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1 Introduction

Many real world applications involve multiple agents act-
ing together as a team under time pressure and uncertainty. 
Examples of such applications can be found in Mars explo-
ration missions (Becker et al. 2003), disaster management 
problems (Nair et al. 2002), and decentralized detection of 
hazardous weather events (Kumar and Zilberstein 2009) …

The more suitable models capable of handling such 
problems are those studied in decision theory. These mod-
els are very expressive and are able to reason about the gain 
of action over time. They include decentralized Markov 
decision process (DEC-MDP) and decentralized partially 
observable Markov decision process (DEC-POMDP) 
(Oliehoek 2012). However, solving optimally these models 
was proven to be NEXP-complete (Bernstein et al. 2002).

For these reasons, subclasses of these models have been 
proposed which are more tractable. These subclasses are 
mainly derived based on dependencies between agents. For 
ones, agents are assumed transition independent and inter-
actions are captured by complex non-additive rewards like 
transition independent DEC-MDP (TI-DEC-MDP) (Becker 
et al. 2003). For the others, agents are assumed to be tran-
sition dependent with simple rewards. Among them, we 
cite event driven interactions DEC-MDP (ED-DEC-MDP) 
(Becker et al. 2004) where dependencies are structured 
in the form of event-driven interactions and opportunity 
cost DEC-MDP (OC-DEC-MDP) (Beynier and Mouaddib 
2005) where dependencies are interpreted by a precedence 
relation between agents. Another model resulting from the 
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marriage between TI-DEC-MDP and ED-DEC-MDP is 
event driven interaction with complex rewards (EDI-CR) 
(Mostafa and Lesser 2009) where dependencies are in the 
form of event-driven interaction and for each agent a com-
plex reward is assigned.

Another side of DEC-MDP is the communication issue. 
To deal with the lack of information between agents, com-
munication has been introduced to improve decisions and 
thus improving the total cumulative reward (Goldman 
and Zilberstein 2004). Communication can be implicit or 
explicit (Goldman and Zilberstein 2003). Implicit, when 
communication actions affect the observations seen by 
another agent. Explicit, when there are designated com-
munication actions and the language of communication is 
attached explicitly by the agent designer. Reasoning about 
communication can be offline at planning time (Mostafa 
and Lesser 2009; Melo et al. 2012; Spaan et al. 2006), or 
online during policy execution (Becker et al. 2009; Roth 
et al. 2005; Xuan et al. 2001). The latter is less complex in 
term of computational cost, but the former ensure a better 
long-term coordination. As communication cannot be free, 
a cost is associated that allows agents to reason about the 
gain in communicating.

In our work, we are interested in OC-DEC-MDP model 
which is capable of addressing temporal constraints, prec-
edence constraints and uncertainty on actions’ durations. 
However, this model is suited to the case where agents 
have linear plans of their actions. This is a tight assump-
tion regarding real world applications where agents’ 
actions may not be totally ordered. Hence, when consid-
ering partial local plans the solution proposed in Beynier 
and Mouaddib (2005, 2011) is not suited and need to be 
extended by handling other emerging problems as (i) which 
action to execute and (ii) when to execute it, instead of 
when to execute the beforehand known action in Beynier 
and Mouaddib (2005, 2011).

Moreover, as a consequence of partial local plans, agents 
have more than one path to accomplish their mission. 
Hence, the constrained agent may wait indefinitely for a 
predecessor action that will never be executed by the pre-
decessor agent (when choosing a different path). This leads 
to a violation of the temporal constraints of the constrained 
action which leads to the total failure of agents’ mission.

Communication may handle problems resulting from 
partial local plans and improves the degree of coordination 
between agents. However, it induces a cost and considering 
it at planning time leads to an increase in state space size 
due to reasoning about all communication possibilities at 
each time step.

To alleviate this problem, we exploit problem struc-
ture (Melo et al. 2012; Mostafa and Lesser 2009) to define 
coordination points and introduce some heuristics. These 
heuristics allow efficient communication decisions that 

concern when to communicate, what to communicate and 
to whom communicate. A communicative version of OC-
DEC-MDP was proposed in Beynier and Mouaddib (2010), 
but this version is once again suited to the case where 
agents’ actions are totally ordered. Applying heuristics 
proposed in Beynier and Mouaddib (2010) for partial local 
plans is not possible because both the problem structure 
and the decision problem are different from those consid-
ered in Beynier and Mouaddib (2010, 2011). The model of 
communication proposed in this paper is able to deal with 
specific problems arising from agents’ partial local plans 
on one side and precedence constraints among them on the 
other side.

Most of the works for planning for DEC-MDPs and 
DEC-POMDPs with communication assume that commu-
nication is instantaneous and without failure (Roth et al. 
2005, 2007; Becker et al. 2009). Actually, instantaneous 
communication does not exist. Moreover, communication 
can fail temporarily and messages may be missed. In this 
case, the agent still has to select an action and its decision 
will be based only on its local information.

Since messages may be lost, an agent may wait indefi-
nitely for a response which leads to a violation of its tem-
poral constraints. For this purpose, we enhance our proposi-
tion to deal with missed messages. We propose to compute 
adaptive waiting times for each agent after which an agent 
chooses another action admitting that the message is lost 
en route. These adaptive waiting times depend on the state 
an agent might be in and regarding its temporal constraints.

The rest of the paper is organized as follows. In Sect. 2, 
we will motivate our concerns by an example. In Sect. 3, 
we will briefly introduce the OC-DEC-MDP model. Some 
related work will be discussed in Sect. 4. The extension 
of OC-DEC-MDP for partial local plans and communica-
tion decisions is given in Sect. 5. Afterward, we will detail 
the computation of the joint policy and how coordination 
between agents is ensured in Sect. 6. Experimental results 
are presented in Sect. 7. A comparative study will be dis-
cussed in Sect. 8. Section 9 concludes this paper.

2  Motivating example

The problem we treat can be motivated by scenarios of 
controlling the operation of multiple space exploration rov-
ers, such as the ones used by NASA to explore the surface 
of Mars (Washington et al. 1999). Agents in such problems 
could take pictures, conduct experiments, and collect data 
under constraints (time, battery, memory …).

Figure 1 shows a simple problem involving a two-agent 
team whose objective is to execute their local plans. As 
agents’ local plans are partial each agent has to choose 
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between two or more alternative actions. Depending on the 
current situation, alternative actions have different gains.

Despite local dependencies between actions, there is 
another type of dependencies between agents’ actions. For 
example, in Fig. 1, action J of agent 2 cannot be executed 
only when either actions H or I of the same agent are 
executed and action F of agent 1 is executed. Uncertainty 
results from actions’ durations. Indeed, an action can have 
several execution durations each of which is associated to 
a probability. These probabilities are obtained empirically 
(Witwicki and Durfee 2011). Moreover, the execution 
of each action is constrained by a temporal window that 
expresses the action’s earliest start time and latest end time. 
The successful completion of each action is associated to 
a value. The overall gain of the team is quantified by the 
cumulative values of completed actions.

Since the environment is dynamic and present con-
straints on actions’ execution, several unexpected situa-
tions can occur and thus need a change in agents’ plans. For 
example, agent 2 can choose to execute action I rather than 
action H and agent 1 can choose to perform action C rather 
than action B. In this case agent 1 will wait for action H 
from agent 2 that will never be executed. This conducts to a 
total failure of the mission.

Communication may handle these situations. Since com-
munication in these domains is costly, it must be restricted. 
Several paths exist leading to the mission completion, but 
the goal is to find the global path which maximizes the 
overall gain of the group and avoiding the total failure of 
the mission. This path is interpreted by an optimal plan 
(policy) for each agent, which is calculated by resolving 
the appropriate DEC-MDP.

3  Background

OC-DEC-MDP represents the background of this work. In 
this section, we will present this model and its resolution 
algorithm.

3.1  Opportunity cost decentralized Markov decision 
process

OC-DEC-MDP model is proposed by Beynier and Mouad-
dib (2005, 2011), in order to handle temporal constraints 
where each action must be executed respecting a specific 
execution interval, precedence constraints where an action 
cannot be executed before the fulfillment of some actions 
of other agents and probabilistic actions’ durations. For 
n agents, this model is composed of n local MDPs. Each 
MDP is composed of fully ordered actions, factored states, 
transition function and reward function. Each component 
has to undergo a specific treatment based on temporal 
propagation (Bresina and Washington 2000) to take into 
account actions’ execution constraints. All agents’ actions 
are considered in one acyclic mission graph where nodes 
are actions and arcs are precedence constraints.

According to the type of problem studied and since 
communication between agents is not allowed, three types 
of states are identified: success states when the action 
respects its constraints, partial failure (PF) states when the 
action attempts to execute but its predecessors are not yet 
executed and total failure (TF) states when the action vio-
lates its constraints. OC-DEC-MDP was proven to be poly-
nomial in the size of the state space. The construction of 
this model (and its resolution) rests on the assumption that 
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the actions of each agent are totally ordered. This assump-
tion means that the actions will be executed sooner or later. 
As a consequence of this representation, actions’ execu-
tion intervals must be large; otherwise, the probability of 
the total failure of one action execution on the execution 
of other actions is augmented (due to this chain representa-
tion). Consequently, the decision problem of each agent is 
alleviated. Indeed, each agent has to determine solely when 
to start an action.

The resolution of this model is based on an opportunity 
cost (OC). This measure is borrowed from the field of the 
economy (Wieser 1889). It is particularly introduced to 
handle precedence constraints. OC has been used for the 
first time in MDPs in (Mouaddib and Zilberstein 1998) and 
then extended to DEC-MDP in case of agents’ linear local 
plans in Beynier and Mouaddib (2005, 2011). The intuition 
behind using this cost is to allow each agent to take into 
account the effects of its own decisions on other agents in 
order to ensure coordination between agents.

Recently, a communicative version of OC-DEC-MDP 
is proposed in Beynier and Mouaddib (2010). Communi-
cation is introduced in order to handle mis-coordination 
between agents (interpreted by the number of partial failure 
states). Allowing agents to share information at planning 
time has for consequence an increase in the state and action 
spaces. In order to remedy to that, a set of heuristics is pro-
posed. These heuristics consist in communicating the end 
time of previous successfully executed action, to agents 
who depend from it. A comparative study will be discussed 
in Sect. 8.

It is important to note that OC-DEC-MDP and commu-
nicative OC-DEC-MDP as defined, are not suited to the 
case where agents’ local plans are partially ordered which 
is more close to real world applications. In this latter, the 
local decision problem consists in two folds: what action to 
perform and when? which affects the resolution algorithm. 
Furthermore, the heuristics introduced in Beynier and 
Mouaddib (2010) to make communication possible cannot 
be applied in the case of partial local plans since an agent 
may choose to not execute a predecessor action.

The overall purpose of this work consists in extending 
OC-DEC-MDP and its policy computation to handle more 
complex precedence constraints. It is true that the reason 
behind introducing communication in Beynier and Mouad-
dib (2010) and this work is the same; reduce situations of 
mis-coordination, the way it is considered is different since 
the topology of the mission graph and decision problems 
are not the same. Situations of mis-coordination in Bey-
nier and Mouaddib (2010) are interpreted by the PF state 
and result only from the fact that an action starts its execu-
tion before the completion of its predecessor. In this study, 
these situations result also from the fact that the predeces-
sor agent may not execute the predecessor action at all. As 

we will see in Sect. 6.2, heuristics introduced in this paper 
are suited to the new topology of the mission graph where 
agents’ actions are partially ordered.

In the following subsection, we will explain the princi-
ple of OC algorithm according to (Beynier and Mouaddib 
2011).

3.2  The principle of opportunity cost algorithm

The OC algorithm, like several other policy computa-
tion algorithms, starts with an initial policy which con-
sists in the earliest starting time policy. This policy is then 
improved in several iterations until no further improve-
ment is possible. Each iteration of this algorithm consists 
of two phases. The first phase is a computation of expected 
utilities, policies and OC values for each state based on the 
initial policy. The second one performs an update of the 
transition function based on the current policy found in the 
previous iteration in order to prepare to a new iteration of 
the algorithm. The reason behind updating transition prob-
abilities is that these probabilities are computed based on 
the fixed initial policy.

To handle precedence constraints, opportunity cost algo-
rithm starts from sink actions for which there is no succes-
sor (actions J and E according to the example of Fig. 1) 
rising to root actions (actions A and G from Fig. 1). The 
reason behind starting with leaf actions is that these actions 
have an opportunity cost equal to zero, since they don’t 
influence any other actions. For each state from which 
the current actions (sink actions, at first) can be executed, 
OC algorithm computes its expected utility, its policy, and 
opportunity cost values. These values (OC values) are then 
propagated to all possible predecessors’ states of other 
agents. At this moment, each agent can calculate its pol-
icy by considering its local rewards minus the propagated 
opportunity cost. From this new policy, the probability 
function is updated in order to run a new iteration of the 
algorithm.

4  Related work

In addition to the works in (Beynier and Mouaddib 2005, 
2010, 2011), some other works exist in literature that con-
cern planning for constrained actions using DEC-MDP and 
works on taking offline communication decisions. Marecki 
and Tambe (2007) improve the OC-DEC-MDP in term of 
speed and solution quality. Indeed, OC-DEC-MDP deals 
with discrete temporal constraints which result in a huge 
state space. The work in Marecki and Tambe (2007) deals 
with continuous temporal constraints in order to manipulate 
a value function over time rather than a separate value for 
each pair of action and time interval like in OC-DEC-MDP.
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Another related work that handles execution constraints 
and making offline communication decisions is Mostafa 
and Lesser (2009). In order to make offline planning for 
communication tractable, interactions between agents are 
presented explicitly in EDI-CR model. This structure is 
exploited in order to define communication possibilities 
in advance and thus reducing the problem size. The work 
in Melo et al. (2012) also exploits interactions between 
agents in order to optimize communication decisions in 
DEC-POMDP. A key insight is that in domains with local 
interactions the amount of communication necessary for 
successful joint behavior can be heavily reduced, due to the 
limited influence between agents. This idea is exploited by 
deriving local POMDP models that optimize each agent’s 
communication behavior.

Most of approaches within communication in DEC-
MDP and DEC-POMDP do not make any constraint on 
communication; rather, they assume instantaneous and suc-
cessful communication. Recently, some works were real-
ized considering constrained and stochastic communication 
where messages may be lost, corrupted or delayed.

Spaan et al. (2008) and Oliehoek and Spaan (2012) have 
been considered the problem of delayed communication by 
one or more time steps and uncertain successful communi-
cation (with a probability of success) within DEC-POMDP 
framework. Bayesian games were used in order to plan for 
DEC-POMDP with delayed communication. Matignon 
et al. (2012) introduced a new interaction-oriented resolu-
tion method for decentralized decision models that handles 
limited share of information and breaks in communication. 
This resolution method is based on distributed value func-
tion considering the latest time step where communication 
between agents succeeded. Message corruption, however, 
has received little attention in decentralized planning (Val-
tazanos and Steedman 2014).

Many approaches have been proposed to deal with 
uncertainties in scheduling, we cite (Lambrechts et al. 
2008) where uncertainty is modeled by unavailability of 
resources and (Lazarova-Molnar and Mizouni 2010) which 
addressed uncertainties on task duration, task allocation 
and arbitrary on-the-fly decisions.

5  Problem description

The decision problem we consider is characterized by: 
�∝,A,CT ,CP,�,R,Ccom,��, where:

–– ∝ is a set of agents.
–– A, is a set of actions.
–– CT = {[ESTi, LETi], i = 1 . . . |A|} where, ESTi is ai’s 

earliest start time and LETi is its latest end time.

–– CP = {EndoPred ∪ ExoPred}. Each action ai has a set 
of endogenous predecessors [noted as EndoPred(ai)] 
specifying the set of local actions that must be executed 
before ai, and a set of exogenous predecessors [noted as 
ExoPred(ai)], specifying the set of actions that must be 
executed before ai by other agents.

–– Each action ai disposes of multiple possible execution 
durations each of which is associated to a probability. 
We note: � = {(di, pi)|pi = P(duration = di)}.

–– R, is a reward function. The successful execution of 
action ai is awarded by a non-negative reward, Ri.

–– Ccom, is the communication cost.
–– �, is the set of messages that can be sent by agents. The 

semantic of these messages is discussed in the next sec-
tion.

We encode this decision problem by OC-DEC-MDP 
model. This latter is extended in order to take into account 
communication’s cost and language. As we mentioned in 
Sect. 3, the OC-DEC-MDP is known to be composed of a 
set of local MDPs, one for each agent. Each MDP is a tuple 
〈S,A,P,R,�,Ccom〉, where S is a finite set of states and A is 
a finite set of actions including communication action. The 
dynamic of each MDP is maintained by a transition func-
tion P. R denotes the reward function and it is associated to 
a specific state. � is a finite set of messages and Ccom is the 
communication cost.

The modeling of constrained decision problem by OC-
DEC-MDP is equivalent to construct each component of 
agent’s MDP. In the following, we describe this model 
construction.

5.1  Actions

Taking into account precedence constraints (local and 
global), uncertainty on actions’ durations and the strict 
execution temporal window, we compute for each action 
several possible start times and end times. We note STi and 
ETi sets of possible start times and end times of action ai, 
respectively. For example, for action B in Fig. 1, we obtain 
STB = {8, 10, 11, 12},ETB = {10, 11, 12, 13, 14, 15}.

5.2  States

Since action ai has different start and end times, we can 
deduce different execution intervals in which ai can be 
executed. These intervals constitute useful information 
for deciding about states’ transitions since it reveals when 
the action starts, when it ends, and how many time units 
it consumes. As we tackle communication decisions, the 
message constitutes useful information too for agents’ 
decisions. Hence, to satisfy Markov property, the state 
has to be factored and must encapsulate the last executed 
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action ai, its execution interval 
[

ti, tt
′
]

 (where ti is a pos-
sible start time of action ai and ti′ is the associated end 
time), and the message � if exists. Example, in Fig. 1 we 
obtain for action B: 〈B, [8, 10]〉, 〈B, [8, 11]〉, 〈B, [10, 12]〉, 
〈B, [10, 13]〉, 〈B, [11, 13]〉, 〈B, [11, 14]〉, 〈B, [12, 14]〉, 
〈B, [12, 15]〉, 〈B, [8, 10],�〉, 〈B, [8, 11],�〉, 〈B, [10, 12],�〉, 
〈B, [10, 13],�〉, 〈B, [11, 13],�〉, 〈B, [11, 14],�〉, 
〈B, [12, 14],�〉 and 〈B, [12, 15],�〉.

Note that not all states will contain messages because, 
as we will explain later, agents don’t communicate 
always at any state but communication is allowed at spe-
cific points. As in OC-DEC-MDP, three types of states 
are distinguished. Success state, the agent moves to such 
state when the action considered is executed success-
fully respecting its constraints. Partial failure (PF) state, 
when the agent attempts to execute an action having its 
exogenous predecessors not yet executed. Total failure 
(TF) state, when the action executed violates its temporal 
constraints.

5.3  Transition function

The transition function computes the transition probability 
from a state si associated to action ai, to a resulting state 
si+1 associated to action ai+1. The computation starts from 
the root of the mission graph to leaves.

Let si and si+1 be, respectively: 
si =

〈

ai, Iai
〉

, si+1 =
〈

ai+1, Iai+1

〉

.1

This probability depends on the probability that action ai+1 
will be executed in the interval Iai+1

. Let Iai+1
=

[

ti+1, t
′
i+1

]

. 
Hence:

This probability corresponds to the probability that the exe-
cution of ai+1 starts at time ti+1 and ends at time t′i+1.

The first part of Eq. (1) depends on an initial policy, on 
one hand: if the initial policy of state si dictates the exe-
cution of ai+1 at ti+1, Pπ (π(si) = (ai+1, ti+1)) = 1, other-
wise, this probability is equal to zero. On the other hand, 
P(start(ai+1) = ti+1) depends on the probability that the 
exogenous predecessors of ai+1 have finished their execu-
tions at a time inferior or equal to ti+1.

The second part of Eq. (1) corresponds to the 
probability that ai+1 consumes di+1 = t′i+1 − ti+1 
time units which is given in problem statement 
(P
(

duration = di+1 = t′i+1 − ti+1

)

).

1 In the explanation of how the transition function is computed, we 
consider only the case without a message.

P(si+1|si, ai+1) = P(Iai+1
)

(1)P(si+1|si, ai+1 ) = P(start(ai+1) = ti+1)× P
(

end(ai+1) = t
′
i+1

)

For example, in Fig. 1 the probability of transi-
tioning from state sA = �A, [6, 8]� to a resulting state 
sB = �B, [8, 10]�, is given by:

We suppose that the initial policy of agent 1 is to execute 
action B at time 8, Pπ (π(sA) = (B, 8)) = 1. Hence:

Since action B has not any exogenous predecessor, we 
don’t consider the probability that their exogenous prede-
cessors have finished their executions.

From the problem statement, we have:

Hence:

Since we maintain the same model as in Beynier and 
Mouaddib (2011) (OC-DEC-MDP), where three types 
of states are introduced, we distinguish between three 
types of transition. Successful transition when action ai+1 
is executed in the interval Iai+1

=
[

ti+1, t
′
i+1

]

 respecting 
its ESTi+1 and LETi+1 (ESTi+1 ≤ ti+1 < t′i+1 ≤ LETi+1). 
Partial failure transition when action ai+1 starts its execu-
tion too early before all its predecessors have finished 
their executions. Total failure transition when action ai+1 
is executed in the interval Iai+1

=
[

ti+1, t
′
i+1

]

 violating its 
LETi+1(t

′
i+1 > LETi+1).

5.4  Reward function

The agent receives a reward which is a positive number for 
being in a success state. The partial failure state is associ-
ated to a reward equal to zero because no transition is done. 
As for the total failure state, the agent is penalized if such 
state occurs. This penalization consists in a negative num-
ber added to the loss in reward of all remaining actions 
reached from the failed action and executed by the same 
agent. If an agent opts to communicate, the communication 
cost is subtracted from the reward received.

5.5  Communication language

In our work, semantics are attached explicitly to messages. 
We propose three types of messages each of which with 
specific semantics. These semantics are explained in the 
next section.

P(sB|sA,B ) = P(IB = [8, 10]) = P(start(B) = 8|sA )

× P(end(B) = 10|sA )

P(start(B) = 8|sA ) = 1

P(end(B) = 10|sA ) = P(dB = 10− 8) = 0.2

P(sB|sA,B ) = 1× 0.2 = 0.2
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6  Joint policy computation

This section is dedicated to the resolution of the model 
constructed in Sect. 5. We will first present how the original 
OC algorithm is extended to the case of partial local plan. 
Then, we will give and argument the proposed communica-
tion model and we will detail the joint policy computation 
according to our problem taking into account partial local 
plans and communication decision.

6.1  Opportunity cost algorithm for partial local plans

The adaptation of opportunity cost algorithm to handle 
partial local plan requires tackling two main issues. The 
first issue concerns two decision problems consisting in 
what action to execute and when to execute it, instead of 
the decision problem handled in original OC algorithm for 
total ordered actions where the decision problem concerns 
when to start the unique next action.

The second issue deals with when an action is consid-
ered to compute the expected utility, the policy and OC 
values (noted as (V ,π ,OC), respectively) at planning time. 
Indeed and resulting from precedence constraints (local 
and global), tighter actions have to be defined so they can 
be evaluated (V ,π ,OC), at planning time, at the same level. 
To do this, we transform local partial plans with exogenous 
precedence constraints into a unique acyclic mission graph 
and proceed to level decomposition of the mission graph. 
For each level, we define the set of nodes (actions) belong-
ing to it.

6.1.1  Level decomposition

In order to apply OC algorithm the process of division must 
start from leaf nodes to root nodes.

We start with level Lk(k = 0) containing leaf nodes 
(actions) that have no successors (neither exogenous nor 
endogenous). The next level Lk+1 contains predecessors of 
all nodes (actions) in Lk.

To compute the expected utility, the policy and OC val-
ues (V ,π ,OC) for each action, two conditions (C1, C2) 
must hold in each level.

C1: The (V ,π ,OC) values of an action a in level Lk are 
computed if actions having the same predecessor as a 
are in the same level Lk. Otherwise, the consideration of 
a is postponed to the next level.
C2: The constrained action must be considered (OC 
computation) before its predecessor(s). Otherwise, the 
predecessor action(s) must be postponed to the next 
level.

6.1.2  Illustrating example

In this sub-section, we illustrate the process of level decom-
position according to the example presented in Fig. 1.

In our example, we start by L0 = {J ,E}, (leaf nodes). 
L0 is checked for satisfying the two conditions (C1, C2), 
as C1 doesn’t hold for E (because the action D having the 
same predecessor C is not yet considered), E is postponed 
to level L1. L0 is then updated, L0 = {J}. The next level L1 
contains predecessors’ actions of nodes in L0 (J) with the 
postponed node from L0 (E). The result is L1 = {E,H, I ,F}. 
Level L1 will be checked, the two conditions don’t hold. C2 
doesn’t hold for H (because C has as predecessor H is not 
considered) and C1 doesn’t hold for E (for the same reason 
cited above). Hence, H and E are postponed to level L2. The 
updated L1 is L1 = {I ,F}. Each time a level is updated, the 
remaining nodes will be newly checked. C1 doesn’t hold 
for I, this node will be postponed to level L2. Hence, the 
resulting level L1 contains only the node F(L1 = {F})…

Like shown in Fig. 2, the leaf node E is postponed twice 
and is considered at level 2 instead of level 0 and level 1. 
Nodes H and I are postponed three times, from L1 to L4. 
Figure 2 describes also the process of OC algorithm as 
explained in Sect. 3.2.2

6.2  Communication model

We introduce communication decision to reduce mis-coordi-
nation caused by precedence relation. However, introducing 
communication at planning time leads to a significant increase 
in problem size. This latter concerns both action space and 
state space: when communication decision is always avail-
able, the action space increases dramatically because we add 
to every domain action decision a communication decision. 
The state space in turn increases since for every state, we need 
to distinguish between states with messages and states without 
messages captured in the factored state, and for each state with 
message we specify the possible content of the message so we 
can compute the respective values and policies.

To avoid this intractable increase in problem size, we take 
advantage of problem structure and introduce useful heuris-
tics to specify when a communication decision is available, 
what should be communicated and to whom communicate. 
Note that these questions have already been raised in the lit-
erature (Beynier and Mouaadib 2010; Mostafa and Lesser 
2009; Roth et al. 2005), but the relative answers (heuristics) 
we propose are specific to the problem we tackle.

In the following, we explain the heuristics we use to 
reduce the problem complexity.

2 On Fig. 2 we schematize only some success states (without mes-
sages) for simplification.
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6.2.1  H1: When to communicate?

To reduce action space, we exploit problem structure 
since the problem we tackle presents precedence relations 
between agents. This will limit information sharing at prec-
edence points which we call coordination points. Moreover, 
communication decision is only available at the level of the 
constrained agent when it falls in PF state. Hence, for each 
PF state, a policy is computed which can dictate a commu-
nication action or no.

6.2.2  H2: To whom communicate?

In the case where the policy of a partial failure state dic-
tates to communicate, the set of agents concerned with 
the communication are predecessor agents concerned 
by the partial failure. The reason behind imposing a 
heuristic for this communication issue is that to restrict 
the number of agents to whom the state space will be 
augmented by messages which are predecessor and con-
strained agents.

Agent 1 

Level 
0 

Agent 2 

, , : , [7,8]

, , : , [7,9]
… 

, , : , [7,8]

, , : , [7,9]

… 

Level 
1 

Level 
2 

Level 
3 

…      

, : , [8,10]

, , : , [8,11]
, : , [10,13]

, : , [11,14]

… 

Level 
4 

Level 
5 

       OC 
Propagation 

, : , [10,13]

, : , [11,14]

… 

, , : , [6,8]

, , : , [6,10]

… 

, : , [6,7]

, : , [6,8]
      OC 
Propagation 

Node not considered at the current level

Node considered at the current level

OC value propagation from constrained agent to the predecessor

Fig. 2  The process of OC algorithm according to the example of Fig. 1
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6.2.3  H3: What should be communicated?

In this study, we propose to attach explicitly the seman-
tics of messages shared by agents in order to improve the 
global performances of the mission.

As in communication there are a sender (the constrained 
agent) and one or more receivers (predecessor agents) we 
will analyse the possible contents of messages for both the 
constrained agent and the predecessor agent(s).

At the level of constrained agent: the agent employs the 
query communication and asks its predecessor(s) for the 
action it needs, so it can continue its execution. Let ai be 
the action belonging to the predecessor agent and needed 
by the constrained agent, the content of the message is 
� = ai.

At the level of predecessor agent(s): no communi-
cation decision is available at this point for the prede-
cessor agent(s). Hence, each time a predecessor agent 
receives an ask message, it should respond to the con-
strained agent (cooperative agents). Moreover, we assume 
at a first time that sent messages cannot be missed or 
corrupted and take one time unit for each direction 
(send → receive → respond, takes 2 time units). Then, we 
assume that the message may be missed in the transmission 
or in the receipt and we propose a mechanism to handle 
such a situation in Sect. 6.5.

The predecessor agent’s response depends on its cur-
rent policy. Let the predecessor agent be in a state 
〈

a,
[

t, t′
]

,� = ai
〉

.

–– If its current policy is different from the asked action 
ai (π

〈

a,
[

t, t′
]

,� = ai
〉

�= (ai, ti)), then the response 
message’s content is � = ∞. Note that this situation 
can illustrate both the case where the asked action will 
never be executed (because the agent responsible on it 
borrows a different path), or it cannot prevent its future 
policy.

–– If its current policy corresponds to the asked action 
(π

〈

a,
[

t, t′
]

,� = ai
〉

= (ai, ti) which means execut-
ing ai at time ti), then the predecessor agent sends 
to the constrained agent the message containing, 
� = val = max{ET(ai, ti)}. This message consists in 
the greatest end time from the set ET of end times asso-
ciated with (ai, ti), since the predecessor agent cannot 
know the end time of its action before the execution 
phase.

6.3  OC computation

The opportunity cost is computed by the constrained agent 
and propagated to predecessors’ agents. Let action ai be an 
exogenous predecessor of action aj. Thus, OC values are 
computed by the agent who executes action aj.

OC values are computed for each Δt which consists in 
the delay caused by each possible end time of action ai on 
the start time of action aj. These values consist in the differ-
ence between the expected utility (V) of the state associated 
to aj when it starts its execution at tj with no delay (at its 
first start time) and the expected utility of the state when 
its set of start times is restricted by a certain �t, (Fig. 3). 
Formally:

where 
〈

aj,
[

tj, tj + dj
]〉

,
〈

aj,
[

tj +�t,
(

tj +�t
)

+ dj
]〉

 are 
possible states associated to action aj, V is the expected 
utility (value) of this state, tj is the first possible start time 
of action aj. The computation of V is explained later.

The computed OC values (for each Δt) are propagated 
to predecessor agent (the agent who executes action ai) 
who calculates in turn its policy taking into account the 
received OC values.

6.4  Policy computation

In this sub-section, we show how the value and the policy 
of each state are computed. The former is based on Bellman 
optimality principle (Bellman 1957) and the latter consists 
in an augmented Bellman equation in which an opportu-
nity cost is introduced. This computation phase allows each 
agent to select the best action to execute in each state, con-
sidering its expected utility (value function), the opportu-
nity cost induced on other agents and communication cost. 
In the following, we give the policy computation at the 

(2)

OC(aj,�t) = V�t=0
(〈

aj,
[

tj, tj + dj
]〉)

− V�t
(〈

aj,
[

tj +�t,
(

tj +�t
)

+ dj
]〉)

=

+

= ( + )

+

(A): axis of  's end times.  is the first possible end time of 
(B): axis of  's start times.  is the first possible start time of 

(A) (B)

= ( + )

= 0

OC 

Fig. 3  The computation of opportunity cost
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constrained agent side and at the predecessor agent side. We 
show the process of computation for two agents but it still 
applicable for any number of agents and each agent can be 
either predecessor or successor (with respect to the acyclic 
aspect).

6.4.1  Constrained agent

This agent can trigger communication. For this reason, we 
differentiate between the policy computation for each type 
of state.

(a) Success State si =
〈

ai,
[

ti, t
′
i

]〉

 This state is associated to action ai. The agent must 
decide about the next action to execute and when to 
execute it. To do this, the expected value of state si 
(V(si)) is calculated based on all actions’ values (Q) 
that can be reached from si.

where p = 1 . . .m is the number of ai’s successors 
(aip ). R(si) is the reward obtained for being in state 
si and it consists in the reward associated to the suc-
cessful execution of action ai given in the problem 
statement. Q

(

(aip , tip), si
)

 is the expected utility from 
executing action aip at time tip ≥ t′i. It is deduced from 
transition probabilities (success, PF and TF transitions) 
and the value of the resulting state.
 The policy of the state si is given by:

where OC
(

(aip , tip), si
)

 is the opportunity cost from 
executing action aip at time tip induced on aip‘s succes-
sors belonging to other agents.

(b) Partial failure state si =
〈

ai, [t, t + 1], t′i
〉

 or 
si =

〈

ai,
[

t + 1, t′
]

, t′i ,�
〉

 The components of the PF state are slightly different from 
those of the success state. In PF state we capture the last 
successfully executed action ai, the PF interval [t, t + 1]

, Where t corresponds to the time where the agent tries to 
execute the next constrained action and t+1 is the time 
where it realizes that one or more predecessors have not 
been executed yet. We assume that it takes one unit of 
time to realize the PF, t′i corresponds to the end time of ai.

Since communication can be triggered at the partial fail-
ure state, the decision at this point differs based on the pres-
ence or not of messages. Hence, we distinguish between 

(3)V(si) = R(si)+ max
p,tip≥t′i

(

Q
((

aip , tip
)

, si
))

(4)

π(si) = argmax
p,tip≥t′i

[

Q
((

aip , tip
)

, si
)

− OC
((

aip , tip
)

, si
)]

the policy computation of the two types of partial failure 
state (with and without messages).

•– Partial failure state without message 
si =

〈

ai, [t, t + 1], t′i
〉

, let ai+1 be the action that leads to 
PF. We distinguish two scenarios

–– Wait some �t and try again the execution of ai+1. 
However, it is not suitable for our case because, if 
repeated, this will violate the execution intervals of 
ai+1 and leads to the total failure of the mission. This 
solution has been adopted in (Beynier and Mouaddib 
2005, 2011).

–– The second scenario is to evaluate the gain between 
considering another successor action except ai+1 
(if exists in the partial plan) or communicate with 
the predecessor agent(s) asking for the enabling 
action(s). This scenario is more appropriate to our 
case since we introduce communication decision. 
Formally:

––

where R(si) = 0, because, no reward is associated to 
PF state si. p− {i + 1} are all local successor actions 
of ai except ai+1 (causing the PF), tip−{i+1}

 is the time 
of executing a local successor action of ai except 
ai+1. Q

((

aip−{i+1}
, tip−{i+1}

)

, si
)

 is the expected utility 
of executing a successor action of ai except ai+1 at 
time greater than or equal to t+1 (time of PF realiza-
tion). V(comm) = Q((ai+1, ti+1), si)− Ccom, with 
ti+1 = (t + 1)+ 2 and Ccom is the cost induced by the 
communication. Note that if t + 1 ≥ max

{

STai+1

}

, 
Q((ai+1, ti+1), si) = 0 because the agent could not 
retry to execute the action in question (ai+1), there is no 
other possible start time for it.
The policy is, then, given by:

•– Partial failure state with message si =
〈

ai,
[

t + 1, t′
]

, t′i ,�
〉

When the PF state contains a message, the decision 
about the next action to execute depends on the content 
of the message. When the message contains ∞, the agent 
must choose an alternative successor action of ai except 

(5)

V(si) = R(si)+ max
p−{i+1},tip−{i+1}

≥t+1

(

Q
((

aip−{i+1}
, tip−{i+1}

)

, si
)

,V(comm)
)

(6)

π(si) = argmax
p−{i+1},tip−{i+1}

≥t+1

(

Q
((

aip−{i+1}
, tip−{i+1}

)

, si
)

−OC
((

aip−{i+1}
, tip−{i+1}

)

, si
)

,V(comm)
)
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ai+1. This corresponds to changing the path in its local 
partial plan. The agent must change the path in its local 
partial plan also when the message received contains a 
value (the greatest end time of the predecessor action) 
is greater than or equal to the maximum of possible start 
times of action ai+1, since the agent may violate ai+1′s 
temporal constraints.

When the value received is less than the maximum of 
possible start times of ai+1, the agent can choose between 
changing the path or re-executing action ai+1.

 After computing the expected utility of state si, we move to 
the computation of its policy.

where R(si) = 0 because si is a PF state. p− {i + 1} are all 
successor actions of ai except ai+1 (causing the PF). tip−{i+1}

 
is the time of executing a local successor action of ai except 
action ai+1. Q

((

aip−{i+1}
, tip−{i+1}

)

, si
)

 is the expected util-
ity of executing a successor action of ai except ai+1 at time 
greater than or equal to t′ (the time where the message is 
received). ti+1is the time of re-executing ai+1 after receiving 
a message containing a value greater or equal to the value 
received and inferior to the maximum of possible start times 
of ai+1(in order to respect ai+1′s temporal constraints). 
Q((ai+1, ti+1), si) is the expected utility of executing action 
ai+1 at time ti+1. OC

((

aip−{i+1}
, tip−{i+1}

)

, si
)

 is the OC from 
executing aip−{i+1}

 at tip−{i+1}
 and OC((ai+1, ti+1), si) is the 

OC from executing ai+1 at ti+1. 

(7.1)

V(si) = R(si)+ max
p−{i+1},tip−{i+1}

≥t′

(

Q
((

aip−{i+1}
, tip−{i+1}

)

, si

))

if � = ∞ or � = val ≥ max
{

STai+1

}

(7.2)

V(si) = R(si)+ max
p− {i + 1}, tip−{i+1}

≥ t′

val ≤ ti+1 < max
{

STai+1

}

(

Q
((

aip−{i+1}
, tip−{i+1}

)

, si
)

,Q((ai+1, ti+1), si)
)

if � = val < max
{

STai+1

}

(8.1)

π(si) = argmax
p−{i+1},tip−{i+1}

≥t
′

(

Q
((

aip−{i+1}
, tip−{i+1}

)

, si
)

−OC
((

aip−{i+1}
, tip−{i+1}

)

, si
))

if� = ∞ or� = val ≥ max
{

STai+1

}

(8.2)

π(si) = argmax

p− {i + 1}, tip−{i+1}
≥ t

′

val ≤ ti+1 < max
{

STai+1

}

(

Q
((

aip−{i+1}
, tip−{i+1}

)

, si

)

−OC
((

aip−{i+1}
, tip−{i+1}

)

, si

)

,Q
((

ai+1, ti+1

)

, si
)

−OC
((

ai+1, ti+1

)

, si
))

if� = val < max
{

STai+1

}

c) Total failure state si =
〈

ai,
[

ti, t
′
i

]

, fail
〉

From this state, no policy is calculated.

where −R(si) is the reward lost from failing the execu-
tion of action ai. 

∑

a�=i∈EndoSuc(ai)

R(s �=i) consists in the loss 

in reward of all remaining actions reached from the failed 
action ai and executed by the same agent (called endoge-
nous successors, EndoSuc(ai)).

6.4.2  Predecessor agent

We recall that for this agent no policy for communication is 
computed. The agent must synchronize with the con-
strained agent if this latter triggers communication. As this 
agent has no constrained action, no PF state is treated.3

(a) Success state si =
〈

ai,
[

ti, t
′
i

]〉

 or si =
〈

ai,
[

ti, t
′
i

]

,�
〉

 From a success state, the predecessor agent can choose 
between successor actions of action ai.

 When calculating the policy of this state, the agent 
must consider the opportunity cost induced on ai’s suc-
cessors belonging to other agents.

 Note that when si =
〈

ai,
[

ti, t
′
i

]〉

, Ccom = 0 and 
when si =

〈

ai,
[

ti, t
′
i

]

,�
〉

, Ccom = 2.
 R(si) is the reward received for being in the state 
si and it consists in the reward associated to the suc-
cessful execution of action ai given in the prob-
lem statement. Q

((

aip , tip
)

, si
)

 is the expected utility 
from executing action aip at time tip ≥ t′i from state si. 
OC

((

aip , tip
)

, si
)

 is the opportunity cost from executing 
aip at time tip provoked on aip‘s successors belonging to 
other agents.

(b) Total failure state si =
〈

ai,
[

ti, t
′
i

]

,�, fail
〉

 or 
si =

〈

ai,
[

ti, t
′
i

]

, fail
〉

(9)
V(si) = −R(si)−

∑

a�=i∈EndoSuc(ai)

R
(

s�=i

)

3 The case where this agent is a constrained and predecessor agent at 
the same time can also be taken into account in our model. We distin-
guished between them to simplify the explanation.

(10)V(si) = R(si)− Ccom + max
p,tip≥t′i

((

Q
(

aip , tip
)

, si
))

(11)

π(si) = argmax
p,tip≥t′i

[

Q
((

aip , tip
)

, si
)

− OC
((

aip , tip
)

, si
)]

(12)
V(si) = −R(si)−

∑

a�=i∈EndoSuc(ai)

R
(

s�=i

)

− Ccom
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 Where −R(si) is the reward lost from failing the 
execution of action ai. 

∑

a�=i∈EndoSuc(ai)

R(s �=i) consists 

in the loss in reward of all remaining actions reached 
from the failed action ai and executed by the same 
agent (called endogenous successors, EndoSuc(ai)). 
Ccom is communication cost.

6.5  Dealing with missed messages

In this sub-section, we enhance our proposition to deal 
with missed messages. In such a case, an agent may wait 
indefinitely for a response which leads to a violation of its 
temporal constraints. To remedy to that, we augment par-
tial failure states with adaptive waiting time �t. This �t 
depends on the state an agent might be in and regarding 
its temporal constraints. Then, for each new partial failure 
state, the policy computation algorithm computes the cor-
responding policy.

According to Eq. 5, the policy of a partial fail-
ure state si =

〈

ai, [t, t + 1], t′i
〉

, is either to communi-
cate or execute an alternative action of ai+1 (execute 
one of ai’s successors except ai+1). The value of com-
munication in this case (the case of missed mes-
sages) is V(comm) = Q((ai+1, ti+1), si)− Ccom, where 
ti+1 = (t + 1)+�t. �t corresponds to the waiting time 
after which the agent may re-execute ai+1 or execute 
another action.

If after waiting �t time units there is no message 
received, the agent supposes that the message is missed 
either in transmission or in receipt phase, and still has to 
select an action (before violating its temporal constraints). 

Thus, we propose to compute �t based on the execution 
constraints of possible alternative action(s) of action ai+1. 
We put,

where tcurrent corresponds to the end time of the PF state 
(t+1). max {STalter} corresponds to the greatest valid start 
time from the set of alternative action’s start times. We 
mean by ‘‘valid’’, the possible start time that does not vio-
late the action’s temporal constraints extracted from all suc-
cess states of alternative action of ai+1. The reason behind 
choosing this value is that after waiting �t time units and 
no message is received, the agent still can select an action to 
execute (an alternative action on different path) respecting 
its temporal constraints. Figure 4 shows the development 
of partial failure states in the case of successful communi-
cation (case 1) with fixed time (equal to 2: 1 unit of time 
for sending and 1 unit of time for reception) and stochastic 
communication where messages may be lost (case 2).

Example According to the example presented in Sect. 2, 
s = �A, [8, 9], 8�, s′ = �A, [10, 11], 8� are two PF states 
associated to action C when action H does not terminate 
its execution at times 8 and 10. The policy of states s and s′ 
dictates to communicate and max {STB} = 12(where 
max {STB} is the maximum of possible start times of action 
B- the alternative action of C of agent 1 extracted from B’s 
success states).

We have,

Hence, For state s, we have:

�t = max {STalter} − tcurrent

�t = max {STB} − tcurrent

�t = 12− 9 = 3

Fig. 4  PF States in successful 
communication and communi-
cation with failure

, [ , + 1],

, [ + 1, + 1 + 2], ,

, [ , + 1],

, [ + 1, + 1 + ],, [ + 1, + 1 + ], ,

Successful communication 
(fixed time = 2) 

Possibility of missed 
messages 

The decision is based on 
the content of the 

received message : re-
execute +1or execute 

an alternative action 
Equations (7,8) 

The decision is based on 
the content of the 

received message : re-
execute +1 or execute 

an alternative action 
Equations (7,8) 

No response after 
don't re-execute the 

action +1  and attempt 
to execute an alternative 

action (7.1,8.1) 
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For state s′, we have:

The new states in which the agent will receive or not a mes-
sage � are: s = �A, [9, 12], 8� or s = �A, [9, 12], 8,�� and 
s′ = �A, [11, 12], 8� or 〈A, [11, 12], 8,�〉. For each state, the 
values and policies will be computed offline by our value 
and policy computation algorithms.

7  Results and discussion

Our experiments were directed towards performances 
and solution quality contrary to the work in Beynier and 
Mouaddib (2011) which is directed towards testing the 
scalability of the approach proposed. Indeed, OC-DEC-
MDP has been shown to scale up (Beynier and Mouad-
dib 2011). Our main objective was the extension of this 
model to problems with partial local plans and raise issues 
resulting from this extension by proposing a rich model of 
communication.

We varied the number of agents and dependencies and 
we evaluated the consequences of adding communication 
in term of the global gain of agents. We mean by global 
gain the cumulative reward obtained by agents after execut-
ing their mission.

It is important to note that the type of problems we 
deal with suffers from the difficulty of obtaining random 
scenarios or instances whose policies actually dictate 
communication (Mostafa 2011). Randomly generated 
instances are not dependent enough to trigger communi-
cation. For this reason, during dependencies’ generation 
phase, the maximum of dependencies added was fixed 
empirically, so that we avoid the cycle. We recall that the 
mission graph must be acyclic. Moreover, we have fol-
lowed some rules in order to insert a dependency. First of 
all, the constrained action must be in a level superior or 
equal to the level of the predecessor action in the mission 
graph. Second, in a given level, we must have at least 
one action with no exogenous precedence so that the 
agent can continue its execution. When generating our 
instances we assumed that the branching factor is equal 
to 2.

�t = 12− 11 = 1

We generated three instances of problem:

–– The first instance is composed of 15 tasks distributed 
among three agents,

–– The second instance is composed of 21 tasks distributed 
among 4 agents and

–– The third instance is composed of 40 tasks distributed 
among 6 agents.

The topology of each instance is given in Table 1 with 
the number of generated states after temporal propaga-
tion. The main parameters that affect an instance’s size 
materialized by the number of states are the number of 
actions of each agent, the number of dependencies (prec-
edence relations) and the size of the temporal window. As 
we can see in Table 1, there is a growth in state space in 
the case of communication with failure compared to suc-
cessful communication. This increase is interpreted by the 
fact that when considering missed messages, three types 
of states are considered after sending a message: PF state 
with � = ∞, PF state with � = val, and PF state with-
out a message. This last state interprets the case where the 
constrained agent sends a query message and after waiting 
�t time units there is no response received (the message is 
missed). This is in contrast to successful communication 
where the state space is augmented by two types of states 
only: PF state with � = ∞ and PF state with � = val.

It is important to note that without using heuristics pro-
posed in Sect. 6.2, both state spaces’ size (case 1 and case 
2) will be larger. Indeed, without any heuristic on commu-
nication issues and as a consequence of an offline commu-
nication, we must consider for each state its equivalent with 
a message.

For these instances, we conducted experiments which 
consist of two parts: in part 1, the aim is to show the neces-
sity of communication particularly in case of tight temporal 
constraints to avoid total failure of the mission. In part 2, 
we computed the global gain of the agents when communi-
cation is free (upper bound global gain) and we measured 
the loss in global gain by introducing costly communica-
tion. For this part, the two cases of successful communi-
cation and communication with the possibility of missed 
messages are studied.

Table 1  The composition of each problem instance (case 1: successful communication, case 2: communication with failure)

Inst parameters Nb of agents Nb Of actions Nb of levels Branching 
factor

Nb of local 
dependencies

Nb of global 
dependencies

State space 
(case 1)

State space 
(case 2)

Instance 1 3 15 3 2 12 5 211 239

Instance 2 4 21 3 2 17 7 443 466

Instance 3 6 40 4 2 34 15 762 816



54 Evolving Systems (2016) 7:41–60

1 3

Simulations conducted were realized using JADE 
(Java Agent DEvelopment framework) (Singh et al. 2011; 
Prakash et al. 2014). After computing the policy of each 
agent (offline phase), we move to execute this joint policy 
(online phase using JADE). Each agent Ag has its local 
partial plan in which each action ai has a list of exogenous 
predecessors ExoPred(ai), the list of all its possible states 
S with the corresponding policies �(S) and the resulting 
states such that S,�(S) → S. All this information (problem 
description and the computed policy) represent the entry 
of the online phase. When an agent observes its state, it 
executes the corresponding policy and it transits to one of 
its possible next states. To simulate the transition to a non-
deterministic state, we proceed as usual in MDPs (Mostafa 
and Lesser 2009, Beynier and Mouaddib 2011) and we 
randomize among all possible resulting states. From the 
new resulting state, the agent executes once again its cor-
responding policy and so on. Each time the policy is exe-
cuted, the corresponding reward is cumulated.

Part 1 Fig. 5 (a, b and c) shows that the cumulative 
reward when agents can communicate is always greater 
than the cumulative reward for the non-communicative 

case even for large temporal constraints. However, In 
case of tight intervals and without communication, the 
total failure of the mission is significant. This is due to 
the partial failure of constrained actions which leads to 
a violation of the tighter constraints. When communica-
tion is introduced the total failure did not occur because 
agents will always opt for a communication policy even 
if communication is costly. The loss in total expected 
utility induced from communication is less important 
than the total failure of the mission because in the case 
of tight intervals the next failure will eventually be a 
total failure instead of a partial failure in case of large 
constraints.

As we can see in Fig. 5, the more the need for communi-
cation is increased (materialized by an increase in depend-
encies), the higher agents’ global gain is. The reason behind 
this increase is that agents assess the value of communicat-
ing before adopting a communication policy, so they find 
the best tradeoff between the utility of information received 
by communicating, communication cost, and the utility of 
other alternatives without communication, regarding their 
constraints.
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The growth in the number of dependencies has two 
main results. It increases the need for communication, on 
one hand. On the other hand, it increments the number of 
execution intervals. Since agents are time constrained, the 
number of execution intervals that respect agents’ temporal 
window is restricted and the number of execution intervals 
that violate the temporal constraints is increased. In this 
case, communication seems to be a good choice for agents 
in order to avoid mis-coordination situations and the total 
failure of the mission, and thus agents’ performance will be 
improved.

Part 2 For the three instances, we executed the joint pol-
icy found offline and we computed the global gain by set-
ting the communication cost equal to zero (free communi-
cation). This constitutes the best global gain that agents can 
obtain. Then, we added a communication cost (Ccom = 2) 
and we computed again the global gain of agents for the 
case where communication is successful, i.e. it consumes 
2 time units, and when there is a possibility of missed mes-
sages. Moreover, we varied for each running instance the 

number of dependencies with respect to the acyclic prop-
erty of the mission graph.

As shown in Fig. 6 (a, b and c) and Fig. 7 (a, b and c) 
there is a loss in cumulative reward when communication 
cost is introduced. Moreover, for each instance, when the 
number of dependencies increases, a loss in global gain is 
captured.

The decrease in global reward is interpreted by the fact 
that communication is more solicited when dependencies 
are increased. As a consequence of increasing the need for 
communication, the associated cost is more considered.

When dealing with missed messages, we have observed 
a loss in cumulative reward comparing to the case of suc-
cessful communication. This can be explained by the fact 
that the agent may not receive a response to its request. So, 
it is first penalized for communicating and will be obliged 
to choose an alternative action which has a less important 
reward than the first chosen action.

Experimental results demonstrate the effectiveness 
of heuristics introduced in order to take communication 
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decisions leading to the possible best solution according to 
the problem constraints (temporal and precedence). These 
heuristics aim to reduce the problem size and optimizing 
information to share.

8  Comparative study

Several works have been done on communication in deci-
sion theoretic models, but the closest to ours is that of 
(Beynier and Mouaadib 2010). We try to highlight the simi-
larities and differences between these two works in order 
to better understand how they stand in relation to each 
other. We recall that through this work, we are not trying 
to improve results finding in (Beynier and Mouaadib 2010) 
but our aim is to extend the proposed model to take into 

account partial local plans. As a consequence of this exten-
sion, some problems regarding coordination will take place. 
In order to raise these problems, we proposed a communi-
cation model specific to such mis-coordination situations.

The comparison between these two works is done in two 
fold. We compare, at first, between the topology of the mis-
sion graph, the decision model, and issues related to each 
model. Second, we detail and compare the two communi-
cation models proposed in order to handle issues specific to 
each work. Table 2 compares the topology of each mission 
graph.

As we can see in Table 2, the decision problem in (Bey-
nier and Mouaadib 2010) deals with linear plans. This 
results in a reduction in solution space where there is one 
path in which each node is the sole action. Each action in 
the path has different possible schedules (because of its 
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several durations). Our extension results in harder decision 
problem and larger solution space where there are differ-
ent possible paths (partial plan). Each action in the path has 
different possible schedules (because of its several dura-
tions). This leads us to propose an adequate communication 
model (presented in Sect. 6.2) in order to deal with prob-
lems raised from partial plans.

We give in Table 3 a comparison between the two com-
munication models. The following are the criteria we use 
for comparison:

•– Aim: why introducing communication among agents.
•– Communication action model: is communication action 

considered similarly to the domain level action or each 
action represents a different kind from the other?

•– Decision problem: which are the decisions available to 
each agent at each decision step.

•– Reasoning time: reasoning about communication can be 
done offline or online.

•– AND/OR communication: communication actions can 
be chosen in combination with domain level actions or 
they may take the place of domain level actions.

•– Who trigger communication: which agent initiates com-
munication?

•– When to communicate: this communication issue 
requires reasoning about the effects of communication 
on team behavior and expected global reward, at first. 
Second, if agents do not communicate at every time 
step, in which situations communication will be a good 
choice in order to maintain coordination.

•– To whom communicate: in addition to deciding when 
communication is necessary, agents can also determine 
with whom they will share the information.

•– Communication type: how communication is initiated, 
we consider three communication types (Xuan et al. 
2001):

–– Tell, in this type, one agent decides to send a mes-
sage to other agents voluntarily (information going 
outward). As a result, the sender will not know any 
information about the receiver.

–– Query, here, an agent asks one or more of its team-
mates for particular information which is useful to 
pursue its execution (information going inward).

–– Sync, this is a combination of the above two, in 
which all agents simultaneously communicate their 
local information with each other.

•– Information flow: in each direction information will be 
sent.

•– What to communicate: In an explicit communication, 
generally, agents can communicate any information 
that helps the receivers refine their beliefs over what the 
sender will do/has done.

•– Value of communication: Deciding when to commu-
nicate in cooperative decentralized problems can be 
measured by the value of communication which refers 
to how an agent assesses the worth of a communication 
action. The value of communication can be defined as 
the net gain from communicating, which is the differ-
ence between the expected improvement in the agents’ 
performance and the costs associated with communi-
cation (Becker et al. 2009). It can be measured myopi-
cally or by considering the expected value of the state 
resulting from communication. Another approach may 
not calculate the value from communication. Rather, 
communication is triggered when a condition is met 
(Mostafa 2011).

•– Solution method: how the joint policy is computed?
•– After communication: refers to the influence of the mes-

sage received on agents’ behaviors. In other words, how 
agents react after a communication round (reception of 
a message).

Table 2  Comparison between the topology of mission graphs

Work Beynier and Mouaadib (2010) This work

Comparison criteria

 Topology of the action graph (local plan) Linear Partial

 Type of dependencies – Precedence constraints between agents’ 
actions (exogenous)

–  Locally totally ordered actions

– Precedence constraints between agents’ 
actions (exogenous)

– Locally partially ordered actions (endogenous 
precedence)

 Decision problem When to execute the beforehand known action – What action to execute
– When to execute it

 Preconditions related to the computation of 
opportunity cost (OC)

The OC of constrained action must be com-
puted before its predecessor

– The OC of constrained action must be com-
puted before its predecessor

– Two actions that have the same predecessor 
must be considered at the same level
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•– Stochastic communication: dealing with missed, cor-
rupted or delayed communication.

As we can see in Table 3, Communicative OC-DEC-
MDP allows the agent to communicate the end time of a 
previous successfully executed action. The problem here is 
that the information sent is available when it is too late to 
the constrained agent to benefit from it. This results from 
the asynchronous execution of actions. Moreover, commu-
nication is used in one direction. This means that when the 
constrained agent arrives at the constrained action before 
its predecessor, it will be obliged to wait which may affect 
its temporal constraints and hence temporal constraints of 
depending agents (by propagation).

In this work and through the communication model pro-
posed, we tried to fix these problems in addition to other 
emergent problems resulting from partially ordered actions. 
We have supposed that the constrained agent can ask for 
the action needed from other agents (when it falls in a PF 
state and its policy dictates the communication). By receiv-
ing a query, the predecessor agent is obliged to synchronize 
with the constrained agent. The language used in this work 
is chosen to take into account the possibility of receiving 
the query before deciding to execute the predecessor action 
or not (to deal with asynchronism). Furthermore, sharing 
information is doing in two ways (bi-directional commu-
nication), in order to maintain coordination. In fact, in Bey-
nier and Mouaadib (2010) there is a decoupling between 
the agents because the predecessor agent decides to send 
information independently without considering if this is 
necessary for the constrained agent and if it really increases 
the global expected reward.

9  Conclusion

Modeling distributed real world applications using decen-
tralized Markov Decision Processes requires a specific 
adaptation in order to take into account actions execution 
constraints.

In this paper, we aimed at extending a state of the art 
model OC-DEC-MDP which is proposed to take into 
account temporal and precedence constraints, and probabil-
istic actions’ durations in the case of linear local plans, to 
handle partial local plans and communication decisions.

In this type of problems, communication can only be 
beneficial in order to ensure coordination between agents. 
However, communication is expensive in terms of opera-
tional and computational costs and must be restricted.

The decision about the policy of each agent is based 
on the type of the state an agent might be in. It results 
from a tradeoff between the expected utility of the agent, 

its opportunity cost on other agents, and the value of 
communication.

In order to optimize communication decisions, we have 
proposed heuristics that concern when, what and with 
whom communicate. Since an agent depends from the oth-
ers only when a precedence relation occurs between them, 
communication points are restricted in precedence con-
straint. The communication model we proposed considers 
that communication is triggered by the constrained agent 
after one partial failure state if its policy dictates to coordi-
nate. We have considered three types of messages depend-
ing on the state of the agent. Moreover, it was supposed 
that the set of communicating agents is limited to the sub-
set of agents that only depends from each other.

In this work, we have considered two cases: i) success-
ful communication where messages are received after a 
fixed time, ii) fail communication where messages may be 
missed.

Our results have shown the effectiveness of the proposed 
approach. In fact, communication heuristics conducted us 
to the possible best solution according to the constraints.

A major inconvenient of OC-DEC-MDP is the large 
state space. One direction of future research is to reduce 
the size of this space by defining a representative subset 
of states where agents are likely to move in Marecki and 
Tambe (2007) handles the problem of the state space size 
by considering continuous time and thus dealing with value 
function over time for each action rather than a separate 
value for each action and execution interval. It will be inter-
esting to increase the level of coordination by introducing 
communication among agents and measure its contribution 
on the overall gain. Another direction of future work is to 
consider constraints on communication such as defining 
a communication budget and then formalize exactly how 
much communication is allowed.
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