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1 Introduction

HAL, the computer in the movie “2001: A Space Odys-
sey,” tells a crew member: “Dave, although you took very 
thorough precautions in the pod against my hearing you, 
I could see your lips move.” This depicts how speech is 
understood multimodally because each perceptual function, 
by itself, distinguishes the utterance. When the auditory 
and the visual perceptual functions are active jointly, they 
fuse separate recognition results at a higher level to yield 
optimal speech understanding. Emotion also contributes 
to this fusion process, because muscles move during utter-
ance, depending on mood and prosodic features.

We know that speech is more intelligible when the lis-
tener can see the speaker’s face. This is due primarily to 
lip movement. Some phonemes may be confused in the 
audio domain (e.g.,/m/and/n/) but not in the visual domain 
(Fig. 1), where they correspond to distinct visemes. Pho-
neme-to-viseme mapping highlights this peculiarity in the 
human understanding of speech. Because there are fewer 
visemes than phonemes, the mapping between phoneme 
subsets and a given viseme is many-to-one. As a result, 
the visual interpretation of speech, in order to be effective, 
requires understanding speech acoustically. However, mere 
audio interpretation also proves inadequate for distinguish-
ing similar sounds whose meanings differ, even when those 
sounds have different visemes.

There are various application contexts for automatic 
speech recognition (ASR): speech-to-text transcription in 
harsh, noisy conditions, natural interfaces in automobiles, 
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access to systems for the visually or hearing impaired, 
automatic captioning of audiovisual streams, audiovisual 
data mining, natural user interfaces in handheld and wear-
able devices, etc. Such applications demand a multimodal 
approach to ASR but need implementations whose compu-
tational paradigms offer flexibility and adaptability.

Speech is the most effective way for human beings to 
communicate. It is also ideal between a human being and a 
machine. However, the performance gap between natural, 
human speech recognition and artificial, machine speech 
recognition is still huge, especially in noisy environments. 
Personal communication and information systems are rap-
idly evolving toward wearable systems. Consequently, the 
human–machine interface and the interaction paradigms 
need to feel natural and reliable, given the harsh operating 
conditions of these new, deeply embedded computing sys-
tems. Multimodal, speech-recognition systems will be one 
of the most important enabling technologies for such soon-
to-come, deeply embedded systems (Kölsch et al. 2006; 
Marshall and Tennent 2013).

2  Related work for AVSR

The AVSR approach to ASR sytems from Petajan’s work 
(Petajan 1984) is still an active research field. Its hot topics 
concern lip localization, feature extraction, and methods for 
fusing audio and visual information. Hidden Markov mod-
els (HMMs) were proposed first, followed by soft comput-
ing paradigms, mainly artificial neural networks (ANNs). 
A combination of HMMs and ANNs were applied by Noda 
(Noda et al. 2015), who experimented with a connectionist-
hidden Markov model system for noise-robust AVSR. Dupont 
(Dupont and Luettin 2000) developed a sensor-fusion module 
responsible for joint modeling through time of acoustic and 
visual feature streams that uses multistream hidden Markov 
models (MHMMs). Kasabov (Kasabov 1998; Watts 2009) 

demonstrated that the evolving connectionist paradigm is well 
suited to the challenge of fusing auditory and visual informa-
tion at the decision stage (Kasabov et al. 2000).

Recognizing speech presents challenges because speech 
signals vary greatly due to many factors related to how 
the utterance is produced (different speakers, different 
ways of speaking, different acoustics, different emotional 
states, different physical states, different ages, physiology 
changed by aging, etc). Speech is more than mere acous-
tics; it involves collateral visual communication (moving 
lips, facial expressions, and some body language), as well 
as explicit gesture (motion and movement of hands and 
arms). Two main challenges need to be addressed: adapting 
to variability and fusing multimodal data.

Multimodal speech recognition is founded on human 
beings’ natural ability to communicate by integrating vari-
ous sensory signals, while using context of situation to 
make decisions about what utterances they are hearing. 
For example, the McGurk and MacDonald experiment 
(McGurk and MacDonald 1976) showed that human beings 
combine auditory and visual information during interpre-
tation (Wright and Wareham 2005). As a result, decisions 
about the meaning of a speech sound may differ according 
to situational audiovisual context. This experiment shows 
that audiovisual speech processing at recognition time ena-
bles two embedded capabilities, one for merger and one for 
combining. Merging and combining at the phoneme-recog-
nition stage are powerful abilities that enable the AVSR to 
fuzzily remedy ambiguities in deciding on the most prob-
able phoneme-to-grapheme transcription of the uttered 
speech. Implementing such fusion through soft computing 
proved effective, especially when the AVSR system uses 
two stages, a lower stage to extract features and an upper 
stage to fuse decisions (Noda et al. 2015; Malcangi et al. 
2013; Patel et al. 2005; Stork et al. 1992).

Audiovisual speech recognition (AVSR) (Basu et al. 
1999; Massaro 1996; Benoît et al. 1996; Salama et al. 
2014; Bernstein and Auer 1996) enhances speech recogni-
tion by combining it with image recognition so that, e.g., 
heard utterances are supplemented by lip reading, which is 
especially helpful in harsh audio environments. The com-
mon approach to implementing AVSR systems is to merge 
audio features and video features into a single pattern-
matching framework. This approach leads to highly com-
plex systems that are hard to tune when they are actually 
up and running (Kaucic et al. 1996; Yang and Waibel 1996; 
Steifelhagen et al. 1997; Malcangi and de Tintis 2004). An 
alternative is to run the utterance-recognition system and 
the lip-reading system independently at the feature-match-
ing stage and then fuse the decision at a later stage. Using 
such two-stage AVSR frameworks offers several advan-
tages. First, it makes for more flexible and reliable AVSR. 
Second, it enables us to follow soft computing paradigms. 

Fig. 1  Phonemes that may be confused in the audio domain (e.g.,/m/
and/n/) might correspond to distinct visemes in the visual domain
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This not only lowers complexity but also enhances perfor-
mance under harsh conditions, since it relies on fuzzy logic 
and neural networks.

The fuzzy-logic approach to AVSR is proposed by 
(Badura et al. 2014), who find it effective. But fuzzy logic 
has some drawbacks in terms of how it is to be modeled. 
For example, we need to establish how knowledge is to 
be developed (the rule set and membership functions). 
We need to choose a method for rule explosion. Various 
approaches have attempted to address these issues (Joo 
2003), and knowledge development and rule explosions 
have both been efficiently optimized under the evolving 
paradigm (Kasabov 1998).

Methods from computational intelligence and tech-
niques for adaptive machine learning have been success-
fully applied to AVSR, but certain problems with the evolv-
ing nature of the speech-recognition process remain open. 
One concerns the best choice of architecture to guarantee 
lifelong learning. Excessive training time is another impor-
tant issue, given the real-time nature of the AVSR task.

Approaches that rely on an evolving connectionist sys-
tem (ECoS) show promise for developing AVSR suited 
to highly variable phenomena. The simple evolving con-
nectionist system (SECoS), a minimal implementation of 
ECoS, did a reasonably good job of recognizing isolated 
phonemes (Watts and Kasabov 2000). Its ability to learn 
and make generalizations was tested on the Otago Speech 
Corpus (Sinclair and Watson 1995), a body of segmented 
words representing 45 phonemes. The SECoS model’s per-
formance was evaluated compared to the more traditional 
connectionist structure, the multilayer perceptron (MLP), 
a model widely adopted in deploying ASRs and AVSRs, 
using the same datasets. SECoS outperformed MLP, show-
ing good data recall and good adaptability to new data. 
The cost of this performance is seen in the large number of 
nodes in its hidden layer.

Because fuzzy neural networks are an optimal connec-
tionist paradigm for modeling linguistic rules through the 
behavior of a process, we applied the evolving fuzzy neu-
ral-network (EFuNN) paradigm (Kasabov 2001) to imple-
ment the decision layer for a previously developed fuzzy-
based AVSR (Malcangi et al. 2013). The purpose of that 
research was to develop an intermediate stage between the 
stage that matches phonemes to visemes and the stage that 
transcribes speech to text. This enables merger and combi-
nation to be completed before matching errors caused by 
noise are propagated to the stage that transcribes phonemes 
to graphemes.

The remainder of the paper is organized as follows. 
Section 2 describes related work on AVSRs. Section 3 
presents the framework, the proposed evolving adaptive 
AVSR system architecture and the feature-extraction units. 
Section 4 discusses the fusion method, i.e., applying the 

EFuNN evolving architecture to fuse phoneme-viseme 
classification and predict phoneme occurrence. Section 5 
describes experimental simulations and performance 
evaluation. Finally, Sect. 6 gives conclusions and future 
development.

3  Framework

Differently from the existing works we propose a new 
framework for adaptive speech recognition was defined and 
set up, according to the model for evolving intelligent sys-
tems (EIS). Among ECoS paradigms, we opted for EFuNN 
because of its ability to generate evolving rules that can be 
deployed in a fuzzy logic engine. Adaptation is driven by 
an analysis module that acts on the feature-decision layer, 
evaluating output from the decision-fusion layer and evolv-
ing in response to changes in surrounding context.

3.1  The proposed adaptive AVSR system architecture

The architecture for the proposed AVSR system consists 
of three feed-forward stages with feedback that enables its 
evolving functionality (Fig. 2). The first stage has three par-
allel operating units devoted to extracting and classifying 
features. This hard computing stage is based on (audio and 
video) digital signal-processing algorithms (DSP). The sec-
ond stage, a soft computing fusion and combination unit, 
is based on a fuzzy logic engine (FLE). The third stage is 
a speech-to-text-transcription unit based on artificial intel-
ligence (AI). The feedback goes through a transversal layer 
that exploits the EFuNN’s capacity for quickly generating a 
set of evolved rules, which are applied to the fuzzy engine 
at runtime.

System input consists of audio and video streams. Audio 
information is captured by an array microphone (STMi-
croelectronics MEMS microphones). It is then conditioned 
and digitalized at 16 kHz/16 bit. Video information is cap-
tured by a camera recording at 24 fps. Application-specific 
software was developed to jointly capture audio and video 
on a frame-by-frame basis. The hardware and software 
setup for the audio-visual front-end is shown in Fig. 3. A 
MATLAB-based graphical user interface was developed to 
support system development and testing.

3.2  The feature‑extraction unit

Phonemes and visemes (Table 1) are matched, scored, and 
encoded at the lower stage. Matching is based on signal-
processing methods so as to classify, score, and store the 
utterance and its related visual sequence, frame by frame.

The feature-extraction unit consists of three distinct 
subsystems, one that processes the utterance (Fig. 4a) to 
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match phonemes, a second that processes video frames 
(Fig. 4b) to match visemes, and a third that measures 
the similarity of the matched phonemes and visemes. 
Phoneme and viseme matching units are independent 
systems. The similarity-scoring subsystem depends on 
the matching and scoring subsystems for phonemes and 
visemes.

The phoneme-extraction unit segments the audio stream 
into short intervals (20.85 ms), measures the features 
(pitch, formants, and intensity), and executes its classifica-
tion (phoneme: score, duration).

The following features were used:

Root mean square (RMS):

m: sample number
N: total samples in a frame
s: frame
j: frame index
Zero-crossing rate (ZCR):

Auto correlation (AC):

Cepstral linear prediction coefficients (CLPC):

Frame-by-frame uttered speech (j) is encoded in feature 
vectors that are matched against a set of phoneme tem-
plates to classify and score the jth frame. Euclidean distance 
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Fig. 2  Audiovisual speech-
recognition system with deci-
sion layer based on fuzzy logic 
engine fed with rules tuned 
using EFuNN paradigm

Fig. 3  Audio-visual front-end hardware setup
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metrics are applied to match each frame. Phoneme dura-
tion is measured as the number of contiguous audio frames 
(windows) that the current phoneme matches.

The viseme-extraction unit measures lip features (height, 
width, and duration) on each video frame (1/24 s) and 
yields a classification (viseme: score, duration). Visemes 

are identified by the height-to-width ratio of lip contour. To 
measure lip features, mouth contour is located after the face 
has been detected, whereupon lip position is determined. 
Four key lip points (Fig. 5) are pinpointed, two for verti-
cal and two for horizontal, delimiting effective lip contour. 
Height and width are measured to create a relative index 
from the ratio of height to width. The viseme is then identi-
fied and scored, employing a matching method based on a 
set of templates and its Euclidean distance metrics. Viseme 
duration is then measured as the number of contiguous vis-
ual frames that the viseme matches.

The phoneme-viseme-comparison unit is a lookup table 
that scores how much the current phoneme is phonetically 
similar to the current viseme (Cappelletta and Harte 2012). 
The merge-and-combine unit predicts the phoneme on a 
window-by-window basis, running a fuzzy logic engine 
tuned according to the EFuNN paradigm. The output of 
this unit is a stream of phonemes (one phoneme per win-
dow) ready for phoneme-to-grapheme transcription. The 
phoneme-to-text-transcription unit applies a ruleset to 
transform each phoneme into the corresponding alphabetic 
representation, yielding the final text transcription of the 
uttered word (or a homophone). EFuNN-based feedback 
updates the fuzzy engine’s rule set when changes in context 
occur (e.g., noise increases, new speaker, etc.) or errors are 
found at the higher transcription layer.

4  Evolving Fuzzy modeling of AVSR

The fuzzy logic-based inference paradigm was applied to 
draw inferences about phonemes from a set of audio and 
visual features, handling uncertainty due to noise and great 
variation in both audio and visual information. The main 
issue in designing the fuzzy logic engine was setting the 
rules. This was accomplished by applying the evolving 
neuro-fuzzy EFuNN paradigm, a neuro-fuzzy structure that 
evolves by creating and modifying its nodes and connec-
tions after learning from input.

Table 1  Viseme-class coding and the corresponding phoneme sym-
bols

Viseme-classcode Phoneme(s) symbol

0 Pause

1 ae, ax, ah

2 aa

3 ao

4 ey, eh, uh

5 er

6 y, iy, ih, ix

7 w, uw

8 ow

9 aw

10 oy

11 ay

12 h

13 r

14 1

15 s, z

16 sh, ch, jh, zh

17 th, dh

I8 f, v

19 d, t, n

20 K g, ng

21 p, b, m

Fig. 4  Utterance of the word menu, its phonemic transcription, and 
corresponding visemes

Fig. 5  After four key lip points were tagged, height and width are 
measured to index from the ratio of height to width
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The EFuNN paradigm connects using a feed-forward 
architecture of five layers of neurons and can be trained 
with neural-network methods (Kasabov 1998, 2001). By 
evolving it obviates the need to adapt to an a priori architec-
ture, because it starts with a minimal set of initial nodes and 
then grows or shrinks at training and learning time, depend-
ing on its data input. This strategy avoids the problem of 
catastrophic forgetting and enables the network to be fur-
ther trained with new data, retaining the effects of previous 
learning because new nodes are created without removing 
the old ones, thus preserving previous knowledge. Pruning 
and aggregation at training time avoid overtraining during 
learning by removing weak connections and their nodes.

The EFuNN is a five-layered, feed-forward, artificial neural 
network, in which each layer performs one specialized func-
tion in the fuzzy logic engine: input, condition, rule, action, 
and output (Fig. 6). The input layer (layer 1) represents (crisp) 
input variables that are presented to the nodes on the condi-
tion layer. The nodes on the condition layer (layer 2) are fuzzy 
membership functions that perform fuzzification on crisp 
input. The rule layer is the evolving layer (layer 3), which can 
create and aggregate the nodes, adapting them to changes in 
fuzzified input data. The nodes in this layer shape the rules 
that embed map the correspondence of input to output. The 
action layer (layer 4) consists of fixed-shape, fuzzy member-
ship functions that fuzzily quantify output values. This layer 
computes the degree to which an output vector belongs to an 
output membership function (MF). The output layer (layer 5) 
defuzzifies the action output.

The layers perform their functions as follows:

•	 Layer 1: input (crisp values).
•	 Layer 2: condition (input membership functions).
•	 Layer 3: association (rules).

•	 Layer 4: action (output membership functions).
•	 Layer 5: output (crisp values).

The learning algorithm consists mainly of certain key 
actions, such as updating connections, aggregating nodes, 
pruning nodes, and extracting rules. At layer 3, the rule 
nodes cluster input–output data associations. Two connec-
tion weights, W1 and W2, are adjusted so that W1 is related 
to the fuzzified input vector and W2 is related to the corre-
sponding output vector. To adjust W1, supervised learning 
based on output error is applied. To adjust W2, similarity is 
applied, using the cluster method.

To train and test the fuzzy engine, a sequence of pat-
tern data was recorded from the output of the phoneme-
extractor and viseme-extractor units. Data vectors x(t) of 
the input with the corresponding output were assembled to 
train and test the EFuNN. The data vector consists of five 
input measurements and one output. The five input meas-
urements are: phoneme recognized (PR), phoneme score 
(PS), phoneme duration (PD), viseme recognized (VR), 
viseme score (VS), and phoneme-viseme similarity (PVS). 
The output item is the predicted phoneme (PP). Thus:

The vector, indexed by time-window number n, is com-
piled throughout the utterance. The size of Tw is compatible 
with the quasi-stationary characterization of speech (from 
20 to 40 ms). However, it must also be compatible with the 
duration of a visual frame (1/24 s, i.e., 41.7 ms). Hence, 
the time window was set to 20.85 ms, half the duration of a 
visual frame. The dataset was generated from basic uttered 
phoneme sequences (syllables), with and without added 

(5)x(n) = [PR, PS, PD, VR, VS, PVS, PP]

n = t/Tw

Fig. 6  EFuNN evolving 
architecture applied to fuse 
phoneme-viseme classification 
and to predict phoneme occur-
rence
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background noise. It consists of 520 patterns x(n), one per 
frame, each fully describing the association between input 
and output. The dataset was split randomly to yield two 
data subsets, one with 80 % of the vectors for training, the 
other with 20 % for testing. The NeuCom (2016) environ-
ment was used to model and simulate the EFuNN by apply-
ing the following setup:

•	 Sensitivity threshold: 0.99
•	 Error threshold: 0.01
•	 Number of membership functions: 3
•	 Learning rate for W1: 0.1
•	 Learning rate for W2: 0.1
•	 Node age: 60

The sensitivity and error thresholds affect the generation 
of new rule nodes. If the sensitivity among inputs increases, 
then the network is more likely to create new rule nodes. 
If the threshold for error between actual output and 
desired output decreases, then the network is more likely 
to increase rule nodes. As the threshold increases, the net-
work tends to retain its learning over a longer time. If prun-
ing is on, i.e., the network’s ability to remove connections 
between the layers while maintaining its original training 
performance, the network is less likely to reproduce a rule 
node that was pruned previously. The learning rate influ-
ences the training process. As the learning rate increases, 
the node will saturate faster, reducing its capacity to gen-
eralize. As the age threshold increases, the network’s abil-
ity to retain what it has learned over the time increases. If 
aggregation is on, the network tries to aggregate the rules to 
form global behavior descriptions, thus avoiding increases 
in size that would make it unwieldy. The number and shape 
of membership functions depends directly on the dynam-
ics of the input and output data and on how the functions 
are measuring data in the crisp domain. The more functions 
there are, the more the interconnections at the input and 
output layers.

5  Performance evaluation

The adaptability of the AVSR experimental setup was eval-
uated on the basis of the evolving functionality yielded by 
the EFuNN. Two sets of tests were conducted, the first to 
check the AVSR’s ability to fuse the AV decision and the 
second to check adaptation through the evolving method. 
To run the first test, the word menu, with the right pho-
neme sequence, was first entered. Then, the same word 
with the phonemes/m/and/n/swapped was entered. To run 
the second test, environmental conditions for the utterance 
of the word menu were altered by adding audio noise. The 
EFuNN’s performance was tested by checking its ability 

to recover from having confused similar phonemes in the 
two conditions, noise-free and noisy. The word was uttered 
and put into the AVSR forty times. The audio and the vis-
ual scores were collected to train the EFuNN by tuning the 
rules to be loaded into the fuzzy engine, then new input of 
forty utterances of word menu was been sent to the AVSR 
system. The fused decisions were presented graphically, 
grouping the forty utterances of the word menu by pho-
neme class.

5.1  Decision‑fusion test

One hundred utterances of the word menu were uttered 
in noise-free conditions. The EFuNN was trained from 
scratch with the output from the audio-visual scoring layer, 
then tested. The results (Fig. 7) showed that the EFuNN’s 
self-teaching ability is adequate to learn from data, recover-
ing from confusion over similar phonemes (e.g.,/m/and/n/in 
the uttered word menu). The fuzzy engine was trained once 
(Fig. 7a) and twice (Fig. 7b) without any knowledge of 
the/m/-and-/n/phoneme mismatch. Then (Fig. 7c), the/m/-
and-/n/phoneme mismatch was tested. The fuzzy engine 
learned how to fuse and combine phonemes and visemes 
recognized by independent audio and visual units.

The previously trained AVSR evolved by acquiring more 
knowledge about fusing audio and visual data. Its ability to 
recognize right the/m/-/n/phoneme sequence (Fig. 8a) and 
to recover from the mismatched one (Fig. 8b) improved.

5.2  Adaptation test

Additive noise (24 dB) was mixed, in linear fashion, into 
the utterance of the word menu and fed as input to the 
AVSR. No special noise-recovery strategy was applied at 
the (hard computing) lower stage. The EFuNN was allowed 
to evolve incrementally with the new set of noisy decision. 
The test sequence was then executed. The evolved ruleset 
for decision fusion was tested. Before evolving, the AVSR 
mismatched the/m/-/n/phoneme sequence (Fig. 9a, b). After 
evolving with new knowledge about the noisy conditions 
(24 dB noise), its recognition rate was quite good. It never 
confused the two similar phonemes/m/and/n/at 0 dB noise 
level (Fig. 10a, b). It performed only slightly less well at 
24 dB noise (Fig. 10c, d), thus demonstrating its ability to 
evolve without forgetting.

6  Conclusion and future development

We proposed a new framework for adaptive speech recog-
nition based on the model for evolving intelligent systems 
(EIS). We opted for EFuNN because of its ability to gen-
erate evolving rules that can be deployed in a fuzzy logic 
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Fig. 7  Desired and actual output values of the trained by EFuNN for noise-free utterance of the word menu: the fuzzy engine was trained (a) 
once and (b) twice without knowledge of any/m/-/n/mismatch; then (c) the/m/-/n/phoneme mismatch was tested

Fig. 8  The evolved AVSR system performed better at recognizing the right/m/-/n/phoneme sequence (a) and at recovering from the mismatched 
one (b)

Fig. 9  Under noisy conditions, the AVSR performs badly at the feature and scoring layer
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engine. Adaptation is driven by evaluating output from the 
decision-fusion layer and evolving in response to changes 
in surrounding context.

The fuzzy logic-based inference paradigm was applied 
to draw inferences about phonemes from a set of audio 
and visual features, handling uncertainty due to noise 
and great variation in both audio and visual information. 
The evolving neuro-fuzzy EFuNN paradigm, a neuro-
fuzzy structure that evolves by creating and modifying its 
nodes and connections after learning from input, has been 
applied.

These results show that the evolving fuzzy neural-net-
work (EFuNN) paradigm can be successfully applied to 
develop a fuzzy logic-based inference engine for merging 
and combining phonemes and visemes at the intermediate 
stages of a layered AVSR system. Several advantages were 
found, mostly in performance. These included an increase 
in reliability because system complexity was reduced.

Future development will focus on extending the evolv-
ing and adapting capabilities of the ECoS paradigm to the 
upper and lower stages of the AVSR system. One remaining 
issue is how to integrate the dynamic, evolving fuzzy neu-
ral-network paradigm into the AVSR in a proactive fashion. 
This would allow evolving capabilities to be embedded in 
the system. Another issue is how to apply the EFuNN par-
adigm to the system’s lower layer, scaling it according to 
that layer’s pattern-matching nature, and husbanding hard 
computing power for the important task of conditioning 
and feature extraction. Disambiguation is also a key issue 
that will affect the AVSR’s upper layer at the phoneme-to-
grapheme transcription stage and the syntactic transcription 
of the utterance.
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