
1 3

Evolving Systems (2016) 7:41–60
DOI 10.1007/s12530-015-9138-0

ORIGINAL PAPER

An extended version of opportunity cost algorithm
for communication decisions

Hiba Abdelmoumène1 · Habiba Belleili1

Received: 30 August 2014 / Accepted: 2 September 2015 / Published online: 23 September 2015
© Springer-Verlag Berlin Heidelberg 2015

Keywords Communication · Decentralized Markov
decision process · Execution constraints · Planning under
uncertainty

1 Introduction

Many real world applications involve multiple agents act-
ing together as a team under time pressure and uncertainty.
Examples of such applications can be found in Mars explo-
ration missions (Becker et al. 2003), disaster management
problems (Nair et al. 2002), and decentralized detection of
hazardous weather events (Kumar and Zilberstein 2009) …

The more suitable models capable of handling such
problems are those studied in decision theory. These mod-
els are very expressive and are able to reason about the gain
of action over time. They include decentralized Markov
decision process (DEC-MDP) and decentralized partially
observable Markov decision process (DEC-POMDP)
(Oliehoek 2012). However, solving optimally these models
was proven to be NEXP-complete (Bernstein et al. 2002).

For these reasons, subclasses of these models have been
proposed which are more tractable. These subclasses are
mainly derived based on dependencies between agents. For
ones, agents are assumed transition independent and inter-
actions are captured by complex non-additive rewards like
transition independent DEC-MDP (TI-DEC-MDP) (Becker
et al. 2003). For the others, agents are assumed to be tran-
sition dependent with simple rewards. Among them, we
cite event driven interactions DEC-MDP (ED-DEC-MDP)
(Becker et al. 2004) where dependencies are structured
in the form of event-driven interactions and opportunity
cost DEC-MDP (OC-DEC-MDP) (Beynier and Mouaddib
2005) where dependencies are interpreted by a precedence
relation between agents. Another model resulting from the

Abstract Decentralized Markov decision processes
(DEC-MDPs) provide powerful modeling tools for coop-
erative multi-agent decision making under uncertainty.
In this paper, we tackle particular subclasses of theoretic
decision models which operate under time pressure having
uncertain actions’ durations. Particularly, we extend a solu-
tion method called opportunity cost decentralized Markov
decision process (OC-DEC-MDP) to handle more com-
plex precedence constraints where actions of each agent
are presented by a partial plan. As a result of local partial
plans with precedence constraints between agents, mis-
coordination situations may occur. For this purpose, we
introduce communication decisions between agents. Since
dealing with offline planning for communication increase
state space size, we aim at restricting the use of communi-
cation. To this end, we propose to exploit problem structure
in order to limit communication decisions. Moreover, we
study two separate cases about the reliability of the com-
munication. The first case we assume that the communi-
cation is always successful (i.e. all messages are always
successfully received). The second case, we enhance our
policy computation algorithm to deal with possibly missed
messages. Experimental results show that even if commu-
nication is costly, it improves the degree of coordination
between agents and it increases team performances regard-
ing constraints.

 * Hiba Abdelmoumène
 abdelmoumene@labged.net

 Habiba Belleili
 belleili@labged.net

1 LabGED Laboratory, Computer Science Department, Badji
Mokhtar University, BP 12, 23000 Annaba, Algeria

http://crossmark.crossref.org/dialog/?doi=10.1007/s12530-015-9138-0&domain=pdf

42 Evolving Systems (2016) 7:41–60

1 3

marriage between TI-DEC-MDP and ED-DEC-MDP is
event driven interaction with complex rewards (EDI-CR)
(Mostafa and Lesser 2009) where dependencies are in the
form of event-driven interaction and for each agent a com-
plex reward is assigned.

Another side of DEC-MDP is the communication issue.
To deal with the lack of information between agents, com-
munication has been introduced to improve decisions and
thus improving the total cumulative reward (Goldman
and Zilberstein 2004). Communication can be implicit or
explicit (Goldman and Zilberstein 2003). Implicit, when
communication actions affect the observations seen by
another agent. Explicit, when there are designated com-
munication actions and the language of communication is
attached explicitly by the agent designer. Reasoning about
communication can be offline at planning time (Mostafa
and Lesser 2009; Melo et al. 2012; Spaan et al. 2006), or
online during policy execution (Becker et al. 2009; Roth
et al. 2005; Xuan et al. 2001). The latter is less complex in
term of computational cost, but the former ensure a better
long-term coordination. As communication cannot be free,
a cost is associated that allows agents to reason about the
gain in communicating.

In our work, we are interested in OC-DEC-MDP model
which is capable of addressing temporal constraints, prec-
edence constraints and uncertainty on actions’ durations.
However, this model is suited to the case where agents
have linear plans of their actions. This is a tight assump-
tion regarding real world applications where agents’
actions may not be totally ordered. Hence, when consid-
ering partial local plans the solution proposed in Beynier
and Mouaddib (2005, 2011) is not suited and need to be
extended by handling other emerging problems as (i) which
action to execute and (ii) when to execute it, instead of
when to execute the beforehand known action in Beynier
and Mouaddib (2005, 2011).

Moreover, as a consequence of partial local plans, agents
have more than one path to accomplish their mission.
Hence, the constrained agent may wait indefinitely for a
predecessor action that will never be executed by the pre-
decessor agent (when choosing a different path). This leads
to a violation of the temporal constraints of the constrained
action which leads to the total failure of agents’ mission.

Communication may handle problems resulting from
partial local plans and improves the degree of coordination
between agents. However, it induces a cost and considering
it at planning time leads to an increase in state space size
due to reasoning about all communication possibilities at
each time step.

To alleviate this problem, we exploit problem struc-
ture (Melo et al. 2012; Mostafa and Lesser 2009) to define
coordination points and introduce some heuristics. These
heuristics allow efficient communication decisions that

concern when to communicate, what to communicate and
to whom communicate. A communicative version of OC-
DEC-MDP was proposed in Beynier and Mouaddib (2010),
but this version is once again suited to the case where
agents’ actions are totally ordered. Applying heuristics
proposed in Beynier and Mouaddib (2010) for partial local
plans is not possible because both the problem structure
and the decision problem are different from those consid-
ered in Beynier and Mouaddib (2010, 2011). The model of
communication proposed in this paper is able to deal with
specific problems arising from agents’ partial local plans
on one side and precedence constraints among them on the
other side.

Most of the works for planning for DEC-MDPs and
DEC-POMDPs with communication assume that commu-
nication is instantaneous and without failure (Roth et al.
2005, 2007; Becker et al. 2009). Actually, instantaneous
communication does not exist. Moreover, communication
can fail temporarily and messages may be missed. In this
case, the agent still has to select an action and its decision
will be based only on its local information.

Since messages may be lost, an agent may wait indefi-
nitely for a response which leads to a violation of its tem-
poral constraints. For this purpose, we enhance our proposi-
tion to deal with missed messages. We propose to compute
adaptive waiting times for each agent after which an agent
chooses another action admitting that the message is lost
en route. These adaptive waiting times depend on the state
an agent might be in and regarding its temporal constraints.

The rest of the paper is organized as follows. In Sect. 2,
we will motivate our concerns by an example. In Sect. 3,
we will briefly introduce the OC-DEC-MDP model. Some
related work will be discussed in Sect. 4. The extension
of OC-DEC-MDP for partial local plans and communica-
tion decisions is given in Sect. 5. Afterward, we will detail
the computation of the joint policy and how coordination
between agents is ensured in Sect. 6. Experimental results
are presented in Sect. 7. A comparative study will be dis-
cussed in Sect. 8. Section 9 concludes this paper.

2 Motivating example

The problem we treat can be motivated by scenarios of
controlling the operation of multiple space exploration rov-
ers, such as the ones used by NASA to explore the surface
of Mars (Washington et al. 1999). Agents in such problems
could take pictures, conduct experiments, and collect data
under constraints (time, battery, memory …).

Figure 1 shows a simple problem involving a two-agent
team whose objective is to execute their local plans. As
agents’ local plans are partial each agent has to choose

43Evolving Systems (2016) 7:41–60

1 3

between two or more alternative actions. Depending on the
current situation, alternative actions have different gains.

Despite local dependencies between actions, there is
another type of dependencies between agents’ actions. For
example, in Fig. 1, action J of agent 2 cannot be executed
only when either actions H or I of the same agent are
executed and action F of agent 1 is executed. Uncertainty
results from actions’ durations. Indeed, an action can have
several execution durations each of which is associated to
a probability. These probabilities are obtained empirically
(Witwicki and Durfee 2011). Moreover, the execution
of each action is constrained by a temporal window that
expresses the action’s earliest start time and latest end time.
The successful completion of each action is associated to
a value. The overall gain of the team is quantified by the
cumulative values of completed actions.

Since the environment is dynamic and present con-
straints on actions’ execution, several unexpected situa-
tions can occur and thus need a change in agents’ plans. For
example, agent 2 can choose to execute action I rather than
action H and agent 1 can choose to perform action C rather
than action B. In this case agent 1 will wait for action H
from agent 2 that will never be executed. This conducts to a
total failure of the mission.

Communication may handle these situations. Since com-
munication in these domains is costly, it must be restricted.
Several paths exist leading to the mission completion, but
the goal is to find the global path which maximizes the
overall gain of the group and avoiding the total failure of
the mission. This path is interpreted by an optimal plan
(policy) for each agent, which is calculated by resolving
the appropriate DEC-MDP.

3 Background

OC-DEC-MDP represents the background of this work. In
this section, we will present this model and its resolution
algorithm.

3.1 Opportunity cost decentralized Markov decision
process

OC-DEC-MDP model is proposed by Beynier and Mouad-
dib (2005, 2011), in order to handle temporal constraints
where each action must be executed respecting a specific
execution interval, precedence constraints where an action
cannot be executed before the fulfillment of some actions
of other agents and probabilistic actions’ durations. For
n agents, this model is composed of n local MDPs. Each
MDP is composed of fully ordered actions, factored states,
transition function and reward function. Each component
has to undergo a specific treatment based on temporal
propagation (Bresina and Washington 2000) to take into
account actions’ execution constraints. All agents’ actions
are considered in one acyclic mission graph where nodes
are actions and arcs are precedence constraints.

According to the type of problem studied and since
communication between agents is not allowed, three types
of states are identified: success states when the action
respects its constraints, partial failure (PF) states when the
action attempts to execute but its predecessors are not yet
executed and total failure (TF) states when the action vio-
lates its constraints. OC-DEC-MDP was proven to be poly-
nomial in the size of the state space. The construction of
this model (and its resolution) rests on the assumption that

Mission graph

Agent 2's partial local plan

OR

Agent 1's partial local plan

OR

AND

, [], ()

, [6,12], {(2,0.3), (4,0.4), (5,0.2), (6,0.1)}

, [7,15], {(2,0.2), (3,0.8)}
, [7,15], {(3,1.0)}

, [10,18], {(2,0.5), (4,0.5)}

, [10,20], {(1,0.7), (2,0.3)}

, [15,25], {(2,0.5), (3,0.5)}

, [6,9], {(1,0.7), (2,0.3)}

, [6,12], {(1,0.4), (2,0.4), (3,0.2)}

, [7,10], {(1,0.5), (2,0.5)}

Agent 1

Agent 2

, [8,20], {(2,0.9), (3,0.1)}

 Endogenous precedence relation
 Exogenous precedence relation

AND

Fig. 1 Small mission graph presented by partial local plans of each agent

44 Evolving Systems (2016) 7:41–60

1 3

the actions of each agent are totally ordered. This assump-
tion means that the actions will be executed sooner or later.
As a consequence of this representation, actions’ execu-
tion intervals must be large; otherwise, the probability of
the total failure of one action execution on the execution
of other actions is augmented (due to this chain representa-
tion). Consequently, the decision problem of each agent is
alleviated. Indeed, each agent has to determine solely when
to start an action.

The resolution of this model is based on an opportunity
cost (OC). This measure is borrowed from the field of the
economy (Wieser 1889). It is particularly introduced to
handle precedence constraints. OC has been used for the
first time in MDPs in (Mouaddib and Zilberstein 1998) and
then extended to DEC-MDP in case of agents’ linear local
plans in Beynier and Mouaddib (2005, 2011). The intuition
behind using this cost is to allow each agent to take into
account the effects of its own decisions on other agents in
order to ensure coordination between agents.

Recently, a communicative version of OC-DEC-MDP
is proposed in Beynier and Mouaddib (2010). Communi-
cation is introduced in order to handle mis-coordination
between agents (interpreted by the number of partial failure
states). Allowing agents to share information at planning
time has for consequence an increase in the state and action
spaces. In order to remedy to that, a set of heuristics is pro-
posed. These heuristics consist in communicating the end
time of previous successfully executed action, to agents
who depend from it. A comparative study will be discussed
in Sect. 8.

It is important to note that OC-DEC-MDP and commu-
nicative OC-DEC-MDP as defined, are not suited to the
case where agents’ local plans are partially ordered which
is more close to real world applications. In this latter, the
local decision problem consists in two folds: what action to
perform and when? which affects the resolution algorithm.
Furthermore, the heuristics introduced in Beynier and
Mouaddib (2010) to make communication possible cannot
be applied in the case of partial local plans since an agent
may choose to not execute a predecessor action.

The overall purpose of this work consists in extending
OC-DEC-MDP and its policy computation to handle more
complex precedence constraints. It is true that the reason
behind introducing communication in Beynier and Mouad-
dib (2010) and this work is the same; reduce situations of
mis-coordination, the way it is considered is different since
the topology of the mission graph and decision problems
are not the same. Situations of mis-coordination in Bey-
nier and Mouaddib (2010) are interpreted by the PF state
and result only from the fact that an action starts its execu-
tion before the completion of its predecessor. In this study,
these situations result also from the fact that the predeces-
sor agent may not execute the predecessor action at all. As

we will see in Sect. 6.2, heuristics introduced in this paper
are suited to the new topology of the mission graph where
agents’ actions are partially ordered.

In the following subsection, we will explain the princi-
ple of OC algorithm according to (Beynier and Mouaddib
2011).

3.2 The principle of opportunity cost algorithm

The OC algorithm, like several other policy computa-
tion algorithms, starts with an initial policy which con-
sists in the earliest starting time policy. This policy is then
improved in several iterations until no further improve-
ment is possible. Each iteration of this algorithm consists
of two phases. The first phase is a computation of expected
utilities, policies and OC values for each state based on the
initial policy. The second one performs an update of the
transition function based on the current policy found in the
previous iteration in order to prepare to a new iteration of
the algorithm. The reason behind updating transition prob-
abilities is that these probabilities are computed based on
the fixed initial policy.

To handle precedence constraints, opportunity cost algo-
rithm starts from sink actions for which there is no succes-
sor (actions J and E according to the example of Fig. 1)
rising to root actions (actions A and G from Fig. 1). The
reason behind starting with leaf actions is that these actions
have an opportunity cost equal to zero, since they don’t
influence any other actions. For each state from which
the current actions (sink actions, at first) can be executed,
OC algorithm computes its expected utility, its policy, and
opportunity cost values. These values (OC values) are then
propagated to all possible predecessors’ states of other
agents. At this moment, each agent can calculate its pol-
icy by considering its local rewards minus the propagated
opportunity cost. From this new policy, the probability
function is updated in order to run a new iteration of the
algorithm.

4 Related work

In addition to the works in (Beynier and Mouaddib 2005,
2010, 2011), some other works exist in literature that con-
cern planning for constrained actions using DEC-MDP and
works on taking offline communication decisions. Marecki
and Tambe (2007) improve the OC-DEC-MDP in term of
speed and solution quality. Indeed, OC-DEC-MDP deals
with discrete temporal constraints which result in a huge
state space. The work in Marecki and Tambe (2007) deals
with continuous temporal constraints in order to manipulate
a value function over time rather than a separate value for
each pair of action and time interval like in OC-DEC-MDP.

45Evolving Systems (2016) 7:41–60

1 3

Another related work that handles execution constraints
and making offline communication decisions is Mostafa
and Lesser (2009). In order to make offline planning for
communication tractable, interactions between agents are
presented explicitly in EDI-CR model. This structure is
exploited in order to define communication possibilities
in advance and thus reducing the problem size. The work
in Melo et al. (2012) also exploits interactions between
agents in order to optimize communication decisions in
DEC-POMDP. A key insight is that in domains with local
interactions the amount of communication necessary for
successful joint behavior can be heavily reduced, due to the
limited influence between agents. This idea is exploited by
deriving local POMDP models that optimize each agent’s
communication behavior.

Most of approaches within communication in DEC-
MDP and DEC-POMDP do not make any constraint on
communication; rather, they assume instantaneous and suc-
cessful communication. Recently, some works were real-
ized considering constrained and stochastic communication
where messages may be lost, corrupted or delayed.

Spaan et al. (2008) and Oliehoek and Spaan (2012) have
been considered the problem of delayed communication by
one or more time steps and uncertain successful communi-
cation (with a probability of success) within DEC-POMDP
framework. Bayesian games were used in order to plan for
DEC-POMDP with delayed communication. Matignon
et al. (2012) introduced a new interaction-oriented resolu-
tion method for decentralized decision models that handles
limited share of information and breaks in communication.
This resolution method is based on distributed value func-
tion considering the latest time step where communication
between agents succeeded. Message corruption, however,
has received little attention in decentralized planning (Val-
tazanos and Steedman 2014).

Many approaches have been proposed to deal with
uncertainties in scheduling, we cite (Lambrechts et al.
2008) where uncertainty is modeled by unavailability of
resources and (Lazarova-Molnar and Mizouni 2010) which
addressed uncertainties on task duration, task allocation
and arbitrary on-the-fly decisions.

5 Problem description

The decision problem we consider is characterized by:
�∝,A,CT ,CP,�,R,Ccom,��, where:

–– ∝ is a set of agents.
–– A, is a set of actions.
–– CT = {[ESTi, LETi], i = 1 . . . |A|} where, ESTi is ai’s

earliest start time and LETi is its latest end time.

–– CP = {EndoPred ∪ ExoPred}. Each action ai has a set
of endogenous predecessors [noted as EndoPred(ai)]
specifying the set of local actions that must be executed
before ai, and a set of exogenous predecessors [noted as
ExoPred(ai)], specifying the set of actions that must be
executed before ai by other agents.

–– Each action ai disposes of multiple possible execution
durations each of which is associated to a probability.
We note: � = {(di, pi)|pi = P(duration = di)}.

–– R, is a reward function. The successful execution of
action ai is awarded by a non-negative reward, Ri.

–– Ccom, is the communication cost.
–– �, is the set of messages that can be sent by agents. The

semantic of these messages is discussed in the next sec-
tion.

We encode this decision problem by OC-DEC-MDP
model. This latter is extended in order to take into account
communication’s cost and language. As we mentioned in
Sect. 3, the OC-DEC-MDP is known to be composed of a
set of local MDPs, one for each agent. Each MDP is a tuple
〈S,A,P,R,�,Ccom〉, where S is a finite set of states and A is
a finite set of actions including communication action. The
dynamic of each MDP is maintained by a transition func-
tion P. R denotes the reward function and it is associated to
a specific state. � is a finite set of messages and Ccom is the
communication cost.

The modeling of constrained decision problem by OC-
DEC-MDP is equivalent to construct each component of
agent’s MDP. In the following, we describe this model
construction.

5.1 Actions

Taking into account precedence constraints (local and
global), uncertainty on actions’ durations and the strict
execution temporal window, we compute for each action
several possible start times and end times. We note STi and
ETi sets of possible start times and end times of action ai,
respectively. For example, for action B in Fig. 1, we obtain
STB = {8, 10, 11, 12},ETB = {10, 11, 12, 13, 14, 15}.

5.2 States

Since action ai has different start and end times, we can
deduce different execution intervals in which ai can be
executed. These intervals constitute useful information
for deciding about states’ transitions since it reveals when
the action starts, when it ends, and how many time units
it consumes. As we tackle communication decisions, the
message constitutes useful information too for agents’
decisions. Hence, to satisfy Markov property, the state
has to be factored and must encapsulate the last executed

46 Evolving Systems (2016) 7:41–60

1 3

action ai, its execution interval
[

ti, tt
′
]

 (where ti is a pos-
sible start time of action ai and ti′ is the associated end
time), and the message � if exists. Example, in Fig. 1 we
obtain for action B: 〈B, [8, 10]〉, 〈B, [8, 11]〉, 〈B, [10, 12]〉,
〈B, [10, 13]〉, 〈B, [11, 13]〉, 〈B, [11, 14]〉, 〈B, [12, 14]〉,
〈B, [12, 15]〉, 〈B, [8, 10],�〉, 〈B, [8, 11],�〉, 〈B, [10, 12],�〉,
〈B, [10, 13],�〉, 〈B, [11, 13],�〉, 〈B, [11, 14],�〉,
〈B, [12, 14],�〉 and 〈B, [12, 15],�〉.

Note that not all states will contain messages because,
as we will explain later, agents don’t communicate
always at any state but communication is allowed at spe-
cific points. As in OC-DEC-MDP, three types of states
are distinguished. Success state, the agent moves to such
state when the action considered is executed success-
fully respecting its constraints. Partial failure (PF) state,
when the agent attempts to execute an action having its
exogenous predecessors not yet executed. Total failure
(TF) state, when the action executed violates its temporal
constraints.

5.3 Transition function

The transition function computes the transition probability
from a state si associated to action ai, to a resulting state
si+1 associated to action ai+1. The computation starts from
the root of the mission graph to leaves.

Let si and si+1 be, respectively:
si =

〈

ai, Iai
〉

, si+1 =
〈

ai+1, Iai+1

〉

.1

This probability depends on the probability that action ai+1
will be executed in the interval Iai+1

. Let Iai+1
=

[

ti+1, t
′
i+1

]

.
Hence:

This probability corresponds to the probability that the exe-
cution of ai+1 starts at time ti+1 and ends at time t′i+1.

The first part of Eq. (1) depends on an initial policy, on
one hand: if the initial policy of state si dictates the exe-
cution of ai+1 at ti+1, Pπ (π(si) = (ai+1, ti+1)) = 1, other-
wise, this probability is equal to zero. On the other hand,
P(start(ai+1) = ti+1) depends on the probability that the
exogenous predecessors of ai+1 have finished their execu-
tions at a time inferior or equal to ti+1.

The second part of Eq. (1) corresponds to the
probability that ai+1 consumes di+1 = t′i+1 − ti+1
time units which is given in problem statement
(P
(

duration = di+1 = t′i+1 − ti+1

)

).

1 In the explanation of how the transition function is computed, we
consider only the case without a message.

P(si+1|si, ai+1) = P(Iai+1
)

(1)P(si+1|si, ai+1) = P(start(ai+1) = ti+1)× P
(

end(ai+1) = t
′
i+1

)

For example, in Fig. 1 the probability of transi-
tioning from state sA = �A, [6, 8]� to a resulting state
sB = �B, [8, 10]�, is given by:

We suppose that the initial policy of agent 1 is to execute
action B at time 8, Pπ (π(sA) = (B, 8)) = 1. Hence:

Since action B has not any exogenous predecessor, we
don’t consider the probability that their exogenous prede-
cessors have finished their executions.

From the problem statement, we have:

Hence:

Since we maintain the same model as in Beynier and
Mouaddib (2011) (OC-DEC-MDP), where three types
of states are introduced, we distinguish between three
types of transition. Successful transition when action ai+1
is executed in the interval Iai+1

=
[

ti+1, t
′
i+1

]

 respecting
its ESTi+1 and LETi+1 (ESTi+1 ≤ ti+1 < t′i+1 ≤ LETi+1).
Partial failure transition when action ai+1 starts its execu-
tion too early before all its predecessors have finished
their executions. Total failure transition when action ai+1
is executed in the interval Iai+1

=
[

ti+1, t
′
i+1

]

 violating its
LETi+1(t

′
i+1 > LETi+1).

5.4 Reward function

The agent receives a reward which is a positive number for
being in a success state. The partial failure state is associ-
ated to a reward equal to zero because no transition is done.
As for the total failure state, the agent is penalized if such
state occurs. This penalization consists in a negative num-
ber added to the loss in reward of all remaining actions
reached from the failed action and executed by the same
agent. If an agent opts to communicate, the communication
cost is subtracted from the reward received.

5.5 Communication language

In our work, semantics are attached explicitly to messages.
We propose three types of messages each of which with
specific semantics. These semantics are explained in the
next section.

P(sB|sA,B) = P(IB = [8, 10]) = P(start(B) = 8|sA)

× P(end(B) = 10|sA)

P(start(B) = 8|sA) = 1

P(end(B) = 10|sA) = P(dB = 10− 8) = 0.2

P(sB|sA,B) = 1× 0.2 = 0.2

47Evolving Systems (2016) 7:41–60

1 3

6 Joint policy computation

This section is dedicated to the resolution of the model
constructed in Sect. 5. We will first present how the original
OC algorithm is extended to the case of partial local plan.
Then, we will give and argument the proposed communica-
tion model and we will detail the joint policy computation
according to our problem taking into account partial local
plans and communication decision.

6.1 Opportunity cost algorithm for partial local plans

The adaptation of opportunity cost algorithm to handle
partial local plan requires tackling two main issues. The
first issue concerns two decision problems consisting in
what action to execute and when to execute it, instead of
the decision problem handled in original OC algorithm for
total ordered actions where the decision problem concerns
when to start the unique next action.

The second issue deals with when an action is consid-
ered to compute the expected utility, the policy and OC
values (noted as (V ,π ,OC), respectively) at planning time.
Indeed and resulting from precedence constraints (local
and global), tighter actions have to be defined so they can
be evaluated (V ,π ,OC), at planning time, at the same level.
To do this, we transform local partial plans with exogenous
precedence constraints into a unique acyclic mission graph
and proceed to level decomposition of the mission graph.
For each level, we define the set of nodes (actions) belong-
ing to it.

6.1.1 Level decomposition

In order to apply OC algorithm the process of division must
start from leaf nodes to root nodes.

We start with level Lk(k = 0) containing leaf nodes
(actions) that have no successors (neither exogenous nor
endogenous). The next level Lk+1 contains predecessors of
all nodes (actions) in Lk.

To compute the expected utility, the policy and OC val-
ues (V ,π ,OC) for each action, two conditions (C1, C2)
must hold in each level.

C1: The (V ,π ,OC) values of an action a in level Lk are
computed if actions having the same predecessor as a
are in the same level Lk. Otherwise, the consideration of
a is postponed to the next level.
C2: The constrained action must be considered (OC
computation) before its predecessor(s). Otherwise, the
predecessor action(s) must be postponed to the next
level.

6.1.2 Illustrating example

In this sub-section, we illustrate the process of level decom-
position according to the example presented in Fig. 1.

In our example, we start by L0 = {J ,E}, (leaf nodes).
L0 is checked for satisfying the two conditions (C1, C2),
as C1 doesn’t hold for E (because the action D having the
same predecessor C is not yet considered), E is postponed
to level L1. L0 is then updated, L0 = {J}. The next level L1
contains predecessors’ actions of nodes in L0 (J) with the
postponed node from L0 (E). The result is L1 = {E,H, I ,F}.
Level L1 will be checked, the two conditions don’t hold. C2
doesn’t hold for H (because C has as predecessor H is not
considered) and C1 doesn’t hold for E (for the same reason
cited above). Hence, H and E are postponed to level L2. The
updated L1 is L1 = {I ,F}. Each time a level is updated, the
remaining nodes will be newly checked. C1 doesn’t hold
for I, this node will be postponed to level L2. Hence, the
resulting level L1 contains only the node F(L1 = {F})…

Like shown in Fig. 2, the leaf node E is postponed twice
and is considered at level 2 instead of level 0 and level 1.
Nodes H and I are postponed three times, from L1 to L4.
Figure 2 describes also the process of OC algorithm as
explained in Sect. 3.2.2

6.2 Communication model

We introduce communication decision to reduce mis-coordi-
nation caused by precedence relation. However, introducing
communication at planning time leads to a significant increase
in problem size. This latter concerns both action space and
state space: when communication decision is always avail-
able, the action space increases dramatically because we add
to every domain action decision a communication decision.
The state space in turn increases since for every state, we need
to distinguish between states with messages and states without
messages captured in the factored state, and for each state with
message we specify the possible content of the message so we
can compute the respective values and policies.

To avoid this intractable increase in problem size, we take
advantage of problem structure and introduce useful heuris-
tics to specify when a communication decision is available,
what should be communicated and to whom communicate.
Note that these questions have already been raised in the lit-
erature (Beynier and Mouaadib 2010; Mostafa and Lesser
2009; Roth et al. 2005), but the relative answers (heuristics)
we propose are specific to the problem we tackle.

In the following, we explain the heuristics we use to
reduce the problem complexity.

2 On Fig. 2 we schematize only some success states (without mes-
sages) for simplification.

48 Evolving Systems (2016) 7:41–60

1 3

6.2.1 H1: When to communicate?

To reduce action space, we exploit problem structure
since the problem we tackle presents precedence relations
between agents. This will limit information sharing at prec-
edence points which we call coordination points. Moreover,
communication decision is only available at the level of the
constrained agent when it falls in PF state. Hence, for each
PF state, a policy is computed which can dictate a commu-
nication action or no.

6.2.2 H2: To whom communicate?

In the case where the policy of a partial failure state dic-
tates to communicate, the set of agents concerned with
the communication are predecessor agents concerned
by the partial failure. The reason behind imposing a
heuristic for this communication issue is that to restrict
the number of agents to whom the state space will be
augmented by messages which are predecessor and con-
strained agents.

Agent 1

Level
0

Agent 2

, , : , [7,8]

, , : , [7,9]
…

, , : , [7,8]

, , : , [7,9]

…

Level
1

Level
2

Level
3

…

, : , [8,10]

, , : , [8,11]
, : , [10,13]

, : , [11,14]

…

Level
4

Level
5

 OC
Propagation

, : , [10,13]

, : , [11,14]

…

, , : , [6,8]

, , : , [6,10]

…

, : , [6,7]

, : , [6,8]
 OC
Propagation

Node not considered at the current level

Node considered at the current level

OC value propagation from constrained agent to the predecessor

Fig. 2 The process of OC algorithm according to the example of Fig. 1

49Evolving Systems (2016) 7:41–60

1 3

6.2.3 H3: What should be communicated?

In this study, we propose to attach explicitly the seman-
tics of messages shared by agents in order to improve the
global performances of the mission.

As in communication there are a sender (the constrained
agent) and one or more receivers (predecessor agents) we
will analyse the possible contents of messages for both the
constrained agent and the predecessor agent(s).

At the level of constrained agent: the agent employs the
query communication and asks its predecessor(s) for the
action it needs, so it can continue its execution. Let ai be
the action belonging to the predecessor agent and needed
by the constrained agent, the content of the message is
� = ai.

At the level of predecessor agent(s): no communi-
cation decision is available at this point for the prede-
cessor agent(s). Hence, each time a predecessor agent
receives an ask message, it should respond to the con-
strained agent (cooperative agents). Moreover, we assume
at a first time that sent messages cannot be missed or
corrupted and take one time unit for each direction
(send → receive → respond, takes 2 time units). Then, we
assume that the message may be missed in the transmission
or in the receipt and we propose a mechanism to handle
such a situation in Sect. 6.5.

The predecessor agent’s response depends on its cur-
rent policy. Let the predecessor agent be in a state
〈

a,
[

t, t′
]

,� = ai
〉

.

–– If its current policy is different from the asked action
ai (π

〈

a,
[

t, t′
]

,� = ai
〉

�= (ai, ti)), then the response
message’s content is � = ∞. Note that this situation
can illustrate both the case where the asked action will
never be executed (because the agent responsible on it
borrows a different path), or it cannot prevent its future
policy.

–– If its current policy corresponds to the asked action
(π

〈

a,
[

t, t′
]

,� = ai
〉

= (ai, ti) which means execut-
ing ai at time ti), then the predecessor agent sends
to the constrained agent the message containing,
� = val = max{ET(ai, ti)}. This message consists in
the greatest end time from the set ET of end times asso-
ciated with (ai, ti), since the predecessor agent cannot
know the end time of its action before the execution
phase.

6.3 OC computation

The opportunity cost is computed by the constrained agent
and propagated to predecessors’ agents. Let action ai be an
exogenous predecessor of action aj. Thus, OC values are
computed by the agent who executes action aj.

OC values are computed for each Δt which consists in
the delay caused by each possible end time of action ai on
the start time of action aj. These values consist in the differ-
ence between the expected utility (V) of the state associated
to aj when it starts its execution at tj with no delay (at its
first start time) and the expected utility of the state when
its set of start times is restricted by a certain �t, (Fig. 3).
Formally:

where
〈

aj,
[

tj, tj + dj
]〉

,
〈

aj,
[

tj +�t,
(

tj +�t
)

+ dj
]〉

 are
possible states associated to action aj, V is the expected
utility (value) of this state, tj is the first possible start time
of action aj. The computation of V is explained later.

The computed OC values (for each Δt) are propagated
to predecessor agent (the agent who executes action ai)
who calculates in turn its policy taking into account the
received OC values.

6.4 Policy computation

In this sub-section, we show how the value and the policy
of each state are computed. The former is based on Bellman
optimality principle (Bellman 1957) and the latter consists
in an augmented Bellman equation in which an opportu-
nity cost is introduced. This computation phase allows each
agent to select the best action to execute in each state, con-
sidering its expected utility (value function), the opportu-
nity cost induced on other agents and communication cost.
In the following, we give the policy computation at the

(2)

OC(aj,�t) = V�t=0
(〈

aj,
[

tj, tj + dj
]〉)

− V�t
(〈

aj,
[

tj +�t,
(

tj +�t
)

+ dj
]〉)

=

+

= (+)

+

(A): axis of 's end times. is the first possible end time of
(B): axis of 's start times. is the first possible start time of

(A) (B)

= (+)

= 0

OC

Fig. 3 The computation of opportunity cost

50 Evolving Systems (2016) 7:41–60

1 3

constrained agent side and at the predecessor agent side. We
show the process of computation for two agents but it still
applicable for any number of agents and each agent can be
either predecessor or successor (with respect to the acyclic
aspect).

6.4.1 Constrained agent

This agent can trigger communication. For this reason, we
differentiate between the policy computation for each type
of state.

(a) Success State si =
〈

ai,
[

ti, t
′
i

]〉

 This state is associated to action ai. The agent must
decide about the next action to execute and when to
execute it. To do this, the expected value of state si
(V(si)) is calculated based on all actions’ values (Q)
that can be reached from si.

where p = 1 . . .m is the number of ai’s successors
(aip). R(si) is the reward obtained for being in state
si and it consists in the reward associated to the suc-
cessful execution of action ai given in the problem
statement. Q

(

(aip , tip), si
)

 is the expected utility from
executing action aip at time tip ≥ t′i. It is deduced from
transition probabilities (success, PF and TF transitions)
and the value of the resulting state.
 The policy of the state si is given by:

where OC
(

(aip , tip), si
)

 is the opportunity cost from
executing action aip at time tip induced on aip‘s succes-
sors belonging to other agents.

(b) Partial failure state si =
〈

ai, [t, t + 1], t′i
〉

 or
si =

〈

ai,
[

t + 1, t′
]

, t′i ,�
〉

 The components of the PF state are slightly different from
those of the success state. In PF state we capture the last
successfully executed action ai, the PF interval [t, t + 1]

, Where t corresponds to the time where the agent tries to
execute the next constrained action and t+1 is the time
where it realizes that one or more predecessors have not
been executed yet. We assume that it takes one unit of
time to realize the PF, t′i corresponds to the end time of ai.

Since communication can be triggered at the partial fail-
ure state, the decision at this point differs based on the pres-
ence or not of messages. Hence, we distinguish between

(3)V(si) = R(si)+ max
p,tip≥t′i

(

Q
((

aip , tip
)

, si
))

(4)

π(si) = argmax
p,tip≥t′i

[

Q
((

aip , tip
)

, si
)

− OC
((

aip , tip
)

, si
)]

the policy computation of the two types of partial failure
state (with and without messages).

•– Partial failure state without message
si =

〈

ai, [t, t + 1], t′i
〉

, let ai+1 be the action that leads to
PF. We distinguish two scenarios

–– Wait some �t and try again the execution of ai+1.
However, it is not suitable for our case because, if
repeated, this will violate the execution intervals of
ai+1 and leads to the total failure of the mission. This
solution has been adopted in (Beynier and Mouaddib
2005, 2011).

–– The second scenario is to evaluate the gain between
considering another successor action except ai+1
(if exists in the partial plan) or communicate with
the predecessor agent(s) asking for the enabling
action(s). This scenario is more appropriate to our
case since we introduce communication decision.
Formally:

––

where R(si) = 0, because, no reward is associated to
PF state si. p− {i + 1} are all local successor actions
of ai except ai+1 (causing the PF), tip−{i+1}

 is the time
of executing a local successor action of ai except
ai+1. Q

((

aip−{i+1}
, tip−{i+1}

)

, si
)

 is the expected utility
of executing a successor action of ai except ai+1 at
time greater than or equal to t+1 (time of PF realiza-
tion). V(comm) = Q((ai+1, ti+1), si)− Ccom, with
ti+1 = (t + 1)+ 2 and Ccom is the cost induced by the
communication. Note that if t + 1 ≥ max

{

STai+1

}

,
Q((ai+1, ti+1), si) = 0 because the agent could not
retry to execute the action in question (ai+1), there is no
other possible start time for it.
The policy is, then, given by:

•– Partial failure state with message si =
〈

ai,
[

t + 1, t′
]

, t′i ,�
〉

When the PF state contains a message, the decision
about the next action to execute depends on the content
of the message. When the message contains ∞, the agent
must choose an alternative successor action of ai except

(5)

V(si) = R(si)+ max
p−{i+1},tip−{i+1}

≥t+1

(

Q
((

aip−{i+1}
, tip−{i+1}

)

, si
)

,V(comm)
)

(6)

π(si) = argmax
p−{i+1},tip−{i+1}

≥t+1

(

Q
((

aip−{i+1}
, tip−{i+1}

)

, si
)

−OC
((

aip−{i+1}
, tip−{i+1}

)

, si
)

,V(comm)
)

51Evolving Systems (2016) 7:41–60

1 3

ai+1. This corresponds to changing the path in its local
partial plan. The agent must change the path in its local
partial plan also when the message received contains a
value (the greatest end time of the predecessor action)
is greater than or equal to the maximum of possible start
times of action ai+1, since the agent may violate ai+1′s
temporal constraints.

When the value received is less than the maximum of
possible start times of ai+1, the agent can choose between
changing the path or re-executing action ai+1.

 After computing the expected utility of state si, we move to
the computation of its policy.

where R(si) = 0 because si is a PF state. p− {i + 1} are all
successor actions of ai except ai+1 (causing the PF). tip−{i+1}

is the time of executing a local successor action of ai except
action ai+1. Q

((

aip−{i+1}
, tip−{i+1}

)

, si
)

 is the expected util-
ity of executing a successor action of ai except ai+1 at time
greater than or equal to t′ (the time where the message is
received). ti+1is the time of re-executing ai+1 after receiving
a message containing a value greater or equal to the value
received and inferior to the maximum of possible start times
of ai+1(in order to respect ai+1′s temporal constraints).
Q((ai+1, ti+1), si) is the expected utility of executing action
ai+1 at time ti+1. OC

((

aip−{i+1}
, tip−{i+1}

)

, si
)

 is the OC from
executing aip−{i+1}

 at tip−{i+1}
 and OC((ai+1, ti+1), si) is the

OC from executing ai+1 at ti+1.

(7.1)

V(si) = R(si)+ max
p−{i+1},tip−{i+1}

≥t′

(

Q
((

aip−{i+1}
, tip−{i+1}

)

, si

))

if � = ∞ or � = val ≥ max
{

STai+1

}

(7.2)

V(si) = R(si)+ max
p− {i + 1}, tip−{i+1}

≥ t′

val ≤ ti+1 < max
{

STai+1

}

(

Q
((

aip−{i+1}
, tip−{i+1}

)

, si
)

,Q((ai+1, ti+1), si)
)

if � = val < max
{

STai+1

}

(8.1)

π(si) = argmax
p−{i+1},tip−{i+1}

≥t
′

(

Q
((

aip−{i+1}
, tip−{i+1}

)

, si
)

−OC
((

aip−{i+1}
, tip−{i+1}

)

, si
))

if� = ∞ or� = val ≥ max
{

STai+1

}

(8.2)

π(si) = argmax

p− {i + 1}, tip−{i+1}
≥ t

′

val ≤ ti+1 < max
{

STai+1

}

(

Q
((

aip−{i+1}
, tip−{i+1}

)

, si

)

−OC
((

aip−{i+1}
, tip−{i+1}

)

, si

)

,Q
((

ai+1, ti+1

)

, si
)

−OC
((

ai+1, ti+1

)

, si
))

if� = val < max
{

STai+1

}

c) Total failure state si =
〈

ai,
[

ti, t
′
i

]

, fail
〉

From this state, no policy is calculated.

where −R(si) is the reward lost from failing the execu-
tion of action ai.

∑

a�=i∈EndoSuc(ai)

R(s �=i) consists in the loss

in reward of all remaining actions reached from the failed
action ai and executed by the same agent (called endoge-
nous successors, EndoSuc(ai)).

6.4.2 Predecessor agent

We recall that for this agent no policy for communication is
computed. The agent must synchronize with the con-
strained agent if this latter triggers communication. As this
agent has no constrained action, no PF state is treated.3

(a) Success state si =
〈

ai,
[

ti, t
′
i

]〉

 or si =
〈

ai,
[

ti, t
′
i

]

,�
〉

 From a success state, the predecessor agent can choose
between successor actions of action ai.

 When calculating the policy of this state, the agent
must consider the opportunity cost induced on ai’s suc-
cessors belonging to other agents.

 Note that when si =
〈

ai,
[

ti, t
′
i

]〉

, Ccom = 0 and
when si =

〈

ai,
[

ti, t
′
i

]

,�
〉

, Ccom = 2.
 R(si) is the reward received for being in the state
si and it consists in the reward associated to the suc-
cessful execution of action ai given in the prob-
lem statement. Q

((

aip , tip
)

, si
)

 is the expected utility
from executing action aip at time tip ≥ t′i from state si.
OC

((

aip , tip
)

, si
)

 is the opportunity cost from executing
aip at time tip provoked on aip‘s successors belonging to
other agents.

(b) Total failure state si =
〈

ai,
[

ti, t
′
i

]

,�, fail
〉

 or
si =

〈

ai,
[

ti, t
′
i

]

, fail
〉

(9)
V(si) = −R(si)−

∑

a�=i∈EndoSuc(ai)

R
(

s�=i

)

3 The case where this agent is a constrained and predecessor agent at
the same time can also be taken into account in our model. We distin-
guished between them to simplify the explanation.

(10)V(si) = R(si)− Ccom + max
p,tip≥t′i

((

Q
(

aip , tip
)

, si
))

(11)

π(si) = argmax
p,tip≥t′i

[

Q
((

aip , tip
)

, si
)

− OC
((

aip , tip
)

, si
)]

(12)
V(si) = −R(si)−

∑

a�=i∈EndoSuc(ai)

R
(

s�=i

)

− Ccom

52 Evolving Systems (2016) 7:41–60

1 3

 Where −R(si) is the reward lost from failing the
execution of action ai.

∑

a�=i∈EndoSuc(ai)

R(s �=i) consists

in the loss in reward of all remaining actions reached
from the failed action ai and executed by the same
agent (called endogenous successors, EndoSuc(ai)).
Ccom is communication cost.

6.5 Dealing with missed messages

In this sub-section, we enhance our proposition to deal
with missed messages. In such a case, an agent may wait
indefinitely for a response which leads to a violation of its
temporal constraints. To remedy to that, we augment par-
tial failure states with adaptive waiting time �t. This �t
depends on the state an agent might be in and regarding
its temporal constraints. Then, for each new partial failure
state, the policy computation algorithm computes the cor-
responding policy.

According to Eq. 5, the policy of a partial fail-
ure state si =

〈

ai, [t, t + 1], t′i
〉

, is either to communi-
cate or execute an alternative action of ai+1 (execute
one of ai’s successors except ai+1). The value of com-
munication in this case (the case of missed mes-
sages) is V(comm) = Q((ai+1, ti+1), si)− Ccom, where
ti+1 = (t + 1)+�t. �t corresponds to the waiting time
after which the agent may re-execute ai+1 or execute
another action.

If after waiting �t time units there is no message
received, the agent supposes that the message is missed
either in transmission or in receipt phase, and still has to
select an action (before violating its temporal constraints).

Thus, we propose to compute �t based on the execution
constraints of possible alternative action(s) of action ai+1.
We put,

where tcurrent corresponds to the end time of the PF state
(t+1). max {STalter} corresponds to the greatest valid start
time from the set of alternative action’s start times. We
mean by ‘‘valid’’, the possible start time that does not vio-
late the action’s temporal constraints extracted from all suc-
cess states of alternative action of ai+1. The reason behind
choosing this value is that after waiting �t time units and
no message is received, the agent still can select an action to
execute (an alternative action on different path) respecting
its temporal constraints. Figure 4 shows the development
of partial failure states in the case of successful communi-
cation (case 1) with fixed time (equal to 2: 1 unit of time
for sending and 1 unit of time for reception) and stochastic
communication where messages may be lost (case 2).

Example According to the example presented in Sect. 2,
s = �A, [8, 9], 8�, s′ = �A, [10, 11], 8� are two PF states
associated to action C when action H does not terminate
its execution at times 8 and 10. The policy of states s and s′
dictates to communicate and max {STB} = 12(where
max {STB} is the maximum of possible start times of action
B- the alternative action of C of agent 1 extracted from B’s
success states).

We have,

Hence, For state s, we have:

�t = max {STalter} − tcurrent

�t = max {STB} − tcurrent

�t = 12− 9 = 3

Fig. 4 PF States in successful
communication and communi-
cation with failure

, [, + 1],

, [+ 1, + 1 + 2], ,

, [, + 1],

, [+ 1, + 1 +],, [+ 1, + 1 +], ,

Successful communication
(fixed time = 2)

Possibility of missed
messages

The decision is based on
the content of the

received message : re-
execute +1or execute

an alternative action
Equations (7,8)

The decision is based on
the content of the

received message : re-
execute +1 or execute

an alternative action
Equations (7,8)

No response after
don't re-execute the

action +1 and attempt
to execute an alternative

action (7.1,8.1)

53Evolving Systems (2016) 7:41–60

1 3

For state s′, we have:

The new states in which the agent will receive or not a mes-
sage � are: s = �A, [9, 12], 8� or s = �A, [9, 12], 8,�� and
s′ = �A, [11, 12], 8� or 〈A, [11, 12], 8,�〉. For each state, the
values and policies will be computed offline by our value
and policy computation algorithms.

7 Results and discussion

Our experiments were directed towards performances
and solution quality contrary to the work in Beynier and
Mouaddib (2011) which is directed towards testing the
scalability of the approach proposed. Indeed, OC-DEC-
MDP has been shown to scale up (Beynier and Mouad-
dib 2011). Our main objective was the extension of this
model to problems with partial local plans and raise issues
resulting from this extension by proposing a rich model of
communication.

We varied the number of agents and dependencies and
we evaluated the consequences of adding communication
in term of the global gain of agents. We mean by global
gain the cumulative reward obtained by agents after execut-
ing their mission.

It is important to note that the type of problems we
deal with suffers from the difficulty of obtaining random
scenarios or instances whose policies actually dictate
communication (Mostafa 2011). Randomly generated
instances are not dependent enough to trigger communi-
cation. For this reason, during dependencies’ generation
phase, the maximum of dependencies added was fixed
empirically, so that we avoid the cycle. We recall that the
mission graph must be acyclic. Moreover, we have fol-
lowed some rules in order to insert a dependency. First of
all, the constrained action must be in a level superior or
equal to the level of the predecessor action in the mission
graph. Second, in a given level, we must have at least
one action with no exogenous precedence so that the
agent can continue its execution. When generating our
instances we assumed that the branching factor is equal
to 2.

�t = 12− 11 = 1

We generated three instances of problem:

–– The first instance is composed of 15 tasks distributed
among three agents,

–– The second instance is composed of 21 tasks distributed
among 4 agents and

–– The third instance is composed of 40 tasks distributed
among 6 agents.

The topology of each instance is given in Table 1 with
the number of generated states after temporal propaga-
tion. The main parameters that affect an instance’s size
materialized by the number of states are the number of
actions of each agent, the number of dependencies (prec-
edence relations) and the size of the temporal window. As
we can see in Table 1, there is a growth in state space in
the case of communication with failure compared to suc-
cessful communication. This increase is interpreted by the
fact that when considering missed messages, three types
of states are considered after sending a message: PF state
with � = ∞, PF state with � = val, and PF state with-
out a message. This last state interprets the case where the
constrained agent sends a query message and after waiting
�t time units there is no response received (the message is
missed). This is in contrast to successful communication
where the state space is augmented by two types of states
only: PF state with � = ∞ and PF state with � = val.

It is important to note that without using heuristics pro-
posed in Sect. 6.2, both state spaces’ size (case 1 and case
2) will be larger. Indeed, without any heuristic on commu-
nication issues and as a consequence of an offline commu-
nication, we must consider for each state its equivalent with
a message.

For these instances, we conducted experiments which
consist of two parts: in part 1, the aim is to show the neces-
sity of communication particularly in case of tight temporal
constraints to avoid total failure of the mission. In part 2,
we computed the global gain of the agents when communi-
cation is free (upper bound global gain) and we measured
the loss in global gain by introducing costly communica-
tion. For this part, the two cases of successful communi-
cation and communication with the possibility of missed
messages are studied.

Table 1 The composition of each problem instance (case 1: successful communication, case 2: communication with failure)

Inst parameters Nb of agents Nb Of actions Nb of levels Branching
factor

Nb of local
dependencies

Nb of global
dependencies

State space
(case 1)

State space
(case 2)

Instance 1 3 15 3 2 12 5 211 239

Instance 2 4 21 3 2 17 7 443 466

Instance 3 6 40 4 2 34 15 762 816

54 Evolving Systems (2016) 7:41–60

1 3

Simulations conducted were realized using JADE
(Java Agent DEvelopment framework) (Singh et al. 2011;
Prakash et al. 2014). After computing the policy of each
agent (offline phase), we move to execute this joint policy
(online phase using JADE). Each agent Ag has its local
partial plan in which each action ai has a list of exogenous
predecessors ExoPred(ai), the list of all its possible states
S with the corresponding policies �(S) and the resulting
states such that S,�(S) → S. All this information (problem
description and the computed policy) represent the entry
of the online phase. When an agent observes its state, it
executes the corresponding policy and it transits to one of
its possible next states. To simulate the transition to a non-
deterministic state, we proceed as usual in MDPs (Mostafa
and Lesser 2009, Beynier and Mouaddib 2011) and we
randomize among all possible resulting states. From the
new resulting state, the agent executes once again its cor-
responding policy and so on. Each time the policy is exe-
cuted, the corresponding reward is cumulated.

Part 1 Fig. 5 (a, b and c) shows that the cumulative
reward when agents can communicate is always greater
than the cumulative reward for the non-communicative

case even for large temporal constraints. However, In
case of tight intervals and without communication, the
total failure of the mission is significant. This is due to
the partial failure of constrained actions which leads to
a violation of the tighter constraints. When communica-
tion is introduced the total failure did not occur because
agents will always opt for a communication policy even
if communication is costly. The loss in total expected
utility induced from communication is less important
than the total failure of the mission because in the case
of tight intervals the next failure will eventually be a
total failure instead of a partial failure in case of large
constraints.

As we can see in Fig. 5, the more the need for communi-
cation is increased (materialized by an increase in depend-
encies), the higher agents’ global gain is. The reason behind
this increase is that agents assess the value of communicat-
ing before adopting a communication policy, so they find
the best tradeoff between the utility of information received
by communicating, communication cost, and the utility of
other alternatives without communication, regarding their
constraints.

19

-6

21

17

-10

-5

0

5

10

15

20

25

Large Tight

Global gain

Without communica�on

With communica�on

28

8

32

24

0

5

10

15

20

25

30

35

Large Tight

Global gain

Without communica�on

With communica�on

(a) Instance 1 (b) Instance 2

55

13

62

50

0

10

20

30

40

50

60

70

Large Tight

Global gain

Without communica�on

With communica�on

(c) Instance 3

Fig. 5 Agent’s performance

55Evolving Systems (2016) 7:41–60

1 3

The growth in the number of dependencies has two
main results. It increases the need for communication, on
one hand. On the other hand, it increments the number of
execution intervals. Since agents are time constrained, the
number of execution intervals that respect agents’ temporal
window is restricted and the number of execution intervals
that violate the temporal constraints is increased. In this
case, communication seems to be a good choice for agents
in order to avoid mis-coordination situations and the total
failure of the mission, and thus agents’ performance will be
improved.

Part 2 For the three instances, we executed the joint pol-
icy found offline and we computed the global gain by set-
ting the communication cost equal to zero (free communi-
cation). This constitutes the best global gain that agents can
obtain. Then, we added a communication cost (Ccom = 2)
and we computed again the global gain of agents for the
case where communication is successful, i.e. it consumes
2 time units, and when there is a possibility of missed mes-
sages. Moreover, we varied for each running instance the

number of dependencies with respect to the acyclic prop-
erty of the mission graph.

As shown in Fig. 6 (a, b and c) and Fig. 7 (a, b and c)
there is a loss in cumulative reward when communication
cost is introduced. Moreover, for each instance, when the
number of dependencies increases, a loss in global gain is
captured.

The decrease in global reward is interpreted by the fact
that communication is more solicited when dependencies
are increased. As a consequence of increasing the need for
communication, the associated cost is more considered.

When dealing with missed messages, we have observed
a loss in cumulative reward comparing to the case of suc-
cessful communication. This can be explained by the fact
that the agent may not receive a response to its request. So,
it is first penalized for communicating and will be obliged
to choose an alternative action which has a less important
reward than the first chosen action.

Experimental results demonstrate the effectiveness
of heuristics introduced in order to take communication

34,8
32,8

30,8

38,7
36,7 36,2

0

5

10

15

20

25

30

35

40

45

3 5 7

Average
Global Gain

Number of dependencies
(b) Instance 2

18,7

17,7

20

19,9

16,5
17

17,5
18

18,5
19

19,5
20

20,5

3 5

Average
Gloal Gain

Number of dependencies

Instance 1

Baseline

(a) Instance 1

77,7
77,2

76,7
76,2 75,9

80,5 80,2 80,2 80 80

73

74

75

76

77

78

79

80

81

5 7 9 12 15

Average Global
Gain

Number of dependencies

Instance 3

Baseline

(c) Instance 3

Fig. 6 The influence of the number of dependencies on the total gain in fixed time successful communication

56 Evolving Systems (2016) 7:41–60

1 3

decisions leading to the possible best solution according to
the problem constraints (temporal and precedence). These
heuristics aim to reduce the problem size and optimizing
information to share.

8 Comparative study

Several works have been done on communication in deci-
sion theoretic models, but the closest to ours is that of
(Beynier and Mouaadib 2010). We try to highlight the simi-
larities and differences between these two works in order
to better understand how they stand in relation to each
other. We recall that through this work, we are not trying
to improve results finding in (Beynier and Mouaadib 2010)
but our aim is to extend the proposed model to take into

account partial local plans. As a consequence of this exten-
sion, some problems regarding coordination will take place.
In order to raise these problems, we proposed a communi-
cation model specific to such mis-coordination situations.

The comparison between these two works is done in two
fold. We compare, at first, between the topology of the mis-
sion graph, the decision model, and issues related to each
model. Second, we detail and compare the two communi-
cation models proposed in order to handle issues specific to
each work. Table 2 compares the topology of each mission
graph.

As we can see in Table 2, the decision problem in (Bey-
nier and Mouaadib 2010) deals with linear plans. This
results in a reduction in solution space where there is one
path in which each node is the sole action. Each action in
the path has different possible schedules (because of its

17,2 16,7

20 19,9

15

16

17

18

19

20

21

3 5

Average
Gloal Gain

Number of dependencies

Instance 1

Baseline

32,8 31,8 29,7

38,7 36,7 36,2

0

5

10

15

20

25

30

35

40

45

3 5 7

Average Global
Gain

Number of dependencies

Instance 2

Baseline

(a) Instance 1 (b) Instance 2

76,5
75,7

75,2
74,5 74,2

80,5 80,2 80,2 80 80

71
72
73
74
75
76
77
78
79
80
81

5 7 9 12 15

Average
Global Gain

Number of dependencies

Instance 3

Baseline

(c) Instance 3

Fig. 7 The influence of the number of dependencies on the total gain in stochastic communication: missed messages

57Evolving Systems (2016) 7:41–60

1 3

several durations). Our extension results in harder decision
problem and larger solution space where there are differ-
ent possible paths (partial plan). Each action in the path has
different possible schedules (because of its several dura-
tions). This leads us to propose an adequate communication
model (presented in Sect. 6.2) in order to deal with prob-
lems raised from partial plans.

We give in Table 3 a comparison between the two com-
munication models. The following are the criteria we use
for comparison:

•– Aim: why introducing communication among agents.
•– Communication action model: is communication action

considered similarly to the domain level action or each
action represents a different kind from the other?

•– Decision problem: which are the decisions available to
each agent at each decision step.

•– Reasoning time: reasoning about communication can be
done offline or online.

•– AND/OR communication: communication actions can
be chosen in combination with domain level actions or
they may take the place of domain level actions.

•– Who trigger communication: which agent initiates com-
munication?

•– When to communicate: this communication issue
requires reasoning about the effects of communication
on team behavior and expected global reward, at first.
Second, if agents do not communicate at every time
step, in which situations communication will be a good
choice in order to maintain coordination.

•– To whom communicate: in addition to deciding when
communication is necessary, agents can also determine
with whom they will share the information.

•– Communication type: how communication is initiated,
we consider three communication types (Xuan et al.
2001):

–– Tell, in this type, one agent decides to send a mes-
sage to other agents voluntarily (information going
outward). As a result, the sender will not know any
information about the receiver.

–– Query, here, an agent asks one or more of its team-
mates for particular information which is useful to
pursue its execution (information going inward).

–– Sync, this is a combination of the above two, in
which all agents simultaneously communicate their
local information with each other.

•– Information flow: in each direction information will be
sent.

•– What to communicate: In an explicit communication,
generally, agents can communicate any information
that helps the receivers refine their beliefs over what the
sender will do/has done.

•– Value of communication: Deciding when to commu-
nicate in cooperative decentralized problems can be
measured by the value of communication which refers
to how an agent assesses the worth of a communication
action. The value of communication can be defined as
the net gain from communicating, which is the differ-
ence between the expected improvement in the agents’
performance and the costs associated with communi-
cation (Becker et al. 2009). It can be measured myopi-
cally or by considering the expected value of the state
resulting from communication. Another approach may
not calculate the value from communication. Rather,
communication is triggered when a condition is met
(Mostafa 2011).

•– Solution method: how the joint policy is computed?
•– After communication: refers to the influence of the mes-

sage received on agents’ behaviors. In other words, how
agents react after a communication round (reception of
a message).

Table 2 Comparison between the topology of mission graphs

Work Beynier and Mouaadib (2010) This work

Comparison criteria

 Topology of the action graph (local plan) Linear Partial

 Type of dependencies – Precedence constraints between agents’
actions (exogenous)

– Locally totally ordered actions

– Precedence constraints between agents’
actions (exogenous)

– Locally partially ordered actions (endogenous
precedence)

 Decision problem When to execute the beforehand known action – What action to execute
– When to execute it

 Preconditions related to the computation of
opportunity cost (OC)

The OC of constrained action must be com-
puted before its predecessor

– The OC of constrained action must be com-
puted before its predecessor

– Two actions that have the same predecessor
must be considered at the same level

58 Evolving Systems (2016) 7:41–60

1 3

Ta
bl

e
3

 C
om

pa
ri

so
n

be
tw

ee
n

th
e

tw
o

co
m

m
un

ic
at

io
n

m
od

el
s

W
or

k
B

ey
ni

er
 a

nd
 M

ou
aa

di
b

(2
01

0)
T

hi
s

w
or

k

C
om

pa
ri

so
n

cr
ite

ri
a

 A
im

R
ed

uc
in

g
m

is
-c

oo
rd

in
at

io
n:

 P
F

st
at

es
–

R
ed

uc
in

g
m

is
-c

oo
rd

in
at

io
n:

 P
F

st
at

es
–

A
vo

id
in

g
th

e
to

ta
l f

ai
lu

re
 o

f
th

e
m

is
si

on
 (

th
e

co
ns

tr
ai

ne
d

ag
en

t m
ay

 w
ai

t
in

de
fin

ite
ly

 f
or

 th
e

pr
ed

ec
es

so
r

ac
tio

n
w

hi
ch

 w
ill

 n
ev

er
 b

e
ex

ec
ut

ed
:

se
ve

ra
l e

xe
cu

tio
n

pa
th

s)

 C
om

m
un

ic
at

io
n

ac
tio

n
m

od
el

C
om

m
un

ic
at

io
n

ac
tio

n
an

d
do

m
ai

n
le

ve
l a

ct
io

n
ar

e
un

ifi
ed

. H
en

ce
,

co
m

m
un

ic
at

io
n

ac
tio

n
is

 c
on

st
ra

in
ed

 b
y

a
te

m
po

ra
l w

in
do

w
 a

nd

pr
ob

ab
ili

st
ic

 d
ur

at
io

ns

C
om

m
un

ic
at

io
n

is
 c

on
si

de
re

d
se

pa
ra

te
ly

. H
en

ce
, c

om
m

un
ic

at
io

n
ac

tio
n

is

no
t c

on
st

ra
in

ed
 a

nd
 h

as
 a

 fi
xe

d
co

st
.

 D
ec

is
io

n
pr

ob
le

m
C

om
m

un
ic

at
e,

 w
ai

t,
ex

ec
ut

e
C

om
m

un
ic

at
e,

 e
xe

cu
te

 R
ea

so
ni

ng
 ti

m
e

Pl
an

ni
ng

 ti
m

e
(o

ffl
in

e)
Pl

an
ni

ng
 ti

m
e

(o
ffl

in
e)

 A
N

D
/O

R
 c

om
m

un
ic

at
io

n
O

R
 c

om
m

un
ic

at
io

n
O

R
 c

om
m

un
ic

at
io

n

 W
ho

 tr
ig

ge
r

co
m

m
un

ic
at

io
n

Pr
ed

ec
es

so
r

ag
en

t
C

on
st

ra
in

ed
 a

ge
nt

 W
he

n
to

 c
om

m
un

ic
at

e
A

ft
er

 s
uc

ce
ss

fu
lly

 e
xe

cu
tin

g
a

pr
ed

ec
es

so
r

ac
tio

n
A

ft
er

 o
ne

 P
F

st
at

e

 T
o

w
ho

m
 c

om
m

un
ic

at
e

Su
cc

es
so

r
ag

en
ts

Pr
ed

ec
es

so
r

ag
en

ts

 C
om

m
un

ic
at

io
n

ty
pe

Te
ll

Q
ue

ry

 I
nf

or
m

at
io

n
flo

w
U

ni
-d

ir
ec

tio
na

l:
fr

om
 p

re
de

ce
ss

or
 to

 c
on

st
ra

in
ed

 a
ge

nt
B

i-
di

re
ct

io
na

l

 W
ha

t t
o

co
m

m
un

ic
at

e
(t

he
 c

on
te

nt

of
 �

)
�

=
t′ i (

T
he

 e
nd

 ti
m

e
of

 a
 p

re
de

ce
ss

or
 a

ct
io

n
a i

)
–

Fo
r

T
he

 c
on

st
ra

in
ed

 a
ge

nt
: �

=
a
i (

pr
ed

ec
es

so
r

ac
tio

n)
–

Fo
r

th
e

pr
ed

ec
es

so
r

ag
en

t:
�

=
∞

 o
r

�
=

m
a
x
{ E
T
(a

i
,
t i
)}

 (
th

e
gr

ea
te

st
 e

nd
 ti

m
e

fr
om

 th
e

se
t E

T
 o

f
en

d
tim

es

as
so

ci
at

ed
 w

ith
 (

a i
, t

i))

 V
al

ue
 o

f
co

m
m

un
ic

at
io

n
–

C
om

pu
te

d
by

 th
e

pr
ed

ec
es

so
r

ag
en

t i
nd

ep
en

de
nt

ly
 f

ro
m

 th
e

co

ns
tr

ai
ne

d
ag

en
t

–
B

el
lm

an
 e

qu
at

io
n

–
C

om
pu

te
d

by
 th

e
co

ns
tr

ai
ne

d
ag

en
t

–
m

ea
su

re
d

by
 th

e
ex

pe
ct

ed
 v

al
ue

 o
f

th
e

re
su

lti
ng

 s
ta

te

af
te

r
co

m
m

un
ic

at
in

g
an

d
th

e
co

st
 o

f
th

e
co

m
m

un
ic

at
io

n
V
(c
o
m
m
)
=

Q
((
a
i+

1
,
t i
+
1
),
s
i
)
−

C
c
o
m

 S
ol

ut
io

n
m

et
ho

d
O

C
 a

lg
or

ith
m

E
xt

en
de

d
ve

rs
io

n
of

 O
C

 a
lg

or
ith

m
 to

 d
ea

l w
ith

 p
ar

tia
l l

oc
al

 p
la

ns
 a

nd
 th

e
pr

op
os

ed
 c

om
m

un
ic

at
io

n
m

od
el

 A
ft

er
 c

om
m

un
ic

at
io

n
T

he
 c

on
st

ra
in

ed
 a

ge
nt

 c
on

tin
ue

 to
 w

ai
t

T
he

 c
on

st
ra

in
ed

 a
ge

nt
 f

ol
lo

w
s

th
e

pa
th

 d
ic

ta
te

d
by

 it
s

cu
rr

en
t s

ta
te

 a
nd

 th
e

re
ce

iv
ed

 in
fo

rm
at

io
n

(m
es

sa
ge

 c
on

te
nt

)

 S
to

ch
as

tic
 c

om
m

un
ic

at
io

n
N

ot
 h

an
dl

ed
M

is
se

d
m

es
sa

ge

59Evolving Systems (2016) 7:41–60

1 3

•– Stochastic communication: dealing with missed, cor-
rupted or delayed communication.

As we can see in Table 3, Communicative OC-DEC-
MDP allows the agent to communicate the end time of a
previous successfully executed action. The problem here is
that the information sent is available when it is too late to
the constrained agent to benefit from it. This results from
the asynchronous execution of actions. Moreover, commu-
nication is used in one direction. This means that when the
constrained agent arrives at the constrained action before
its predecessor, it will be obliged to wait which may affect
its temporal constraints and hence temporal constraints of
depending agents (by propagation).

In this work and through the communication model pro-
posed, we tried to fix these problems in addition to other
emergent problems resulting from partially ordered actions.
We have supposed that the constrained agent can ask for
the action needed from other agents (when it falls in a PF
state and its policy dictates the communication). By receiv-
ing a query, the predecessor agent is obliged to synchronize
with the constrained agent. The language used in this work
is chosen to take into account the possibility of receiving
the query before deciding to execute the predecessor action
or not (to deal with asynchronism). Furthermore, sharing
information is doing in two ways (bi-directional commu-
nication), in order to maintain coordination. In fact, in Bey-
nier and Mouaadib (2010) there is a decoupling between
the agents because the predecessor agent decides to send
information independently without considering if this is
necessary for the constrained agent and if it really increases
the global expected reward.

9 Conclusion

Modeling distributed real world applications using decen-
tralized Markov Decision Processes requires a specific
adaptation in order to take into account actions execution
constraints.

In this paper, we aimed at extending a state of the art
model OC-DEC-MDP which is proposed to take into
account temporal and precedence constraints, and probabil-
istic actions’ durations in the case of linear local plans, to
handle partial local plans and communication decisions.

In this type of problems, communication can only be
beneficial in order to ensure coordination between agents.
However, communication is expensive in terms of opera-
tional and computational costs and must be restricted.

The decision about the policy of each agent is based
on the type of the state an agent might be in. It results
from a tradeoff between the expected utility of the agent,

its opportunity cost on other agents, and the value of
communication.

In order to optimize communication decisions, we have
proposed heuristics that concern when, what and with
whom communicate. Since an agent depends from the oth-
ers only when a precedence relation occurs between them,
communication points are restricted in precedence con-
straint. The communication model we proposed considers
that communication is triggered by the constrained agent
after one partial failure state if its policy dictates to coordi-
nate. We have considered three types of messages depend-
ing on the state of the agent. Moreover, it was supposed
that the set of communicating agents is limited to the sub-
set of agents that only depends from each other.

In this work, we have considered two cases: i) success-
ful communication where messages are received after a
fixed time, ii) fail communication where messages may be
missed.

Our results have shown the effectiveness of the proposed
approach. In fact, communication heuristics conducted us
to the possible best solution according to the constraints.

A major inconvenient of OC-DEC-MDP is the large
state space. One direction of future research is to reduce
the size of this space by defining a representative subset
of states where agents are likely to move in Marecki and
Tambe (2007) handles the problem of the state space size
by considering continuous time and thus dealing with value
function over time for each action rather than a separate
value for each action and execution interval. It will be inter-
esting to increase the level of coordination by introducing
communication among agents and measure its contribution
on the overall gain. Another direction of future work is to
consider constraints on communication such as defining
a communication budget and then formalize exactly how
much communication is allowed.

References

Becker R, Zilberstein S, Lesser V, Goldman CV (2003) Transition-
independent decentralized Markov decision processes. In: Inter-
national joint conference on autonomous agents and multi-agent
systems (AAMAS), pp 41–48

Becker R, Lesser V, Zilberstein S (2004) Decentralized Markov deci-
sion processes with event-driven interactions. In: The third inter-
national joint conference on autonomous agents and multi-agent
systems (AAMAS), pp 302–309

Becker R, Carlin A, Lesser V, Zilberstein S (2009) Analyzing myopic
approaches for multiagent communication. Comput Intell
25:31–50

Bellman R (1957) Dynamic programming. Princeton University, New
Jersey

Bernstein DS, Givan S, Immerman N, Zilberstein S (2002) The com-
plexity of decentralized control of Markov decision processes.
Math Oper Res 27:819–840

60 Evolving Systems (2016) 7:41–60

1 3

Beynier A, Mouaadib A (2010) A rich communicative model in
opportunistic decentralized decision making. In: ACM inter-
national conference on web intelligence and intelligent agent
technology

Beynier A, Mouaddib A (2005) A polynomial algorithm for decentral-
ized Markov decision processes with temporal constraints. In:
The fourth international conference on autonomous agents and
multi-agent systems (AAMAS), pp 963–969

Beynier A, Mouaddib A (2011) Solving efficiently decentralized
MDPs with temporal and resource constraints. J Auton Agents
Multi Agent Syst 23:486–539

Bresina J, Washington R (2000) Expected utility distributions for flex-
ible contingent execution. In: The AAAI workshop representa-
tion issues for real world planning systems

Goldman CV, Zilberstein S (2003) Optimizing information exchange
in cooperative multi-agent systems. In: The second international
joint conference on autonomous agents and multi-agent systems
(AAMAS), New York, pp 137–144

Goldman CV, Zilberstein S (2004) Decentralized control of coop-
erative systems: categorization and complexity analysis. J Artif
Intell Res 22:143–174

Kumar A, Zilberstein S (2009) Constraint-based dynamic program-
ming for decentralized POMDPs with structured interactions. In:
International joint conference on autonomous agents and multia-
gent systems (AAMAS), pp 561–568

Lambrechts O, Demeulemeester E, Herroelen W (2008) Proactive and
reactive strategies for resource-constrained project scheduling
with uncertain resource availabilities. J Sched 11:121–136

Lazarova-Molnar S, Mizouni R (2010) Modeling human decision
behaviors for accurate prediction of project schedule duration.
Lecture notes in business information processing

Marecki J, Tambe M (2007) On opportunistic techniques for solving
decentralized Markov decision processes with temporal con-
straints. In: International joint conference on autonomous agents
and multi-agent systems (AAMAS)

Matignon L, JeanPierre L, Mouaddib A (2012) Coordinated multi
robot exploration under communication constraints using decen-
tralized Markov decision processes. In: Twenty-sixth AAAI con-
ference on artificial intelligence

Melo F, Spaan MTJ, Witwicki SJ (2012) Exploiting sparse interac-
tions for optimizing communication in DEC-MDPs. In: Seventh
annual workshop on multi-agent sequential decision making
(MSDM) held in conjunction with AAMAS

Mostafa H (2011) Exploiting structure in coordinating multiple deci-
sion makers. Dissertation, University of Massachusetts, Amherst

Mostafa H, Lesser V (2009) Offline Planning for communication
by exploiting structured interactions in decentralized MDP. In:
IEEE/WIC/ACM international conference on web intelligence
and agent technology (WI-IAT), pp 193–200

Mouaddib A, Zilberstein S (1998) Optimal scheduling for dynamic
progressive processing. In: European conference on artificial
intelligence (ECAI)

Nair R, Tambe M, Marsella S (2002) Team formation for reforma-
tion. In: AAAI spring symposium on intelligent distributed and
embedded systems

Oliehoek FA (2012) Decentralized POMDPs. In: Wiering M, Van
Otterlo M (eds) Reinforcement learning: state of the art. Adapta-
tion, learning, and optimization. Springer, Berlin/Heidelberg, pp
471–503

Oliehoek FA, Spaan MTJ (2012) Tree-based solution methods for
multiagent pomdps with delayed communication. In: AAAI

Prakash S, Singh A, Sammal PS (2014) Implementaion of distributed
multiagent system using JADE platform. Int J Comput Appl
105:12–19

Roth M, Simmons R, Veloso M (2005) Reasoning about joint beliefs
for execution-time communication decisions. In: The fourth
international joint conference on autonomous agents and multi-
agent systems (AAMAS)

Roth M, Simmons R, Veloso M (2007) Exploiting factored repre-
sentations for decentralized execution in multi-agent teams. In:
International joint conference on autonomous agents and multi-
agent systems (AAMAS)

Singh A, Juneja D, Sharma AK (2011) Agent development toolkits.
Int J Adv Technol 2:158–164

Spaan MTJ, Gordon GJ, Vlassis N (2006) Decentralized planning
under uncertainty for teams of communicating agents. In: The
fifth international joint conference on autonomous agents and
multi-agent systems (AAMAS), pp 249–256

Spaan MTJ, Oliehoek FA, Vlassis N (2008) Multiagent planning
under uncertainty with stochastic communication delays. In:
International conference on automated planning and scheduling
(ICAPS)

Valtazanos A, Steedman M (2014) Improving uncoordinated collabo-
ration in partially observable domains with imperfect simultane-
ous action communication. In: The second workshop on distrib-
uted and multi-agent planning (DMAP) held in conjunction with
ICAPS

Washington R, Golden K, Bresina J, Smith D E, Anderson C, Smith T
(1999) Autonomous rovers for mars exploration. In: IEEE aero-
space conference

Wieser F (1889) Valeur naturelle (Dernatürliche Wert)
Witwicki SJ, Durfee EH (2011) Towards unifying characterization for

quantifying weak coupling in DEC-POMDP. In: International
joint conference on autonomous agents and multi-agent systems
(AAMAS)

Xuan P, Lesser V, Zilberstein S (2001) Communication decision in
multi-agent cooperation: Model and Experiments. In: The fifth
international joint conference on autonomous agent

	An extended version of opportunity cost algorithm for communication decisions
	Abstract
	1 Introduction
	2 Motivating example
	3 Background
	3.1 Opportunity cost decentralized Markov decision process
	3.2 The principle of opportunity cost algorithm

	4 Related work
	5 Problem description
	5.1 Actions
	5.2 States
	5.3 Transition function
	5.4 Reward function
	5.5 Communication language

	6 Joint policy computation
	6.1 Opportunity cost algorithm for partial local plans
	6.1.1 Level decomposition
	6.1.2 Illustrating example

	6.2 Communication model
	6.2.1 H1: When to communicate?
	6.2.2 H2: To whom communicate?
	6.2.3 H3: What should be communicated?

	6.3 OC computation
	6.4 Policy computation
	6.4.1 Constrained agent
	6.4.2 Predecessor agent

	6.5 Dealing with missed messages

	7 Results and discussion
	8 Comparative study
	9 Conclusion
	References

