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1  Introduction

In 2012, the public’s awareness of maritime safety was 
heightened due to two high profile maritime incidents, the 
sinking of the Costa Concordia, off the shore of Italy, and 
the loss of the Rabaul Queen ferry, off Papua New Guinea, 
both leading to the loss of life at sea. In less than 50 years, 
cargo has grown 14 times, fleet capacity has grown eight 
times, oil tankers became twenty times bigger, average 
tankers seven times bigger, dry bulk vessels ten to fifteen 
times bigger, while ultra large cruise ships are now dwarf-
ing the Titanic as their capacity has risen to 6000 passen-
gers (Stopford 2009; ANAVE 2013). Vessel growth in size, 
speed and volume in relation to shipping lane size, has 
made vessels difficult to maneuver, especially around major 
ports and inland waterways requiring a change in collision 
avoidance techniques (Westrenen and Praetorius 2012). 
Recent developments indicate a significant increase in tra-
ditional maritime risks, but also highlight the introduction 
of unique challenges in maritime shipping at various levels.

For many years, practitioners and researchers from the 
field of maritime safety have turned towards information 
and communication technologies (ICT) in order to reduce 
risk. As such, the automatic identification system (AIS) 
was developed, primarily as a tool for maritime safety and 
vessel collision avoidance and is an integral component of 
various vessel traffic services (VTS), vessel traffic manage-
ment systems (VTMS) and vessel traffic monitoring infor-
mation systems (VTMIS). A number of vessel tracking 
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systems are open to the public through the Internet; as 
such, marinetraffic (MT) is part of an open, community-
based project that provides real-time information, regarding 
vessel movements and port traffic across the coastlines of 
many countries around the world. MT is at any time track-
ing more than 460,000 vessels and processing more than 50 
million position reports per day, covering more than 10,000 
ports and marinas across the globe. Information regarding 
these vessels is collected from over 1600 AIS receivers 
located at the coastline of more than 150 countries. A wide 
range of maritime stakeholder’s access such information on 
a daily basis, in an attempt to increase the efficiency and 
the safety of their operations at sea. For example,

•	 Port authorities, coast guard, border controls, search 
and rescue teams combine vessel tracking information 
with other proprietary solutions accurately monitor and 
assess threats at sea;

•	 Pilots, tug operators, towage and salvage make use of ves-
sel tracking information for assistance when navigating to 
a distress call to accurately track a vessel entering a port;

•	 Insurance companies use vessel historical data for incident 
investigation. The current condition, route and port calls 
of a vessel may also affect the insurance policy applied.

•	 Crewmembers, families of seafarers, recreational sailors 
and even passengers frequently access such information 
to learn about a specific vessels position, route, and esti-
mated time of arrival.

Overall, stakeholders and a variety of end users make 
use of vessel tracking information to increase their own 
understanding and perception of reality at sea, to sup-
port their decision making and situation management. At 
a cognitive level, situation management is a goal directed 
process of (a) collecting information (b) perceiving and 
recognizing situations (c) analyzing past situations and 
predicting future situations and (d) realistic reasoning, 
planning and implementing actions so that desired goal sit-
uation is reached with some pre-defined constrains (Roth-
blum 2002). Intelligent systems have a great potential for 
addressing decision-making problems, because they can 
model the involved players and produce good results in low 
computational time (Gomes et  al. 2014). Intelligent deci-
sion support systems use data and mathematical models, 
that possess the characteristics of flexibility, adaptability, 
comprehension, and the capacity to manage uncertain and 
constantly changing information (Krishnakumar 2003), so 
as to support stakeholders decision making. They aim at 
automating steps (a)–(c) while providing human operators 
with proposals in support of their own decision making (d).

Maritime domain awareness (MDA) is the effective 
understanding of activities, events and threats in the mari-
time environment that could impact global safety, security, 

economic activity or the environment (Santos and Lunday 
2009). The major challenge faced today by MDA, is devel-
oping the ability to identify patterns emerging within huge 
amounts of data, fused from various sources (information 
fusion) and generated from monitoring thousands of ves-
sels a day, so as to act proactively to minimize the impact of 
possible threats. Recent advancements in ICT have created 
opportunities for increasing MDA, through better monitor-
ing, but most importantly understanding vessel movements. 
Statistical inference and machine learning algorithms can 
provide crucial help in this process. Achieving situational 
awareness, perceiving and comprehending elements and 
their contextual meaning in the environment within a given 
volume of time and space, while projecting their status into 
a future timeframe (Endsley 1988), is a critical element 
of MDA (US Department of Homeland Security 2005). 
Increasing Maritime Domain Awareness in light of safety 
and efficiency can be viewed as three-step process where,

•	 Accurately assessing the maritime environment: assess-
ment of objects and their relations, amongst themselves 
and their environment, to provide a better understanding 
of the current situation. Supporting an operators (a) and 
(b) processes.

•	 Impact assessment: projections of possible future situ-
ations and evaluations regarding evolving situations in 
an attempt to determine possible threats. Supporting 
human operators (c) analysis of past situations and pre-
dictions of future situations.

•	 Proactive hazard prevention and increased efficiency 
through process optimization. Supporting a human 
operator’s decision making (d).

Deploying tools targeting at increasing MDA can poten-
tially lead to significant improvements in safety and secu-
rity but also energy and economic efficiency (forecasting 
congestion at ports, route emissions and others).

In this manuscript, we describe our work on employing 
machine learning methods and specifically artificial neural 
networks (ANN), as a basis for accurately predicting a ves-
sels future behavior with an emphasis on solution practical-
ity. To this end, we focus on deploying a web-based infra-
structure that can produce good results in low computational 
time. This work is meant to sit on the fence between theoreti-
cal computer science and software engineering that can pro-
vide practical solutions to everyday problems (applied soft 
computing). Predicting a vessels behavior with ANNs raises 
a number of unique design challenges. A balance needs to 
be sought between prediction accuracy and training times. 
Another challenge is processing data of such volume and 
velocity (AIS messages regarding vessels are received every 
20–90  s). As the predictive capacity could potentially be 
added to VTMIS such as MarineTraffic, a system operating 
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constantly and tracking thousands of vessels at any given 
time, special attention needs to be paid to data related design 
choices. Our overall objective is to design and develop a sys-
tem, which exhibits the characteristics identified below,

•	 Is capable of learning vessels behavioral pattern from 
previous historical data available from MarineTraffic

•	 Is capable of real-time vessel behavior prediction on 
user request, in low computational time

•	 Is publicly accessible through the World Wide Web and 
can overlay vessel predictions on an interactive map for 
visualization purposes

•	 Has the capacity to operate as the foundation for vessel 
collision avoidance and anomaly detection systems

To overcome various obstacles and accurately address our 
stated requirements, a number of design choices were made 
that are documented throughout this report. In the follow-
ing sections of our manuscript, we first describe our steps 
towards data preparation and model building. In the succes-
sive section we present our training and evaluation results. 
Following this, we provide design and deployment details of 
our prototype system. We conclude our manuscript with an 
example case study investigating vessel collision detection.

2 � Predicting a vessels behavior

2.1 � Model selection

As far back as 1969 research efforts focused on the field 
of forecasting and have since been exploring methods of 
increasing forecasting accuracy. Approaches used through-
out the given literature implement a wide variety of fore-
casting methods, such as ANNs, ARIMA/ARMA models, 
Box Jenkins and others (Makridakis and Hibon 2000). In 
an attempt to evaluate their forecasting capacity, Makrida-
kis, Hibon et al. published a number of papers reporting on 
the effectiveness of a variety of well-documented models 
tested on real world datasets (Makridakis et al. 1982, 1993; 
Makridakis and Hibon 2000). According to this analysis 
automatic ARIMA modeling with intervention analysis 
(AAM1) and Automated artificial neural networks head the 
ranking, followed by Automated Parzens methodology with 
auto regressive filter (ARARMA) and Robust ARIMA uni-
variate Box-Jenkins (Lopez et al. 2011). Although forecast-
ing has long been considered as the field of research in the 
domain of linear statistics. Traditional approaches, such as 
Box-Jenkins or ARIMA method (Box and Jenkins 1976; 
Pankratz 1983), assume that real world observations are gen-
erated from linear processes (Zhang et al. 1998). However, 
they may be totally inappropriate if the underlying mecha-
nism is nonlinear. It is unreasonable to assume a priori that 

a particular realization of a given time series is generated by 
a linear process (Zhang et al. 1998). Modeling of non-linear 
systems is far more difficult than linear systems.

An artificial neural network (ANN) is a machine learning 
information-processing paradigm inspired by biological nerv-
ous systems. The key element of this paradigm is the novel 
structure of the information processing system. It is composed 
of a large number of highly interconnected processing elements 
(neurons), which work in unison to solve specific problems 
(Bevilacqua 2006). In general, a neural network is a parallel 
system, capable of resolving problems that linear-computing 
cannot (Verber 2012). ANN have a broad applicability to vari-
ous real world problems including classification and pattern 
recognition, data processing, control, robotics but also predic-
tion. The unique characteristics of ANNs—adaptability, non-
linearity, arbitrary function mapping ability—make them quite 
suitable and useful for forecasting tasks. According to Karlaftis 
and Vlahogianni, ANNs have been mainly used as data analytic 
methods because of their ability to work with massive amounts 
of multi-dimensional data, their modeling flexibility, their 
learning and generalization ability, their adaptability and their 
good predictive ability (Karlaftis and Vlahogianni 2011).

In the maritime domain ANNs have been employed for 
tasks such as forecasting traffic flow at the Suez canal (Mostafa 
2004), predicting wave influence on the yaw motion of a ship 
(Nicolau et al. 2004) and vessel classification (Lagerweij et al. 
2009). Lagerweij et  al., analyze moving object trajectories 
from maritime vessels and classify vessels into three catego-
ries based on AIS data. In their work, they perform the tasks 
of clustering, classification and outlier detection from ves-
sel trajectory data with the goal of identifying irregular vessel 
behaviors. In their work Perera, Oliveira and Soares, propose 
an ANN as the mechanism for detecting and tracking multiple 
vessels based on radar/laser tracking data (Perera et al. 2012).

Less work however has been conducted in the field of 
vessel movement prediction using an ANN, mostly due to 
the lack of data. Ebada developed an artificial intelligent 
system, capable of predicting accurately the turning tracks 
of ships (Ebada 2005). The physical and operational data 
of a ship are described and used as inputs into the system 
in order to predict the turning maneuvers. Closely related 
to this work is Simsir and Ertugrul (2009) study, with the 
aim of predicting the future coordinates of a manually con-
trolled vessel using a trained ANN in the Bosporus Straits. 
The ANN was trained by using position and speed data col-
lected from vessels, which navigated manually in the Strait. 
They were able of accurately predicting vessel positions 
in a 3-min ahead window. Rhodes Bomberger, Seibert and 
Waxman developed a Fuzzy ARTMAP classification neural 
network architecture where normal vessel speeds for differ-
ent regions in a port area are learned by clustering (Bomb-
erger et al. 2006). New data that is not recognized by the 
network during online operation is considered anomalous. 
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The same research group has also proposed and imple-
mented associative learning of motion patterns for anomaly 
detection, where associative neural networks learn to pre-
dict future vessel locations in a port given a current (Rho-
des et  al. 2007). Anomaly detection can be defined as a 
method that supports situation assessment process by indi-
cating objects and situations that deviate from the expected, 
known or “normal” behavior and thus may be of interest for 
further investigation (Laxhammar et al. 2015). In the aca-
demic literature, the proposed models and algorithms are 
more or less data driven in the sense that normalcy is deter-
mined by machine learning algorithms analyzing a rela-
tive large set of historical data assumed to reflect normalcy 
(Zandipour et  al. 2008). Learning techniques concerning 
this issue involve both supervised and unsupervised learn-
ing paradigms. As supervised learning methods require 
a representative dataset to train the predictive model in 
many cases throughout the literature unsupervised learning 
approaches are implemented such as SOM-based spatial 
outlier detection method and others (Cai et al. 2013).

2.2 � Exploration and data preparation

Neural networks are only as good as the data they are given 
and the questions that are asked of them (Azoff 1994). One of 
the major constrains of applying machine learning techniques 
to vessel position prediction in the past, has been the lack of 

data necessary for training the ANN. The data used for this 
study is provided by MarineTraffic.com and is based on AIS. 
AIS transmissions can be defined as spatial time series (Rho-
des et al. 2007), describing the movements of vessels across 
geographic regions. An AIS message contains the vessel’s 
maritime mobile service identity (MMSI)—a unique nine digit 
identification number; Navigation status; rate of turn; speed 
over ground; positional accuracy; course over ground; True 
heading; true bearing at own position; UTCsSeconds. Addi-
tionally messages may contain radio call sign, vessel name, 
vessel type; vessel dimensions; vessel draught, vessel desti-
nation and vessels estimated time of arrival. Ships broadcast 
original position reports at time intervals that vary between 3 s 
and more than 30 s, depending on their speed and the type of 
their AIS transponder. These reports are used for the real-time 
map display, but MT only archives them every 2 min for each 
vessel, as this interval is enough for tracking purposes and the 
applications are not used for navigation purposes (Table 1).

For the neural network training, we decided that even a 
smaller frequency of position reports is enough for predic-
tion accuracy. An interval of 15  min would be enough to 
detect an anomaly or course collision in vessel tracks while 
at the same time we ensure that the time series will be unin-
terrupted even for areas where the AIS signal reception is 
poor and the collected data is not as frequent as in fully 
covered areas. The following SQL query is used to achieve 
the described data down sampling:

Table 1   In the table an instance of the dataset provided by MT is presented

We do not use the original MMSI vessel information. AIS messages do not include time related information. Messages are time stamped when 
received by MT to precisely identify messages in a time series sequence

MMSI Status Speed Lat Lon Course Heading Timestamp

1xxxx 0 0 28.88514 40.95557 181 511 01/08/2013 01:57

2xxxx 0 189 23.90081 37.26227 210 209 01/08/2013 01:57

3xxx 3 5 29.29004 41.49531 132 93 01/08/2013 01:58

4xxx 0 95 24.07887 37.5585 217 218 01/08/2013 01:58

select a.mmsi,a.speed,a.longtitude,a.latitude,a.course,a.timestamp from archive a

inner join (select min(timestamp) as timestamp,mmsi from archive c

where timestamp>='YYYY-MM-NN HH:MM' and timestamp<='YYYY-MM-NN HH:MM'

and mmsi in (999999999)

group by 

datepart(year,timestamp),datepart(month,timestamp),datepart(day,timestamp),datepart(ho

ur,timestamp),datepart(minute,timestamp)/intervalXXXX, mmsi) b  

on a.mmsi=b.mmsi and a.timestamp=b.timestamp

order by a.mmsi, a.timestamp
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2.3 � Model building

The structure of the neural network needs to be able to 
hold the complexity of the at state problem. One of the 
most known and widely used architecture types is the 
multi-layer perceptron. Although there has been exten-
sive research on the optimal design of neural networks, 
it is still largely an art and a matter of experimentation 
as each problem presents a distinct challenge (Zhang 
et al. 1998). Besides selecting the input and output neu-
ron size consideration needs to be taken into the selec-
tion of hidden neurons and number of hidden layers. For 
neural networks implemented to predict future values in 
a time series dataset, the number of input neurons cor-
responds to the number of lagged observations required 
to discover the underlying pattern (Zhang et  al. 1998). 
Neural networks can be trained to predict on-step-ahead 
(based on the time interval data is collected in the dataset 
prediction will occur for the following value) or multi-
step-ahead forecasting. The conventional approaches for 
multistep ahead forecasting, include iterative or direct 
methods of forecasting. In iterative approaches, forecast 
values are used as inputs for the preceding calculation, 
while direct methods require neural networks to have 
several output nodes to directly forecast each step into 
the future (Zhang et al. 1998).

We exploit the fact that a number of behavioral param-
eters can be implied and computed based on the predicted 
vessel positions. Thus, our forecasting neural network 
is required to predict a vessels latitude and longitude at a 
future point in time, while we programmatically calculate 
other values (such as bearing and speed as discussed in fol-
lowing sections). For our given dataset we experimented 
with a backward window size of four; thus requiring a 
structure that could handle eight input neurons. For short-
term prediction (15 min), we trained the neural network to 
output a single prediction (latitude and longitude) while for 
long term prediction we experimented with iterative and 
direct prediction approaches.

In our given approach, we make use of incremental 
pruning. This enables the ANN to autonomously select 
the optimal hidden layer structure based on its capacity to 
learn best. In such an approach, we predetermine the num-
ber of input and output layers while providing a range of 
minimum to maximum numbers of hidden neurons and 
layers. The algorithm will incrementally increase the size 
of the neural network and retrain at each increment until it 
reaches the maximum limits. When reaching the maximum 
the configuration that trained best is considered the optimal 
network configuration. Incremental pruning led us to a pro-
posed structure of 1 hidden layer with 53 hidden neurons, 
although good results were also achieved with two hidden 
layers with 50 and 14 hidden neurons (Fig. 1).

An important element of the neural networks structure is 
their net inputs by using a scalar-to-scalar function called 
“the activation function or threshold function or transfer 
function”, output a result value called the “unit’s activa-
tion” (Karlik and Olgac 2010). In general, the activation 
function introduces a degree of nonlinearity that is valuable 
for most ANN applications. The predicted output of our 
ANN is in the range [−1, 1]; thus we selected the hyper-
bolic tangent function as an activation function for the hid-
den and output layers (Gomes and Ludermir 2013).

Training is the means by which neural network weights 
are adjusted to give desirable outputs. The propagation 
training algorithm will go through a series of iterations 
that will most likely improve the neural network’s error 
rate by some degree (Heaton 2011). The error rate is the 
percentage difference between the actual output from the 
neural network and the ideal output provided by the train-
ing data (Heaton 2008). The mean square error (MSE) is 
an error calculation method used in describing how well 
a machine learning method, typically a regression model, 
represents the data being modeled (Heaton 2011). This 
process is repeated until the error for each training pat-
tern drops under a certain accepted level. A large number 
of different algorithms have been proposed to solve the 
problem of updating the weights in an appropriate way, 

Fig. 1   The proposed ANN architecture. Our proposed solution 
makes use of a backward window size of four; thus requiring a struc-
ture that could handle eight input neurons (latitude and longitude for 
four positions). The output is the predicted position in a future point 
in time
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by adapting the parameters during the learning process 
(Braga et  al. 2000). Training algorithms are distinguished 
into two separate categories, global and local adaptation 
strategies. Global adaptation categories utilize the state 
information of the entire network to modify the global 
parameters, whereas local adaptation strategies makes use 
of specific weight information, as local gradient, to adjust 
each weight parameters individually. To train our model we 
experimented with a number of training algorithms includ-
ing Back Propagation, Resilient Propagation, Quick Propa-
gation, Manhattan Propagation and Levenber Marquardt 
Training. Best training times were achieved with ‘Resil-
ient back propagation. RPROP is based on the traditional 
backpropagation method with just one difference: weight 
updating is done by evaluating the behavior of the error 
function. With RPROP, the value of the weight update is 
calculated by evaluating the partial derivative sign from one 
iteration to another, improving the learning process, elimi-
nating some problems encountered in the backpropagation 
algorithm and making the proposed method faster than the 
traditional one (Riedmiller and Braun 1993; Souza et  al. 
2004). RPROP was able to achieve a target MSE of 0.01 
in only a few seconds. Vessel data is so voluminous that 
it is impossible to train the ANN on raw past vessel data. 
To this end, we exploit the fact that specific vessel types 

follow repetitive patterns in short periods. We concentrate 
our study on passenger vessels that perform repetitive voy-
ages within a given timeframe (such as around the Aegean 
Islands where voyages are performed within a few hours or 
days). Predicting the behavior of a vessel engaged in tramp 
trade or similar trade, would require a totally different 
approach, as on many occasions these vessels may not have 
performed a similar voyage in their short past data. This 
tradeoff allowed for much shorter training times (5–10  s) 
and a desired MSE of 0.01 (Fig. 2).

2.4 � Model evaluation

We implement our ANN in C# using the Encog3 Machine 
Learning Library (Heaton 2008). Encog is an open source 
advanced machine learning framework that supports a 
variety of algorithms, as well as support classes to normal-
ize and process data. Most Encog training algorithms are 
multi-threaded and scale well to multicore infrastructure. 
To train and test our ANN we made a selection of passen-
ger vessels and loaded data regarding these from the previ-
ous 48–72 h (depending on prediction).

The conventional approach to evaluating a ANN accu-
racy usually involves randomly setting aside a portion of 
the dataset e.g. 70 % for training and 30 % for testing. The 

Fig. 2   Error rate (MSE) reduc-
tion through training iterations 
(Epochs)

Fig. 3   Future (15 min ahead 
steps) latitude prediction for 
a vessel sailing around the 
Aegean, Greece
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training data set is used exclusively for model development 
and then the test sample is used only to assess the trained 
network. After training was completed, we evaluated the 
trained ANN by feeding it data that was excluded from the 
original dataset. This data was collected in the following 

24 h and was previously unseen to the ANN during train-
ing. This data was pre and post-processed in the same 
method with the training data. In the following figures we 
report on evaluation results regarding predictions (Figs. 3, 
4, 5, 6).

Fig. 4   Future (15 min ahead 
steps) longitude prediction 
for a vessel sailing around the 
Aegean, Greece

Fig. 5   Future (4 h ahead steps) 
latitude prediction for a vessel 
sailing around the Aegean, 
Greece

Fig. 6   Future (4 h ahead steps) 
longitude prediction for a ves-
sel sailing around the Aegean, 
Greece
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In the following tables predicted values and true values 
are provided for a number of different vessels travelling 
across the sea. For each of these the error rate is calculated 
(Tables 2, 3, 4).

3 � Solution web architecture and deployment

3.1 � Deployment and design choices

Consequently, to successfully testing and evaluating the 
ANN model we chose to design and deploy a prototype 
web application, which would meet the previously identi-
fied requirements. Due to the nature of our application, 

the web application was built using the ASP.NET MVC 5 
(model view controller) framework. The ASP.NET MVC 
5 is a framework for building scalable, standards-based 
web applications using well-established design patterns, 
that places an emphasis on a loosely coupled application 
architecture and highly maintainable code (Chadwick et al. 
2012; Galloway et  al. 2012). The model-view-controller 
pattern is an architectural pattern that encourages strict iso-
lation between the individual parts of an application (loose 
coupling). The MVC pattern splits an application into three 
layers: the model, the view, and the controller. The model 
represents core business logic and data. Models encapsulate 
the properties and behavior of a domain entity and expose 
properties that describe the entity. The proposed solution 

Table 2   Predicted position 
(latitude and longitude) for a 
vessel previously unseen by the 
ANN

True latitude True longitude Predicted latitude Predicted longitude Error % Error  %

37.63962 23.88155 37.63919433 23.90109 0.042567 1.954086

37.67092 23.78147 37.67857451 23.79833 0.765451 1.685963

37.73985 23.7256 37.72581513 23.73791 1.403487 1.23107

37.8183 23.68057 37.8195765 23.66101 0.12765 1.955744

37.89043 23.63928 37.89472295 23.63811 0.429295 0.116574

37.94125 23.63405 37.94660879 23.63939 0.535879 0.533846

37.9479 23.64143 37.94837593 23.64253 0.047593 0.1101

Table 3   Predicted position 
(latitude and longitude) for a 
vessel previously unseen by the 
ANN

True latitude True longitude Predicted latitude Predicted longitude Error  % Error  %

37.15257 24.93053 37.14578 24.95855 0.679248 2.802274

37.17938 24.82287 37.17731 24.87041 0.206848 4.754229

37.20755 24.7074 37.19882 24.7158 0.872501 0.839959

37.23428 24.59785 37.23346 24.5754 0.082036 2.245276

37.26337 24.47983 37.26332 24.4771 0.005182 0.273131

37.29203 24.36073 37.30437 24.35883 1.233537 0.190051

Table 4   Predicted position 
(latitude and longitude) for a 
vessel previously unseen by the 
ANN

True latitude True longitude Predicted latitude Predicted longitude Error  % Error  %

37.46708 24.09918 37.45622 24.11585 1.086443 1.667195

37.52713 24.00685 37.52259 24.03054 0.453809 2.369056

37.58782 23.91625 37.58747 23.92715 0.034945 1.089585

37.64919 23.82687 37.65189 23.82225 0.27014 0.462455

37.71548 23.74307 37.71764 23.73395 0.215749 0.912366

37.801 23.6905 37.7985 23.67752 0.250221 1.298271

37.88848 23.63692 37.88574 23.64578 0.274465 0.88578

Fig. 7   Code map of MVC5 
Home Controller and predic-
tion function (generated by 
MS Visual Studio 2013 code 
analysis)
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contains models encapsulating vessel data. The view in 
MVC is responsible for transforming a model or models 
into a visual representation. In web applications, this most 
often means generating HTML to be rendered in the user’s 
browser, although views can manifest in many forms such 
as AJAX interactive map mashups as in our solution. The 
controller, essentially C# code, controls the application 
logic and acts as the coordinator between the view and the 
model. Controllers receive input from users via the view, 
and then work with the model to perform specific actions, 
passing the results back to the view. A user can select any 
vessel from the interactive map initiating the prediction 
procedure (Fig. 7).

The “Prediction” function is capable of retrieving ves-
sel data from the database, normalizing this, training the 
ANN and returning the predicted geographical vessel posi-
tion. Predictions from the neural network are transformed 
to the original data scale before positioned on the map at 
(http://mob0.marinetraffic.com/). The system architec-
ture employs technologies that support the interoperabil-
ity between loosely coupled components. In particular, the 
system design follows the principles of service oriented 
architectures exposing SOAP or REST (web services) 
interfaces. Data from the vessel position database but also 
vessel predictions are returned as a JSON or XML web ser-
vice (Fig. 8).

As opposed to going through a lengthy training process 
and only deploying the neural network after the process has 
been successful, we choose to train our network per vessel 
on user request in real time. When a user selects a vessel or 

specific geographic area, according to the required predic-
tion, previous data is loaded. This data is fed into the neu-
ral network for training until its training rate is below 0.01. 
As this is a demanding CPU process, we have deployed a 
cloud infrastructure to support scaling on demand. Follow-
ing this, the system will store the trained vessel ANN and 
recall it in the near future (24 h) for following predictions. 
To guarantee the solutions quality of service and practical 
applicability a number of functional requirements had to 
be met. Several design choices were made to successfully 
address these as presented in the following table (Table 5).

3.2 � Solution case study

Our proposal can potentially be used as the predictive foun-
dation for various intelligent systems, including vessel 
collision prevention, vessel route planning, operation effi-
ciency estimation and even anomaly detection. In this sec-
tion, we present a case study investigating vessel collision 
detection. A user is permitted to select a geographical area 
containing a number of passenger vessels. In such circum-
stances, if no trained ANN is present for each vessel, the 
training process is initiated and a predicted vessel track is 
returned for each vessel. We compute a vessels bearing and 
speed between geographical points (latitude and longitude). 
We call an implementation function of the Harversive for-
mula in C#, that is capable of calculating the distance and 
bearing between two geographical points. If at any point, 
the calculated distance is smaller than a predetermined 
minimum an alert is generated by the system, informing the 

Fig. 8   Passenger vessel future 
position (latitude and longitude) 
prediction overlaid on an inter-
active map for user visualization 
(http://mob0.marinetraffic.com/)

http://mob0.marinetraffic.com/
http://mob0.marinetraffic.com/
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human operator. The same function is capable of predicting 
a vessels collision with ground when overloaded with the 
vessel prediction array and nautical information (an array 

of land coordinates). The following UML sequence dia-
gram depicts the flow of messages between functions and 
other components in such a scenario (Fig. 9).

Table 5   Requirements mapped to design choices

Requirements Design choices

Solution performance Data used for training is limited to the previous 48–72 h as a balance was necessary between training time and pre-
diction accuracy. This was adequate for vessels performing repetitive patterns within a given timeframe

An ANN is trained on user request for a vessel of choice. Following this the system will store the trained vessel 
ANN and recall it in the near future (24 h) for following predictions

Scalability of solution ANN training is a CPU intensive and time-consuming process. We deploy our proposed system on a cloud infra-
structure capable of scaling up and out on demand

Availability and reliability The cloud infrastructure guarantee’s high solution availability and resiliency. Additionally the solution is available 
as a Software as a Service (SaS) following the principles of service oriented architectures exposing SOAP or 
REST (web services) interfaces

Complexity of ANN Many behavioral characteristics are inferred so as to increase training speed, such as heading, course and speed. We 
implement the Haversive formula in c# and kinematic equations to calculate behavioral variables between posi-
tions

Fig. 9   Sequence diagram 
depicting flow of messages 
in vessel collision detection 
scenario (generated by Visual 
Studio 2013 code analysis)
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4 � Conclusion

In this manuscript, we report on our ongoing work in add-
ing predictive capacity to VTMIS and specifically Marine-
Traffic.com. In this, we describe our work on employing 
machine learning methods and specifically neural net-
works, as a basis for accurately predicting a vessels future 
behavior with an emphasis on solution practicality. To this 
end, we focus on deploying a web-based infrastructure 
that can produce good results in low computational time. 
Further improvements are currently being performed in 
order to accommodate contextual information during the 
machine learning process.
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