per-
formances and have weakest values, because the cache was
nearly empty, in comparison with the second phase.

4.2.5 Replacement policy

After having fixed the cache size and when the simulation
exceeds the warm-up period, the replacement policy used
in the cache has a very significant role in the web perfor-
mances. This policy chooses which document(s) must quit
the cache in order to release space for the new document
recently required. The cache performances change from
one policy to another. Therefore, it is necessary to well
choose the policy that will provide the best achievable
performances.

The original policies implemented in our simulator are
LFU, LFU-DA and GDSF (Figs. 4, 5). It is clear that the
GDSF policy provides the highest hit rate (Fig. 4) because
it takes into account the documents size, the access fre-
quency and recency. This policy replaces the documents
with the biggest sizes. Consequently, it increases the

Fig. 3 The requests number distribution / 100 s

Fig. 4 The relation between the cache size and the hit rate

Fig. 5 The relation between the cache size and the byte hit rate

251Evolving Systems (2018) 9:245–254

1 3

number of small documents which remain in the cache. As
a result, the number of requests served directly from the
cache is increased. LFU-DA policy provides lower hit rate
than GDSF because it does not take into account the docu-
ments sizes.

At the same time, LFU-DA hit rate is very high com-
pared to LFU policy because it considers the access recency
by using the aging factor. However, LFU-DA provides bet-
ter results than GDSF and LFU respectively (Fig. 5) in
term of byte hit rate. For the reason that LFU-DA keeps
in the cache the documents of big sizes, it increases the
number of bytes served directly from the cache. Whereas,
GDSF policy removes the largest files, reduces the number
of bytes served from the cache and increases the volume of
data transferred towards proxy and the server.

4.3 Performances analysis

In order to evaluate the relative frequency performances,
we present in the next section the original policies perfor-
mances in terms of hit rate and byte hit rate. Afterwards,
we introduce the performances of the relative frequency
aware policies namely LFRU, LFRU-DA and GDSFR.
Finally, we compare the performances of the whole poli-
cies implemented in our simulator. It is logical that all the
replacement policies have the same performances during
the warm-up period for the reason that the cache is not yet
full. However, their efficiency appears after this period.

4.3.1 Comparison according to the requests number

In this section, we exhibit the replacement policies perfor-
mances in terms of hit rate and byte hit rate by varying the
requests number.

4.3.1.1 LFU, LFU‑DA and GDSF results Figure 6 shows
that GDSF policy provides the best performances in term
of hit rate followed by LFU-DA and LFU respectively.
Whereas, LFU-DA provides the best byte hit rate (Fig. 7)
followed by GDSF and LFU respectively. In fact, GDSF
and LFU-DA provide very close performances unlike LFU
performances. Consequently, we conclude that the perfor-
mances of a replacement policy based on several web traffic
characteristics are better than those of another policy based
on less number of characteristics.

4.3.1.2 LFRU, LFRU‑DA and GDSFR results Figures 8
and 9 show the hit rate and the byte hit rate of LFRU, LFRU-
DA and GDSFR policies. It is clear that LFRU, LFRU-DA
and GDSFR provide very close performances. However,
GDSFR is better than LFRU-DA and LFRU respectively in

terms of hit rate and byte hit rate. Consequently, we con-
clude that the use of different keys with this relative fre-
quency provides best performances.

Fig. 6 LFU, LFU-DA and GDSF hit rate

Fig. 7 LFU, LFU-DA and GDSF byte hit rate

252 Evolving Systems (2018) 9:245–254

1 3

Unlike the Fig. 7, the Fig. 9 shows that GDSFR provides
better byte hit rate than LFRU-DA. In fact, the relative fre-
quency corrects the GDSFR weaknesses for the reason that

the small documents do not remain in the cache for a long
time.

4.3.1.3 LFU, LFU‑DA, GDSF, LFRU, LFRU‑DA
and GDSFR results Figure 10 confirms that the relative
frequency improves the original policies performances.
Hence, GDSFR provides better hit rate compared to
LFRU-DA and GDSF respectively. Moreover, the simula-
tion results confirm that the relative frequency can replace
several parameters in the function-aware policies. For the
reason that LFRU and LFU-DA hit rates are very close. As
well, LFRU-DA hit rate is very close to GDSF hit rate.

However, policies based on the relative frequency pro-
vide the better byte hit rates than the original policies byte
hit rates (Fig. 11). It is also noticed that, LFU policy, which
is the basic policy of all these policies, provides the low-
est performances. Therefore, the use of a relative frequency
instead of the access number improves the performances
of the frequency-aware policies. This relative frequency
solves the access frequency problems; cache pollution and
existing of one-timer documents because of the lifetime
documents. Moreover, the Figs. 10 and 11 prove that the
replacement policies based on different traffic characteris-
tics provide higher performances such as GDSFR policy.Fig. 8 LFRU, LFRU-DA and GDSFR hit rate

Fig. 9 LFRU, LFRU-DA and GDSFR byte hit rate
Fig. 10 LFU, LFU-DA, GDSF, LFRU, LFRU-DA and GDSFR hit
rate

253Evolving Systems (2018) 9:245–254

1 3

4.3.2 Comparison according to the cache size

In what follows, we present the results of the replacement
policies using a real trace obtained and evaluated according
to different cache sizes.

From Figs. 12 and 13, it is clearly visible that GDSFR,
LFRU-DA and LFRU, respectively, provide better perfor-
mances than their original versions in terms of hit rate and
byte hit rate. Thus, it is clear that our solution improves the
performances of the frequency-aware policies whatever the
size of the used cache.

Moreover, policies based on the relative frequency per-
formances always overtake their original policies perfor-
mances (Figs. 12, 13). In addition, the performances of
each relative frequency based policy exceed the perfor-
mances of all original policies.

Finally, the previous figures prove that the size of caches
is limited and cannot exceed a certain value (10,000,000 in
Figs. 12, 13). After this value, all policies have the same
performances i.e., the max values of hit rate and byte hit
rate. However, the client latency will continue to increase.

5 Conclusions and future work

The results obtained in our paper are summarized in the
following points: firstly, the use of the relative frequency,

instead of the access number in the frequency-aware
replacement policies, improves the performances of these
policies. This is due to the fact that the relative frequency
solves the access frequency problems: the existence of the

Fig. 11 LFU, LFU-DA, GDSF, LFRU, LFRU-DA and GDSFR byte
hit rate

Fig. 12 LFU, LFU-DA, GDSF, LFRU, LFRU-DA and GDSFR hit
rate

Fig. 13 LFU, LFU-DA, GDSF, LFRU, LFRU-DA and GDSFR byte
hit rate

254 Evolving Systems (2018) 9:245–254

1 3

useless documents namely “one-timer” in the cache and the
cache pollution. However, the use of different keys with
this relative frequency provides the best performances. Sec-
ondly, we demonstrated by simulation that the relative fre-
quency corrects the frequency-aware policies weaknesses
because the performances of the relative frequency-aware
policies are very close. Furthermore, the replacement poli-
cies based on different traffic characteristics provide higher
performances such as GDSFR policy. Moreover, the real
experimental test proves the efficiency of our solution and
the exactitude of the simulation performance.

It will be interesting to study the efficiency of our propo-
sition in the mobile environment such as Ad hoc and sen-
sors networks. Let us notice that the main problems in this
type of networks are the availability of information and
the minimization of the consumption of energy. We look
for designing a very simple algorithm and very efficient
replacement which does not require several additional treat-
ments in order to reduce the energy consumption.

References

Abad P, Prieto P, Puente V, Gregorio JA (2015) Improving last level
shared cache performance through mobile insertion policies
(MIP). Parallel Comput J 49(C):13–27

Abdullahi I, Arif S, Hassan S (2015) Survey on caching approaches
in information centric networking. J Netw Comput Appl
56(C):48–59

Abrams M, Stanbridge C, Abdulla G, Williams S, Fox E (1995) Cach-
ing proxies: limitation and potentials. In: Proceedings of the 4th
international conference on World Wide Web, pp 119–133

Ali W, Shamsuddin SM, Ismail AS. 2011a. A survey of web caching
and prefetching. Int J Adv Soft Comput Appl 3(1)

Ali W, Shamsuddin S, Ismail A. 2011b. Intelligent web proxy cach-
ing approaches based on support vector machine, informatics
engineering and information science book. Springer, Berlin, pp
559–572

Ali W, Sulaiman S, Ahmad N (2014) Performance improvement of
least-recently-used policy in web proxy cache replacement
using supervised machine learning. Int J Adv Soft Comput Appl
6(1):1–38

Arlitt M, Williamson C (1997) Trace-driven simulation of document
caching strategies for internet web servers. Simul J 68(1):23–33

Arlitt M, Friedrich R, Jin T (1998) Performance evaluation of web
proxy cache replacement policies, Hewlett-Packard Technical

Report “HPL-98-97(R.1)”, Internet Systems and Applications
Laboratory

Arlitt M, Cherkasova L, Dilley J, Friedrich R, Jin T (1999) Evaluat-
ing content management techniques for web proxy caches. In:
Proceeding of the 2nd workshop on internet server performance
WISP’99

Busari M, Williamson C (2002) ProWGen: a synthetic workload gen-
eration tool for simulation evaluation of web proxy caches. Com-
put Networks 38 No(6):779–794

Cao P, Irani S (1997) Cost-aware www proxy caching algorithms. In:
Proceedings of the USENIX Symposium on Internet Technolo-
gies and Systems (USITS’97), 193–206

Cohen R, Dabran I (2002) The “last copy” approach for distributed
cache pruning in a cluster of HTTP proxies*, Book: protocols
for high speed networks. In: Proceedings of the 7th IFIP/IEEE
international workshop, pp 84–99

Do CT, Kim J, Hwang I, Kim S, Ch Hong Kim (2014) A novel last-
level cache replacement policy to improve the performance of
mobile systems. Adv Sci Technol Lett 46(Mobile and Wireless
2014):24–28

ElAarag H (2013) A quantitative study of web cache replacement
strategies using simulation. In: Web proxy cache replacement
strategies. Springer, London, pp 17–60

Kaya CC, Zhang G, Tan Y, Mookerjee VS (2009) An admission-con-
trol technique for delay reduction in proxy caching. Decis Sup-
port Syst 46(2):594–603

Kumar C, Norris JB (2008) A new approach for a proxy-level web
caching mechanism. Decis Support Syst 46(1):52–60

Lee D, Choi J, Kim J, Noh SH, Min SL, Cho Y, Kim CS (2001)
LRFU: a spectrum of policies that subsumes the least recently
used and least frequently used policies. J IEEE Trans Comput
50(12):1352–1361

Pitkow J, Recker M (1994) A simple yet robust caching algorithm
based on dynamic access patterns. In: Proceedings of the 2nd
international conference on WWW, 1039–1046

Sajeev G, Sebastian M (2011) A novel content classification scheme
for web caches. Evol Syst 2(2):101–118

Vakali A (2000) Lru-based algorithms for web cache replacement. In:
Proceedings of the first international conference on electronic
commerce and web technologies EC-WEB ‘00, 409–418

Wang J (1999) A survey of web caching schemes for the internet.
ACM SIGCOMM Comput Commun Rev 29(5):36–46

Williams A, Arlitt M, Williamson C, Barker K (2005) Web workload
characterization: ten years later. Web Inf Syst Eng Internet Tech-
nol Book Ser 2:3–21

Yanev K (2005) Cache replacement algorithms in web caches: cach-
ing of various media types. Master’s Thesis, HELSINKI Univer-
sity, Department of Computer Science

	Simulation evaluation of a relative frequency metric for web cache replacement policies
	Abstract
	1 Introduction
	2 Related work
	2.1 Basic policies
	2.2 Basic policies enhanced versions
	2.3 Most recent works
	2.4 Frequency-aware policies performances discussion

	3 Proposal
	3.1 Problematic formulation
	3.2 Solution based relative frequency
	3.3 Implementation
	3.4 Illustrative example
	3.5 Relative frequency advantages

	4 Evaluation
	4.1 Performances metrics
	4.2 Model and factors
	4.2.1 Document size
	4.2.2 Requests numbertime
	4.2.3 Cache size
	4.2.4 Warm-up period
	4.2.5 Replacement policy

	4.3 Performances analysis
	4.3.1 Comparison according to the requests number
	4.3.1.1 LFU, LFU-DA and GDSF results
	4.3.1.2 LFRU, LFRU-DA and GDSFR results
	4.3.1.3 LFU, LFU-DA, GDSF, LFRU, LFRU-DA and GDSFR results

	4.3.2 Comparison according to the cache size

	5 Conclusions and future work
	References

