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1  Introduction

Fuzzy models are developed by fuzzy rule-based classifi-
cation systems, where the output of systems is crisp and 
discrete. The possibility to work with imprecise data and 
missing values, and also, human understandable form of 
the acquired knowledge, are the main advantages of fuzzy 
models (Mansoori et  al. 2008; Marin-Blazquez and Shen 
2002). Basically, the design of a fuzzy rule-based clas-
sifier tries to find a compact set of fuzzy if–then rules to 
be able to model the input–output behavior of the system. 
Many approaches for generating fuzzy classification rules 
from data have been proposed in the literature. These meth-
ods include heuristic approaches (Mansoori et  al. 2007; 
Ishibuchi and Yamamoto 2004; Ishibuchi and Nakashima 
2001), neuro-fuzzy techniques (Nauck and Kruse 1997; 
Almaksour and Anquetil 2011), association rule discovery 
(Alcala-Fdez et  al. 2011a), genetic algorithm (Mansoori 
et al. 2008), and based on evolving systems (Iglesias et al. 
2010; Lughofer and Buchtala 2013; Angelov et al. 2008).

In high-dimensional problems, the rule base of a fuzzy 
classification system would have too many rules (Rehm 
et  al. 2007). So, reducing the search space of fuzzy rules 
in designing phase of classifiers is an important concern. 
In several researches, many methods have been suggested 
for solving this problem so far. For example, rule reduc-
tion methods using neural networks (Halgamuge and Gle-
sner 1994), clustering techniques (Chiu 1994) and similar-
ity measures (Setnes et al. 1998) have been recommended. 
Also, there have been GA-based methods for selecting a 
set of cooperative rules among the set of candidate rules 
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(Cordon et  al. 1999; Roubos and Setnes 2000). Feature 
weighting is another technique for decreasing softly and 
smoothly the influence of features in the rules (Lughofer 
2011). However in high-dimensional problems, obtaining a 
small and efficient rule base is difficult and the interpret-
ability of the system could not be guaranteed (Alcala-Fdez 
et al. 2011a; Cassillas et al. 2001).

Another suggested approach for reducing the search 
space is to generate some fuzzy rules with restricted ante-
cedent conditions (Ishibuchi and Murata 1997). In this 
regard, some effective features from a high-dimensional 
problem should be selected. Feature selection or data 
dimensionality reduction refers to the process of identify-
ing a few, yet more important, variables or features which 
help in predicting the outcomes. There are many potential 
benefits for feature selection. These include facilitating data 
visualization and data understanding, reducing the meas-
urement and storage requirements, decreasing the training 
and utilization times and avoiding the curse of dimension-
ality to improve the prediction performance.

In general, the feature selection methods can be grouped 
in three categories: filters, wrappers and embedded mod-
els. Filters are used to score all features via a preprocess-
ing stage and then select the best ones. In wrappers, some 
feature sets are selected and then evaluated via the designed 
classifiers. The embedded methods, however, are specific to 
the selected learning machines (Guyon and Elisseeff 2003; 
Tuv et al. 2009) and the process of feature selection is done 
in their training step. Some of the common feature selec-
tion approaches include: Fischer criterion (Fisher 1936), 
fuzzy entropy (Lee et  al. 2001; Shie and Chen 2007) and 
similarity measure (Luukka 2011), mRMR method (Peng 
et  al. 2005), and mutual information (MI) (Estevez et  al. 
2009). However, computing Shannon’s MI between high-
dimensional vectors is impractical because the number of 
samples and so the required CPU time is high (Estevez 
et al. 2009).

Feature selection methods can also be viewed from 
another perspective. Traditional algorithms select the fea-
tures for all classes in common while class-specific feature 
selection approaches try to find a subset of features for 
each class separately. Using class-specific feature selec-
tion methods, a better discrimination of classes have been 
resulted in most of cases (Pineda-Bautista et  al. 2011). 
Also, recently some feature selection methods have been 
proposed which combine fuzzy and other approaches. 
Neuro-fuzzy solutions (Chakraborty and Pal 2004) or 
genetic feature selection methods (Yang and Honavar 
1998; Casillas et al. 2001) constitute most of the researches 
in this field. However, computational complexity is their 
major difficulty.

Impressing the second preference of fuzzy models, we 
have proposed a fuzzy feature selection algorithm in this 

paper. Its aim is to choose the more relevant features; those 
which can distinguish the distinct classes well. Our method 
is a class-specific approach which tries to find a subset of 
features for each class separately. It combines the interclass 
distance concept [as in Fisher (1936)] with the compatibil-
ity degree of data in some predefined fuzzy sets on each 
feature to evaluate that feature. Since our method processes 
each feature individually, it can be applied efficiently on 
high-dimensional data.

Our approach also selects some suitable fuzzy sets for 
each dimension in order to have a good (small and so more 
interpretable) set of rules. Moreover, a new criterion for 
evaluating the capability of each candidate rule in discrimi-
nating the positive and negative patterns is also introduced. 
It leads to select more powerful rules which result in a 
more efficient rule base.

The rest of this paper is organized as follows. In Sect. 2, 
the general design of fuzzy rule-based classification sys-
tems is explained. Our fuzzy method for feature selection 
is described in Sect. 3. In Sect. 4, we explain our method 
for designing fuzzy classifiers. The experimental results are 
presented in Sect. 5. Section 6 concludes the paper.

2 � General design of fuzzy rule‑based classification 
systems

Consider a classification problem with a data set of m pat-
terns, DS = {(Xp;yp), p = 1..m}. For pth pattern, the input 
vector of variables, Xp, is n-dimensional. That is, Xp = [xp1, 
…, xpn] with feature labels {fi, i =  1, …, n}. The output 
variable, yp, is a class label in M classes such that yp∈{c1, 
…, cM}. We assume that each input variable, xpi, is rescaled 
to unit interval [0,1] using a linear transformation that pre-
serves the distribution of the data set.

In this paper, the classical single model architecture of 
fuzzy classifiers is utilized to handle the multiclass classi-
fication problems. The benefits of this model are simplic-
ity, transparency and more interpretability of the designed 
classifiers (Lughofer and Buchtala 2013). In this model, the 
general form of fuzzy if–then rules is:

where X = [x1,…, xn] is an input vector, Aji (i = 1, …, n) 
indicates the fuzzy set on variable xi in the antecedent part 
of Rj, Cj is the consequent class (that is, Cj∈{c1, …, cM}), 
and N is the number of fuzzy rules. Herein, the fuzzy rule Rj 
is abbreviated as Aj ⇒ class Cj where Aj = Aj1 × ··· × Ajn. 
Generally, designing a fuzzy classifier can be described as 
generating a set of N fuzzy rules in the form of (1).

The first step in generating fuzzy rules is partition-
ing the pattern space into fuzzy subspaces. If a subspace 

(1)

RuleRj : if x1 isAj1 and . . .

and xn isAjn then classCj, for j = 1, . . . ,N
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contains some patterns, a fuzzy rule will refer to it. Parti-
tioning is usually done using K suitable membership func-
tions. The most common type of membership functions is 
triangular because they are simpler and easily understand-
able by humans. Moreover under some assumptions, the 
fuzzy partitions built out of the triangular membership 
functions lead to entropy equalization (Pedrycz 1994). 
Figure 1 shows these membership functions for four dif-
ferent values of K. Though up to five membership func-
tions is common in generating fuzzy classification rules, 
the number of entities a human can reliably handle is seven 
to nine at most. So, this is often used as upper bound on 
the fuzzy sets in fuzzy modeling techniques (Gacto et al. 
2011).

For the problem of generating fuzzy classification 
rules, some approaches have been suggested in Man-
soori et  al. (2007) and Ishibuchi and Yamamoto (2004). 
The approach in Ishibuchi and Yamamoto (2004) applies 
the fuzzy set don’t care (with membership function 
µdon′t care(xi) = 1, ∀xi ∈ [0, 1]) beside the 14 triangular 
fuzzy sets in Fig. 1. Using this don’t care fuzzy set for a 
variable in the antecedent part of a rule will have that vari-
able to be removed and so reduce the length of rule.

The consequent class Cj of fuzzy rule Rj in (1) is deter-
mined using the patterns in the corresponding fuzzy 
subspace. The compatibility grade of training pattern 
Xp  =  [xp1, …, xpn] is defined with the antecedent part 
Aj = Aj1 × ··· × Ajn of rule Rj as:

where µji(xi) is the membership function of the antecedent 
fuzzy set Aji on variable xi. One of the methods for select-
ing the consequent class of a rule is based on confidence 
[Ishibuchi and Yamamoto 2004] Bouchachia and Mitter-
meir 2006. The confidence of the fuzzy rule Aj ⇒ class c 
is defined as:

The consequent class Cj of fuzzy rule Rj can be obtained by 
identifying the class with the maximum confidence as:

In Ishibuchi and Yamamoto (2004), some heuristic 
measures for evaluating the candidate rules have been used. 
A basic criterion is the difference between the number of 
positives and negative samples. Its fuzzy version is speci-
fied as:

(2)µj(Xp) =

n
∏

i=1

µji(xpi)

(3)Conf (Aj ⇒ class c) =

∑

Xp∈ class c µj(Xp)
∑m

p=1 µj(Xp)
.

(4)Cj = argmax
c

{Conf (Aj ⇒ class c)|c ∈ {c1, . . . , cM}}.

Single winner (that is, winner-takes-all approach) is the 
most popular reasoning method in fuzzy rule-based clas-
sifiers (Ishibuchi et al. 1999) because of its simplicity and 
intuition for human users. Using this method, a new pattern 
Xt =  [xt1,…, xtn] is classified according to the consequent 
class of the winner rule Rw. Indeed, the winner rule has 
the maximum compatibility grade with Xt among the fired 
rules. This can be stated as:

where µj(Xt) is the compatibility grade of rule Rj with pat-
tern Xt in (2).

3 � The proposed fuzzy feature selection method

The basis of our method is using the distribution of pat-
terns in the fuzzy sets which are applied on each dimen-
sion (feature). This hopefully will obtain more relevant and 
interpretable features to be used in fuzzy rule-based clas-
sifiers. To avoid the curse of dimensionality problem, the 
features are selected for each class individually. Generally, 
more relevant features are those which can better discrimi-
nate the different classes. The basic idea is that a feature 
is relevant to a class if the number of patterns with true 
class labels (true positives) is more than the others (false 
positives). So, the more the difference of the summation of 
membership degree of positive and negative patterns in the 
fuzzy sets is, the more the feature is relevant to the posi-
tive class. The relevance degree of feature fi to class c in lth 
fuzzy set is defined as:

(5)

Eval(Aj ⇒ class Cj) =
∑

Xp∈ class Cj

µj(Xp)−
∑

Xp /∈ class Cj

µj(Xp).

(6)µw(Xt) = max{µj(Xt), j = 1, . . . ,N}

(7)
Relev (fi, c, l) =

∑

Xp∈ class c

µLl (xpi)−
∑

Xp /∈ class c

µLl (xpi)

0                                    1

1

0 K = 2         K = 3         

K = 4         K = 5         

L1 L2 L3 L4 L5

L6 L7 L8 L9 L10 L11 L12 L13 L14

Fig. 1   Fourteen fuzzy sets of each input variable
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where Ll is one of the fuzzy sets in Fig.  1. Thus, the 
effectiveness of this feature in class c can be calculated 
by summing up the measures in (7) for all fuzzy sets in 
Fig. 1, as:

(8)Effec (fi, c) =

14
∑

l=1

{Relev (fi, c, l)|Relev (fi, c, l) > 0}.

Clearly, only the fuzzy sets with positive relevance 
degree in (7) are contributed in computing the effectiveness 
measure of each feature. This feature selection approach 
has been summarized in the following algorithm. Its 
computational complexity is O(nM) for n features and M 
classes in addition to ranking complexity of features and 
fuzzy sets, O(n logn) + O(16 n′), which sums up to O(n 
logn) since n′ ≪ n and 14 × log14 ≈ 16.

Since the features are ranked according to their effective-
ness values and then the most important ones are selected, 
this algorithm performs a single dimension-wise feature 
selection step in a kind of greedy-like manner. So, it can be 
trapped in local optima and therefore, only truly redundant 
features can be discarded. A greedy method finds the global 
optimal solution only when a feature is completely unimpor-
tant, but may get important when joined with another feature 
in two-dimensional space (Guyon and Elisseeff 2003).

4 � Our method for designing fuzzy rule‑based 
classifiers

To generate the fuzzy classification rules (as candidates 
which should be evaluated in next phase), the method in 

Ishibuchi and Yamamoto (2004) is used. This approach 
simultaneously considers all membership functions in 
Fig.  1 for each variable (feature). That is, one of the 14 
fuzzy sets beside the don’t care is used for each variable 
when generating a candidate rule. This can reduce the 
number of antecedent fuzzy sets of each rule. But instead 
of employing all 14 fuzzy sets for each variable in our 
approach, only n′ selected features and their K′ suitable 
fuzzy sets (which are identified by fuzzy feature selection 
algorithm) beside to don’t care are used. So, the length of 
rules would be n′, at most. Moreover, since the features and 
their fuzzy sets are class-specific, the consequent of gener-
ated rules are predefined to that class. In other words, the 
combination of K′ fuzzy sets, identified for each of n′ fea-
tures (of class c), will construct the antecedent part of the 
rules while their consequent part is set to class c. Thus, the 
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number of generated fuzzy rules for each class would be 
K ′n′ (at most), where K′ < 14 and n′ ≪ n for high-dimen-
sional data. However, a fuzzy rule with a specific conse-
quent class c is generated only if the number of positive 
patterns (from class c) is more than negative patterns.

After generating the candidate rules, the next step is to 
construct the rule base among the candidates. Since the 
interpretability of rules is a major issue in fuzzy rule-based 
classifiers, the final rule base should be as compact as pos-
sible (Lughofer et al. 2011). For this purpose, the candidate 
rules should be evaluated and the best ones are selected. 
Several heuristic criteria have been suggested so far (Man-
soori et al. 2007, 2008) and there is a good survey on some 
of these metrics in Ishibuchi and Yamamoto (2004).

By introducing covering subspace and decision subspace 
for each fuzzy rule in Mansoori et  al. (2007), the authors 
proposed two thresholds for identifying these two sub-
spaces. In this regard, the patterns having positive member-
ship degree are considered to reside in covering subspace 
of a rule. On the other hand, those patterns with member-
ship degrees greater than 0.5 are used to determine the 
decision subspace since they will certainly be classified by 
this rule. Using only the patterns in the decision subspace 
of a rule, we have proposed a modified version of criterion 
in (5) for candidate rule evaluation. This new measure can 
be formulated as:

where

To construct the final rule base, all candidate rules which 
are generated for each class in the first step are ranked and 
some best rules are chosen. For this purpose, a simple hill 
climbing method is used. In this regard, firstly the best 
rule for each class according to (9) is considered as rule 
base. Then, the next best and most cooperative rules for all 
classes are added to the rule base repeatedly in a greedy 
manner according to the classification accuracy of rule base 
on the training data. The accuracy of classifier using fuzzy 
rule base RB on data set DS is defined as:

where mk is the number of patterns from class ck in DS that 
are classified truly by using fuzzy rule base RB. This algo-
rithm is explained here.

To obtain the complexity of algorithm, the required com-
putations in each step is accounted. In step 1, the loop runs 
M times while in each iteration, K ′n′ fuzzy rules are gener-
ated (for n′ selected features, K′ fuzzy sets and M classes). 
So in step 1, the complexity is O(MK ′n′). This is also the 
complexity of step 2, since for each of M classes, K ′n′ rules 
are evaluated. To classify m patterns in step 3, K ′n′ rules are 
used so, this step needs O(MK ′n′). In steps 4–7, the compu-
tations are not noticeable, except in step 6 where requires 
the step 3 to be repeated some times. In overall, the com-
plexity of algorithm is O

(

(m+ 2M)K ′n′
)

≈ O(mK ′n′) 
since in real-world data sets m  ≫  M. However, K′ and 
n′ are set to 4 in the experiments, so the complexity is 
O(256m), in practice.

(9)

Eval′(Rj) = Eval′(Aj ⇒ classCj)

=
∑

Xp∈ class Cj

µ′
j(Xp)−

∑

Xp /∈ class Cj

µ′
j(Xp)

(10)µ′
j(Xp) =

n
∏

i=1

{µji(xpi)|µji(xpi) > 0.5}.

(11)
Acc(DS,RB) =

M
∑

k=1

mk

|DS|

Table 1   Data sets used in the experiments

Data set No. of features (n) No. of patterns (m)No. of classes (M)

Iris 4 150 3

Bupa 6 345 2

Ecoli 7 336 8

Pima 8 768 2

Yeast 8 1484 10

Cancer 9 684 2

Glass 9 214 6

Vowel 10 990 11

Wine 13 178 3

Image 18 210 7

Vehicle 18 846 4

Segment 18 2310 7

Ionosphere 33 351 2

Sonar 60 208 2

Coil2000 84 1220 2

Musk 166 476 2

Fox 230 476 2

Tiger 230 1220 2

Secom 590 1567 2

Cnae9 856 1080 9

Table 2   The effectiveness measure of features in Iris data set

Class Features

Petal width Petal length Sepal width Sepal length

Setosa 133.0 126.2 65.6 36.1

Versicolour 63.7 44.9 14.5 0.6

Virginica 85.4 67.8 39.2 0.0
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5 � Experimental results

In this section, the efficiency of the proposed methods is 
examined. The results are obtained by applying our algo-
rithms on 14 data sets with low and moderate dimensions 
and 6 high-dimensional ones, all from UCI ML repository 
(Asuncion and Newman 2007). Table  1 summarizes the 
data used in the experiments, ranked in their number of 
features.

The Iris data set is used to illustrate the steps of our 
method. This data set consists of 150 samples with four 
dimensions and three classes. The effectiveness measure in 
(8) for its features is shown in Table 2. Table 3 illustrates 
at most four of the best fuzzy sets (in Fig. 1) for two best 
features of each class.

After applying our proposed method, the final rule base 
will contain three fuzzy rules. Figure 2 depicts the decision 
area of these rules.

R1: If Petal width is L3 and Petal length is L3 then class 
is Setosa.
R2: If Petal width is L4 and Petal length is L4 then class 
is Versicolour.
R3: If Petal width is L5 and Petal length is L13 then class 
is Virginica.

The most sensitive parameters of our feature selection 
algorithm, which also affect the fuzzy rule-based classifier, 
include: n′ as the number of desired features, and K′ as the 
number of fuzzy sets on each feature. To examine the sen-
sitivity of our methods on these parameters, two data sets 
are used: Wine and Tiger with low and high dimensions, 
respectively. For this purpose, three distinct values of n′ (3, 
4 and 5) versus all possible values of K′ (1, 2, …, 14) are 
studied. In this regard, n′ best features with K′ best fuzzy 
sets, reported by feature selection algorithm, are used to 
design the fuzzy classifiers. The accuracy, in (11), of these 
classifiers are computed by using the training data for 
test, also. Figure  3 depicts these accuracies for Wine and 
Tiger data sets. In both data, the number of features is not 
determinant, at least for 3, 4 and 5 features. This also hap-
pens for number of fuzzy sets in each feature, except when 
weak fuzzy sets are included. Clearly, using only the best 
fuzzy set is sufficient since the obtained accuracies are not 
influenced by more fuzzy sets. However, in the coming 

Table 3   The best fuzzy sets of two best features for each class of Iris

Setosa Versicolour Virginica

Petal  
length

Petal  
width

Petal  
length

Petal  
width

Petal  
length

Petal 
width

L3 L3 L12 L12 L13 L5

L6 L6 L4 L4 L5 L13

L10 L11 L7 L7 L9 L9

L11 – – – L14 L14

Fig. 2   Decision area of three rules generated for Iris data set

Fig. 3   Effects of number of features (n′) and fuzzy sets (K′) on accuracy of designed classifiers
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experiments, the number of features and fuzzy sets are set 
to 4.

The experimental results are studied in two subsections. 
First, our fuzzy feature selection method is evaluated. Next, 
the proposed method for designing fuzzy rule-based clas-
sifiers is discussed. All methods are implemented in MAT-
LAB R2014 and are run on a Core i5, 3.1-GHz CPU with 
4 GB of memory in Windows 7.

To compare the different approaches in a formal and 
efficient manner, the five times of tenfold cross-validation 
(5–10CV) testing method is used. In this method, each 
data set is randomly divided into ten subsets of the same 
size. Nine subsets are used for training and the tenth sub-
set is used for test. The same training and testing procedure 
is also performed nine times after exchanging the role of 
each subset so that all subsets are used as test patterns once. 
Since the error rate on test patterns depends on the initial 
division of the data set, the 10CV is iterated five times 
using different divisions of the data set and the average 
accuracy is reported.

5.1 � Examining our fuzzy feature selection approach

In this part, our fuzzy feature selection algorithm is com-
pared with mRMR method (Peng et al. 2005), Fischer cri-
terion (Fisher 1936), and a fuzzy method on the basis of 
fuzzy entropy and similarity measure (Luukka 2011). The 
mRMR method is based on maximizing the relevancy and 
minimizing the redundancy between the features using 
mutual information. In Fischer criterion, the ratio of traces 
of within-class and between-class scatter matrices in each 
dimension is the basis of ranking the features. Table  4 
examines the scalability of methods in selecting four fea-
tures for each data set. The computational cost of methods 
is stated in terms of CPU time. As shown in boldfaces, 
the CPU cost of our proposed algorithm is less than other 
methods in most of data sets and also in average.

Using the obtained features by each method, the 
approach in Ishibuchi and Yamamoto (2004) for designing 
fuzzy classifiers is employed to examine the influence of 
selected features on the classification accuracy and so the 
effectiveness of each method in feature selection. But since 
our proposed method selects the features class-specifically, 
an ensemble of classifiers for each class (Pineda-Bautista 
et  al. 2011) is applied in this case. Using the features 

Table 4   Computational cost (in sec) of four feature selection methods

Data set Fischer mRMR Entropy-based Proposed method

Bupa 7 2 2 2

Cancer 24 7 6 7

Ecoli 30 7 17 6

Glass 19 6 4 3

Image 67 14 5 5

Ionosphere 325 50 32 21

Pima 21 252 5 5

Segment 616 408 71 93

Sonar 279 148 35 37

Vehicle 420 40 44 25

Vowel 172 407 41 38

Wine 14 4 3 2

Yeast 150 27 68 39

Cnae9 11,550 2079 5236 3003

Coil2000 692 604 74 52

Fox 437 127 109 120

Musk 312 91 78 86

Secom 25,350 3900 2496 1638

Tiger 8775 1350 864 567

Average 2592.6 501.2 483.7 302.6

Table 5   Classification accuracy obtained using different feature 
selection methods

Data set mRMR Fischer Entropy-based Proposed method

Bupa 59.46 58.15 61.68 58.40

Cancer 94.76 94.12 93.08 94.49

Ecoli 75.13 78.38 63.20 76.27

Glass 46.60 63.12 45.97 55.94

Image 69.14 72.57 11.43 73.23

Ionosphere 64.22 64.02 78.59 85.89

Iris 92.14 94.67 72.67 94.27

Pima 74.46 73.78 66.52 73.21

Segment 72.13 72.57 18.37 72.69

Sonar 67.98 69.44 66.00 69.09

Vehicle 47.69 47.51 49.08 52.95

Vowel 56.38 57.43 36.75 54.48

Wine 92.86 90.54 75.17 91.60

Yeast 67.76 69.48 60.44 70.02

Coil2000 94.03 94.03 94.03 94.03

Musk 56.52 57.18 56.54 57.19

Fox 52.12 51.48 50.53 57.55

Tiger 65.98 60.69 55.80 70.49

Secom 93.19 93.36 93.36 93.20

Cnae9 63.28 64.94 57.37 65.80

Average 70.29 71.37 60.33 73.04

Table 6   p Value of paired t test on the classification accuracy of 
methods

mRMR Fischer Entropy-based

Proposed method 0.0154 0.1096 0.0016
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obtained by four feature selection methods, the perfor-
mance of designed fuzzy classifiers, in terms of accuracy in 
(11), is compared in Table 5. According to these accuracies, 
the performance of our approach (in selecting discrimina-
tive features and suitable fuzzy sets) is much better than the 
entropy-based method and comparable to mRMR and Fis-
cher methods.

To justify our claim statistically, the t test (Kreyszig 
1970) is examined on the null hypothesis that the classifica-
tion accuracy of our proposed method in 14 + 6 data sets is 
not better than the others. The p value of paired compari-
sons with α = 0.05 are reported in Table 6 where its small 
values cast doubt on the validity of the null hypothesis. 
Clearly, the differences are statistically significant and the 
performance of our method is considerably better than the 
entropy-based and mRMR methods but not than Fischer 
criterion.

5.2 � Performance of our method in designing fuzzy 
rule‑based classifiers

In this subsection, the performance of our proposed 
method for generating fuzzy classification rules is com-
pared with a well-known method; proposed by Ishibuchi 
and Yamamoto (2004). Because of its rule-length con-
straints, only fuzzy rules with the length of at most two 
are generated. Also, since it needs an evaluation crite-
rion, the product of confidence and support (Ishibuchi and 
Yamamoto 2004) is used for this purpose. To construct the 
final rule base, the proposed method, in this paper, is also 

employed for Ishibuchi approach. Additionally, the num-
ber of rules per class (Q in algorithm) is set to 5 for both 
methods. The performance of our algorithm versus Ishibu-
chi method is compared in Table 7 in terms of classifica-
tion accuracy in (11), computational cost, number of rules 
in the final rule base, |FRB|, and length of rules, n′. In this 
table, only low- and moderate-dimensional data sets are 
used for comparisons because of mentioned constraint of 
Ishibuchi’s approach.

The data sets in this table are grouped in two categories 
because of the distinct performances. In the first group, 
the classification accuracy of our algorithm is significantly 
better than Ishibuchi method, about 8 % in average. Even 
in second group, our accuracies are almost better. This is 
because of selecting discriminative features for each class 
and suitable fuzzy sets for each feature. Moreover, the 
proposed criterion for rule evaluation puts the more accu-
rate rules at top of the ranking list. The reported computa-
tional costs clearly justify the scalability of our approach 
in generating a compact set of short fuzzy rules for high-
dimensional and/or large data. Moreover, the size of rule 
bases and the length of rules in proposed method are near 
to, but not as good as, those in Ishibuchi approach. This 
is because, the length of fuzzy rules in his approach are 
restricted to two while in our method the rules are allowed 
to be longer (indeed, till the number of selected features; 
at most 4 in these experiments). So, the generated rules of 
Ishibuchi are more general than our rules and therefore, our 
method must generate more rules to cover the same sub-
space of the problem.

Table 7   Comparing the performance of our proposed method versus Ishibuchi method

Data set Accuracy (%) CPU time (s) Length of rules (n′) No. of rules (|FRB|)

Ishibuchi 
method

Proposed 
method

Ishibuchi 
method

Proposed 
method

Ishibuchi 
method

Proposed 
method

Ishibuchi 
method

Proposed 
method

Ecoli 68.92 76.79 1016 79 1.8 1.2 8.4 11.1

Glass 42.34 48.48 541 77 1.8 1.6 7.6 9.0

Ionosphere 73.07 86.72 146,420 60 1.7 1.9 3.8 6.1

Pima 67.14 74.13 221 78 1.0 1.5 2.3 3.7

Segment 67.29 70.57 22,811 740 1.8 2.2 12.2 7.4

Sonar 71.45 73.84 562,319 65 1.3 2.1 5.2 5.7

Thyroid 77.74 92.69 115 38 1.0 2.3 3.9 8.2

Yeast 60.65 72.51 4695 228 1.8 1.6 8.0 9.3

Average 66.06 74.47 92,267 170 1.5 1.8 6.4 7.6

Bupa 57.73 56.88 120 28 1.4 1.1 2.9 5.2

Cancer 94.55 96.08 1192 84 1.0 2.2 2.9 5.9

Image 69.81 70.95 5741 82 1.7 1.7 8.6 11.3

Iris 96.13 96.13 114 20 1.0 1.6 4.1 6.4

Vehicle 46.84 48.64 6768 204 1.0 1.2 9.0 9.1

Wine 93.25 94.62 1195 40 1.1 2.1 5.2 6.5

Average 76.39 77.22 2522 76 1.2 1.7 5.5 7.4
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According to the results in this table, the performance 
of our method is comparable to SGERD and FARC-HD, 
though the latter one is more accurate, both in average and 
in most of the data sets. This is because of its lateral tuning 
and the rules weight usage.

6 � Conclusion

In this paper, we proposed a novel and fast method for 
fuzzy feature selection to choose more relevant features; 
those which can distinguish the distinct classes well. Our 
method uses the membership degree of positive and nega-
tive patterns in the fuzzy sets in order to compute the rel-
evancy of features to the classes. The selected features and 
their effective fuzzy sets were then used in designing fuzzy 
rule-based classifiers. In order to evaluate the initially gen-
erated candidate rules, a new criterion was also proposed 
to measure the class-discrimination ability of each fuzzy 
rule.

The experimental results showed that our feature 
selection method is fast and scalable to be applied on 
high-dimensional data. By using just a few of these fea-
tures, our approach for designing fuzzy rule-based clas-
sifiers could generate accurate and interpretable rule 
bases. In future works, we should develop a fuzzy feature 
selection approach which can also detect the redundant 
features.
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