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1  Introduction

Economic dispatch problem considering air pollution was 
taken into account by the enactment of the Clean Air Act 
of 1990. Accordingly, all utilities are required to take the 
rate of SO2, NOx, and CO2 emissions of their generating 
units into consideration when dispatching them (Talaq 
and EI-Hawary 1994). Since then, much research has been 
conducted in this field and many approaches have been 
proposed to reduce the emissions. These methods can be 
divided mainly into three groups:

–	 Installation of equipment for cleaning emissions in site 
of generating units;

–	 Replacement of old equipment with new ones;
–	 Operation of generating units considering environmen-

tal pollutants.

Various approaches are available to take into account 
the pollution of generating units through environmental 
economic dispatch (EED) problem. In recent years, sev-
eral swarm intelligent algorithms have been proposed and 
improved such as Genetic algorithms (GA) (Holland 1975), 
Particle swarm optimization (PSO) (Shi and Eberhart 
1998), Differential evolution (DE) (Storn and Price 1997) 
and Artificial bee colony (ABC) (Karaboga 2005a, b), 
etc., and have been introduced for optimization problem. 
ABC is one of swarm intelligent algorithms inspired by 
the foraging behaviors of honeybee colony. ABC was first 
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introduced by Karaboga (Karaboga and Basturk 2007; Gao 
et al. 2012) and simulates the intelligent foraging behavior 
of honey bee swarms. Since the ABC is simple in concept, 
easy to implement and it has fewer control parameters. It 
has attracted the attention of many researchers and has been 
widely used in solving numerical optimization (Liao et al. 
2013). However, the convergence speed of ABC algorithm 
will decrease as the dimension of the problem increases. To 
address these issues, several methods have been proposed to 
improve the algorithm to overcome these drawbacks (Zhu 
and Kwong 2010; Yan et al. 2012). For clustering, several 
methods based on Evolution algorithm (EA) have been pro-
posed such as combining K-means with ABC for clustering 
(Zou et al. 2010; Ebrahimian et al. 2005). The experimental 
study of the colony algorithm using an improved artificial 
bee colony (ABC) algorithm in this paper has been used 
to solve the ED problem, considering the objective func-
tion which consists of fuel cost of units, the constraints of 
the valve-point effect, the transmission losses, the balance 
of supply and demand in the system, the production limits 
the up-ramp and down-ramp rates, and the pollution issues. 
The resulting algorithm is implemented on the case study 
systems and the obtained results were compared with those 
of other algorithms. This algorithm has fast convergence 
and is less likely to be trapped in local minima compared 
to other algorithms (Balamurugan and Subramanian 2008).

In this paper, EED problem is solved using a hybrid 
approach carried out in an objective function consisting of 
cost and pollution considering transmission system power 
loss. Improved Artificial Bee Colony (ABC) algorithm, 
as a most novel approach employed on non-linear mod-
els, is used to solve mathematical model. The rest of the 
paper is presented as follows. In Sect. 2, problem formula-
tion is provided. Section 3 presents the proposed algorithm 
for solving the EED problem. In Sect.  4, case studies are 
presented. Finally, the paper is ended with conclusions and 
feature works in Sect. 5.

2 � Problem formulation

The aim of solving EED problem considering pollution is 
to simultaneously manage fuel cost and pollution from fos-
sil fuel consumption of generating units. This issue is con-
sidered as an optimization problem in which the objective 
function consists of fuel cost and pollution from generating 
units. In addition, various constraints are taken into account 
to solve this problem.

2.1 � Objective function

With EED problem, operational cost of generating units is 
expressed as the output power. Considering that fuel cost 

is the main cost factor of generating units, operational cost 
function of generating units is expressed as the input fuel 
cost. It is typically written as quadratic function in terms of 
output active power of generating unit. Thus, production cost 
function of generating units is given by:

where M is the number of generating units, ai, bi, and ci 
are cost coefficients of ith generating unit, PGi denotes ith 
generating unit’s active power, and FC is cost function of 
production in $.

Considering that SO2 and NOx are the main components 
for emissions from generating units, it is necessary to mini-
mize the amount of these gases in order to reduce the pol-
lution. Investigations revealed that output power is the most 
influencing factor in producing emissions by generating units. 
There is a nonlinear relationship between pollution of a gen-
erating unit and its output power. This can be modeled as a 
quadratic function in terms of output power. Thus, emission 
function of generating units is given by:

where αi, βi, and  γi are emission coefficients of ith generat-
ing unit, FE denotes total emission in kg. The EED prob-
lem’s objective function, comprising of fuel cost and emis-
sion of generating units, should be minimized as:

where w is weighting factor of fuel cost, hi is emission 
penalty factor from the viewpoint of utility. The value of 
emission of interest may be different. In reported research, 
various techniques have been proposed to define this factor 
(Muralidharan 2006). Typically, penalty factor for emission 
of each generating unit is defined as fuel cost divided by 
emission amount and then multiplied by maximum output 
power of that generating unit (AlRashidi and El-Hawary 
2006):
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 where hi is emission penalty factor and Pmax
Gi is the maxi-

mum output power of ith generating unit.

2.2 � Constraints

Constraints of EED problem are given as bellow:

2.2.1 � Power supply and demand balance in system

Total produced power by all generating units should be 
equal to total system demand.

where Pmh is the produced power of hth hydro system in 
mth sub-branch, Pmd is total load demand in mth sub-
branch, PLm is total active power loss in transmission 
lines in mth sub-branch. They should be calculated as in 
Karaboga (2005):

2.2.2 � Production constraint

For each generating unit, the maximum and minimum pro-
duced power, reactive power, and voltage are defined by:

3 � Improved Artificial Bee Colony (ABC) 
algorithm

3.1 � Standard ABC algorithm

Artificial Bee Colony is a new swarm intelligence algo-
rithm proposed by Karaboga (Karaboga and Bahriye 2008; 
Palanichamy and Babu 2008) which is motivated from the 
intelligent food foraging behavior of Honey Bee. Since the 
development of ABC it has been applied to solve different 
kinds of problems. The ABC algorithm is developed based 
on inspection the behaviors of real bees on finding nectar 
and sharing the information of food sources to the bees 
in their hive. The main advantages of the ABC algorithm 
over other optimization methods for solving optimization 
are simplicity, high flexibility, strong robustness, few con-
trol parameter, ease of combination with other methods, 
ability to handle the objective with stochastic nature, fast 
convergence.

Based on their experience and position, onlook-
ers choose appropriate food sources. Scouts select food 

(5)
Ni∑
i=1

Pmi +

Nh∑
h=1

Pmh − Pmd − Plm = 0

(6)Plm =

Ni+Nh∑
i=1

Ni+Nh∑
PmiBijPmj

(7)pi
min

≤ pi ≤ pi
max

sources randomly and without their experience. Each 
selected food source indicates a possible solution for 
the problem. The amount of nectar in food sources indi-
cates the fitness of the problem solution. The number of 
employed bees is equal to the number of onlookers and 
equal to the random initial population size. It is initial-
ized with the size of Ne, where Ne is the number of food 
sources and equal to employed bees’ number. Each solu-
tion Xi = (Xi1, …, Xin) is n-dimension vector. Then, this 
population enters into search process for employed bee, 
onlookers, and scouts (Dhillon et  al. 1993). The main 
steps of coding for the algorithm are given below:

•	 Initializing for initial solutions;
•	 Calculating initial solutions in objective function;
•	 Initial iteration;
•	 Finding new solutions based on new food sources Vij 

in neighborhood of Xij to produce new solutions by 
Eq. (8); use SI not CGS as primary units. Avoid com-
bining SI and CGS units. This often leads to confu-
sion because equations do not balance dimensionally. 
If you must use mixed units, clearly state the units for 
each quantity in an equation:

where K is the obtained solution in neighborhood of i, 
and Φ is a random number in (−1 to 1).

•	 Selecting the best food source or best solution between 
Vij and Xij;

•	 Calculating the value of possibility for solutions Xij 
based on the following relationship

In fact, in order to obtain fitness of solutions, the fol-
lowing relationship is used:

Solutions are in the range (−1 to 1).

•	 Generating new solutions (new sources) Vi based on 
watching bees from the solutions Xi and determining 
their possibilities Pi;

(8)vij = xij + Φij(xij − xkj)

(9)
Pi =

fiti
Ne∑
i=1

fiti

(10)fiti =

⎧⎪⎨⎪⎩

1

1 + fi
fi ≥ 0

1 + abs(fi) fi ≤ 0
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•	 Selecting the best solution (the most gluttonous bee) 
between Xij and Vij;

•	 Determining wasted sources and replacing them with sto-
chastic sources or stochastic sources produced by leader 
bee Xi using the following relationship:

3.2 � Improved ABC algorithm

Improved ABC (or IABC) algorithm is based upon gravita-
tional force between objects. The steps toward implementa-
tion of this algorithm are as follows:

3.2.1 � Initial framing

Ne value is chosen as initial solutions in search space of the 
algorithm. And, their fitness value is studied based on the 
objective function. Indeed, random selection of these solu-
tions is done in search space and indicates the employed bees.

3.2.2 � Movement of onlookers

The investigation of selected foods’ possibility based on 
Eq.  (13) and selection of one food source are completed in 
order to use roulette wheel for each onlooker and to deter-
mine nectar value for each of them on the basis of devel-
oped gravitational counterforce among onlookers. They are 
obtained Eqs. (10)–(15) (Karaboga and Bahriye 2008).

Counterforce between two objects (masses) m1 and m2 is 
given by the following relationship and depicted in Fig. 1:

where F12, r12, and G are counterforce, unit vector, and 
gravitational constant, respectively.

Likewise, based on the fitness values of bees, the follow-
ing relationships are provided.

(11)Xij = Xjmin + rand(0, 1) ∗ (Xjmax − Xjmin)

(12)Pi =
fiti
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�
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m1m2

r2
21

r̂21

(14)r̂21 =
r2 − r1
||r2 − r1

||

(15)Fikj
= G

F(�i) × F(�k)
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.
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(16)Xij(t + 1) = �ij(t) + Fikj

[
�ij(t) − �kj(t)

]

where F(θi) and F(θj) are the fitness expressed for 
employed bees. Equation (16) expresses the resulting effect 
for new supply source. Considering counter effect of all 
bees on the selected bee, Eq.  (16) is extended to Eq.  (17) 
(Zou et al. 2010):

3.2.3 � Movement of scouts

If function fitness is not corrected in following iterations of 
the algorithm, it will be named Limit and the correspond-
ing sources are called obsolete. With the aid of scouts’ 
movement, obsolete sources are recovered and replaced 
with the new sources. The movement process will be as 
follows:

3.2.4 � Replacement

If food sources found become better in the next steps com-
pared to the earlier steps, this value will be stored in bee 
memory.

3.2.5 � Program termination

The program is iterated until all iterations are terminated. If 
a satisfactory value is obtained, the program will terminate. 
Otherwise, the second step is restarted. Figure 2 illustrates 
the proposed algorithm’s flowchart.

4 � Case study

In this section, the results obtained from implementation of 
proposed algorithm are studied and analyzed. EED prob-
lem was solved in order to fulfill numerical studies and 
show the effectiveness of the proposed algorithm in two 

(17)xij(t + 1) = �ij(t) +

n∑
k=1

Fikj

[
�ij(t) − �kj(t)

]

(18)�ij = �ijmin + r.(�ijmax − �ijmin)
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Fig. 1   Counterforce between two objects
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case tests, i.e. IEEE 6 bus power system and IEEE 11 bus 
power system. The obtained results were compared with 
those of other techniques.

For numerical studies, parameters related to IABC 
are provided in Table  1. The precise selection of these 
parameters can be effective in reaching optimal solution. 
For instance, increasing the population size up to a defi-
nite value leads to improved quality and at the same time 
reduces the algorithm’s speed. Thus, in order to select pop-
ulation size, a reasonable trade-off should be made between 
accuracy and speed of the algorithm. Groups of bees should 
be also selected in a way that the number of available bees 
in each group is not high in order to avoid quality reduc-
tion. It must be also not too small to prevent the movement 
of bees and, in turn, to trap in local minima. Due to affect-
ability of movement of each member in the group, the max-
imum useful iteration of local search is equal to the number 

of group size. The maximum iteration of algorithm is also 
selected in a way to obtain problem solution with appropri-
ate accuracy at the least possible time. Further, tests carried 
out on two case systems are described and the numerical 
results of the proposed algorithm will be presented.

4.1 � 6‑Unit system

Coefficients of the fuel cost and generating units’ power 
limits as well as emission function coefficients of each gen-
erating unit in this system are presented in Tables 2 and 3 
(Dhillon et al. 1993). Formulation coefficients of transmis-
sion network losses in this system are expressed by Eq. (16) 
(Eusuff and Lansey 2003). EED problem for this system in 
two modes, i.e. with and without losses, in load levels vary-
ing between 500 and 1100 MW are calculated (Fig. 3).

Fig. 2   IABC algorithm’s flowchart

Table 1   Required parameters for the algorithm implementation

Parameter Value

Population size 30
Bee swarm groups 10
Local iteration number 3
Maximum algorithm iteration 30
Overshoot coefficient 2
Initial inertia 0.9
Final inertia 0.4

Table 2   Fuel cost coefficients for 6-unit system (Dhillon et al. 1993)

Generating 
unit

ai bi ci PGi
min PGi

max

G1 0.1525 38.54 756.8 10 125
G2 0.1060 46.16 451.325 10 150
G3 0.0280 40.40 1050 35 225
G4 0.3550 38.10 1243.53 35 210
G5 0.0211 36.326 1658.57 130 325
G6 0.0180 38.270 1356.66 125 315
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In modes of with/without power loss, the obtained 
results were compared with those of λ-iteration algorithm 
(Dhillon et  al. 1993), recursive algorithm (Dhillon et  al. 
1993), simplified recursive algorithm (Palanichamy and 
Babu 2008), differential evolutionary (Palanichamy and 
Babu 2008), PSO (Palanichamy and Babu 2008), SA (Xue-
bin 2009), shuffled frog leaping algorithm (Muralidharan 
2006), and provided in Tables 4 and 5 for the mode without 
power loss and Tables 6 and 7 of the mode with power loss. 
For the comparison purpose, importance weighting factors 
of each objective function is taken 5.0.

As seen in Tables above the proposed algorithm greatly 
outperforms the other techniques. In addition, ABC algo-
rithm-based technique has outstanding results both in terms 
of fuel cost and emission reduction.

4.2 � 11‑Unit system

This system’s characteristics consisting of fuel cost func-
tion’s coefficients, permissible production limits, and 
pollution function’s coefficients of each generating unit 
are provided in Tables  7 and 8 (Palanichamy and Babu 
2008). In this condition, EED is defined for this system 

Table 3   Emission function coefficients for 6-unit system (Dhillon 
et al. 1993)

Generating unit αi βi γi

G1 0.00420 0.33 13.86
G2 0.00420 0.33 13.86
G3 0.00683 −0.54551 40.267
G4 0.00683 −0.54551 40.267
G5 0.00460 0.5112 0.42.900
G6 0.00460 0.5112 0.42.900

Fig. 3   Variations of fuel cost and pollution functions of 6-unit sys-
tem

Table 4   Fuel cost comparison in various loads in 6-unit system without fuel cost power loss ($, h−1)

Load (MW) λ-iteration 
(Karaboga 
and Bahriye 
2008)

Recursive 
(Palani-
chamy and 
Babu 2008)

Simplified 
recursive 
(Karaboga 
and Bahriye 
2008)

Differential 
evolutionary 
(Karaboga 
and Bahriye 
2008)

Particle swarm 
optimization (PSO) 
(Karaboga and 
Bahriye 2008)

Simulated 
annealing 
(SA) (Eusuff 
and Lansey 
2003)

Shuffled frog 
leaping algorithm 
(Balamurugan 
and Subramanian 
2008)

The 
proposed 
algorithm

500 27092.4 27092.5 27092.5 27098.1 27097.5 27092.4 27091.4 27081.0
600 31628.7 31628.6 31628.6 31629.2 31634.9 31628.6 31627.7 31627.6
700 36314.0 36331.8 36313.9 36314.0 36314.2 36313.9 36312.4 36311.4
800 41148.4 41148.3 41148.3 41152.6 41160.3 41148.3 41147.7 41047.6
900 46131.8 46131.5 46131.8 46132.1 46160.6 46131.9 46130.1 46129.2
1000 51264.8 51264.5 51264.5 51264.5 51269.6 51264.4 51263.9 51263.9
1100 56546.8 56546.2 56546.6 56556.7 56546.1 56546.1 56545.7 56544.7

Table 5   Emission comparison in 6-unit system without power loss

Load (MW) λ-iteration 
(Karaboga 
and Bahriye 
2008)

Recursive 
(Palani-
chamy and 
Babu 2008)

Simplified 
recursive 
(Karaboga 
and Bahriye 
2008)

Differential 
evolutionary 
(Karaboga 
and Bahriye 
2008)

Particle swarm 
optimization (PSO) 
(Karaboga and 
Bahriye 2008)

Simulated 
annealing 
(SA) (Eusuff 
and Lansey 
2003)

shuffled frog 
leaping algo-
rithm (Bala-
murugan and 
Subramanian 
2008)

The 
proposed 
algorithm

500 361.635 361.634 361.634 361.859 362.225 361.63 361.552 360.669
600 338.993 338.992 338.992 339.820 338.990 338.99 338.94 337.93
700 434.380 434.380 434.380 434.453 434.605 434.380 434.330 433.320
800 547.797 547.796 547.796 547.453 547.844 547.790 547.747 547.745
900 679.241 679.241 679.241 679.283 679.724 679.240 679.171 679.170
1000 828.720 828.715 828.715 828.715 828.863 828.710 828.698 828.698
1100 996.223 996.224 996.218 996.218 996.222 996.220 996.101 996.102
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on various load levels between 1000 and 2500  MW. In 
order to compare the results of the proposed algorithm 
and other techniques, transmission network losses are 

neglected. As seen in Tables 9 and 10, the proposed algo-
rithm has high accuracy. Compared to the other computa-
tional algorithms in this system, the proposed algorithm 
has the minimum fuel cost and minimum pollution on 
each load level (Table 11; Figs. 4, 5, 6).

As seen in Tables 9 and 10, the proposed algorithm has 
high accuracy and it reaches the least possible fuel cost and 
pollution on each load level compared to the other compu-
tational algorithms.

5 � Conclusion

In this paper, Artificial Bee Colony (ABC) algorithm was 
used in order to solve economic dispatch problem consid-
ering reduction of costs related to operation and pollution 
in two standard systems. In fact, one approach for accurate 
prediction of power production cost in power systems is 
to model objective functions appropriately and precisely. 
Thus, in this paper, by taking into account these functions 
and employing a proper algorithm, this goal was real-
ized. In order to show the effectiveness of the algorithm, 
obtained results of load flow calculations for case sys-
tem using improved ABC algorithm were compared with 
those of various algorithms. Results of economic dispatch 
indicate that the proposed algorithm is highly effective 
in dealing with much more complicated problems. In the 
presented objective function, simultaneous minimization 
of production cost and reduction of transmission system 
losses were considered, leading to more successful achieve-
ments in finding optimal points near to global one. Thus, 
implementation of proposed algorithm in practical power 
systems is significantly effective in achieving more pre-
cise operating costs in these systems. For the purpose of 
ED problem, we will implement ABC algorithm on large 
standard and practical systems.

Table 6   The best results obtained in various loads in 6-unit system with power loss

Load (MW) P1 P2 P3 P4 P5 P6 PL Fuel cost ($ h−1) Emission (kg h)

500 21.163 20.199 92.879 91.575 144.300 139.290 9.208 27528.544 266.780
600 33.583 31.446 110.549 106.670 166.393 164.434 13.074 32246.836 349.616
700 46.179 46.787 127.404 119.559 192.214 185.397 17.580 37180.946 451.634
800 58.292 61.748 144.465 134.385 217.056 206.872 22.818 42312.869 574.568
900 70.069 77.374 160.863 151.208 240.496 228.766 28.777 47654.173 718.012
1000 83.517 93.108 181.405 165.884 262.994 253.674 35.488 53223.795 882.232
1100 96.085 113.542 193.265 178.856 289.136 275.198 42.950 59060.706 1065.035

Table 7   Fuel cost coefficients in 11-unit system (Palanichamy and 
Babu 2008)

Generating unit ai bi ci PGi
min PGi

max

G1 0.00762 1.92699 387.85 20 250
G2 0.00838 2.11969 441.62 20 210
G3 0.00523 2.19196 422.57 20 250
G4 0.00140 2.01983 552.50 60 300
G5 0.00154 2.22181 557.75 20 210
G6 0.00177 1.91528 562.18 60 300
G7 0.00195 2.10681 568.39 20 215
G8 0.00106 1.99138 682.93 100 455
G9 0.00117 1.99802 741.22 100 455
G10 0.00089 2.12352 617.83 110 460
G11 0.00098 2.10487 674.61 110 465

Table 8   Pollution function coefficients in 11-unit system (Palani-
chamy and Babu 2008)

Generating unit αi βi γi

G1 0.00419 −0.67767 23.93
G2 0.00461 −0.69044 24.62
G3 0.00419 −0.67767 33.93
G4 0.00683 −0.54551 27.14
G5 0.00751 −0.40060 24.15
G6 0.00683 −0.54551 27.14
G7 0.00751 −0.40006 24.15
G8 0.03355 −0.51116 30.45
G9 0.00417 −0.56228 25.59
G10 0.00355 −0.41116 30.45
G11 0.00417 −0.56228 25.59
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Table 9   Fuel cost comparison in various loads in 11-unit system

NA not mentioned in corresponding reference

Load (MW) λ-iteration 
(Karaboga 
and Bahriye 
2008)

Recursive 
(Palani-
chamy and 
Babu 2008)

Simplified 
recursive 
(Karaboga 
and Bahriye 
2008)

Differential 
evolutionary 
(Karaboga 
and Bahriye 
2008)

Particle swarm 
optimization (PSO) 
(Karaboga and 
Bahriye 2008)

Simulated 
annealing 
(SA) (Eusuff 
and Lansey 
2003)

Shuffled frog-
leaping algorithm 
(Balamurugan 
and Subramanian 
2008)

The 
proposed 
algorithm

1000 8502.30 8502.29 8502.29 8505.81 8508.24 8502.30 8502.02 8500.00
1250 9108.38 9108.38 9108.38 9117.63 9114.42 9108.38 9107.57 9107.56
1500 9733.54 9733.54 9733.54 9736.22 9733.33 9733.53 9732.83 9732.83
1750 10377.77 10377.77 10377.77 10377.86 10380.82 10377.53 10376.92 10376.00
2000 11041.08 11041.08 11047.08 11041.09 11041.09 11041.9 11041.79 11040.88
2250 11723.47 11723.47 11723.47 11723.47 11725.68 11723.47 11723.24 11723.223
2500 12424.94 12424.94 12424.94 12425.06 12428.63 NA 12423.55 12482.45

Table 10   Pollution comparison in various loads in 11-unit system

Load (MW) Iteration λ 
(Karaboga 
and Bahriye 
2008)

Recursive 
(Palani-
chamy and 
Babu 2008)

Simplified 
recursive 
(Palani-
chamy and 
Babu 2008)

Differential 
evolutionary 
(Karaboga 
and Bahriye 
2008)

Particle swarm 
optimization (PSO) 
(Karaboga and 
Bahriye 2008)

Simulated 
annealing 
(SA) (Xuebin 
2009)

Shuffled frog-
leaping algorithm 
(Balamurugan 
and Subramanian 
2008)

The 
proposed 
algorithm

1000 205.205 205.204 205.204 208.206 205.012 208.20 205.181 205.180
1250 339.870 339.870 339.870 339.935 345.669 339.87 339.751 339.751
1500 540.545 540.545 540.545 544.298 545.307 540.540 540.010 545.000
1750 807.220 807.220 807.220 807.236 807.863 807.23 806.770 205.770
2000 1139.912 1139.911 1139.901 1139.911 1142.182 1139.91 1139.835 1139.834
2250 1538.600 1538.600 1538.600 1538.600 1538.659 1538.60 1538.436 1537.436
2500 2003.301 2003.300 2003.300 2003.350 2009. 720 2003.300 2002.903 2002.902

Table 11   11-unit system Load (MW)

1000 1250 1500 1750 2000 2250 2500

P1 86.874 95.100 102.549 113.673 120.983 131.482 138.833
P2 73.038 82.932 87.927 92.678 100.917 105.999 112.597
P3 89.432 94.632 108.146 116.220 127.119 135.618 146.121
P4 76.432 101.317 125.704 144.557 176.199 199.015 221.629
P5 50.250 61.873 80.910 93.665 109.977 123.151 136.070
P6 78.499 97.464 125.101 147.075 173.713 192.275 218.301
P7 52.087 70.226 80.243 94.942 108.942 123.486 144.685
P8 124.540 170.226 204.383 240.515 271.704 313.036 346.727
P9 123.872 156.984 186.550 227.461 261.696 292.488 324.536
P10 125.284 156.686 198.439 246.017 279.665 323.688 362.267
P11 119.800 162.458 200.048 233.196 269.084 309.762 348.234
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