
1 3

Evolving Systems (2015) 6:269–292
DOI 10.1007/s12530-015-9132-6

ORIGINAL PAPER

Generalized smart evolving fuzzy systems

Edwin Lughofer1 · Carlos Cernuda1 · Stefan Kindermann2 · Mahardhika Pratama3

Received: 2 May 2014 / Accepted: 2 March 2015 / Published online: 14 March 2015
© Springer-Verlag Berlin Heidelberg 2015

newly developed re-scaled Mahalanobis distance meas-
ure for assuring monotonicity between feature weights and
distance values. Gen-Smart-EFS will be evaluated based
on high-dimensional real-world data (streaming) sets and
compared with other well-known (evolving) fuzzy sys-
tems approaches. The results show improved accuracy with
lower rule base complexity as well as smaller rule length
when using Gen-Smart-EFS.

Keywords Data stream regression · Generalized evolving
fuzzy systems (GS-EFS) · Rule merging · Adjacency–
homogeneity relation · Soft and smooth on-line dimension
reduction · Re-scaled Mahalanobis distance measure

1 Introduction

1.1 Motivation

Due to the increasing complexity and permanent growth of
data acquisition sites [e.g. installed through multi-sensor
networks (Cohen et al. 2008)], in today’s industrial systems
there is an increasing demand of fast modeling algorithms
from on-line data streams (Gama 2010), which are flexible
in the sense that they can be adapted to the actual system
situation. Application examples of such dynamic systems
are on-line adaptive surface inspection scenarios (Eitzinger
et al. 2010; Lughofer et al. 2009; Sannen et al. 2008),
stock-market forecasting (Maciel et al. 2012; Leite et al.
2012), any kind of evolving smart sensors for substituting
cost-intensive hardware (Macias-Hernandez and Angelov
2010; Angelov and Kordon 2010), timely changing predic-
tion of premise prices (Lughofer et al. 2011), on-line fault
detection and condition monitoring systems (Chen et al.
2014; Costa et al. 2015; Lemos et al. 2013), tracking of

Abstract In this paper, we propose a new methodol-
ogy for learning evolving fuzzy systems (EFS) from data
streams in terms of on-line regression/system identifica-
tion problems. It comes with enhanced dynamic complex-
ity reduction steps, acting on model components and on the
input structure and by employing generalized fuzzy rules
in arbitrarily rotated position. It is thus termed as Gen-
Smart-EFS (GS-EFS), short for generalized smart evolving
fuzzy systems. Equipped with a new projection concept for
high-dimensional kernels onto one-dimensional fuzzy sets,
our approach is able to provide equivalent conventional
TS fuzzy systems with axis-parallel rules, thus maintain-
ing interpretability when inferring new query samples.
The on-line complexity reduction on rule level integrates
a new merging concept based on a combined adjacency–
homogeneity relation between two clusters (rules). On
input structure level, complexity reduction is motivated
by a combined statistical-geometric concept and acts in a
smooth and soft manner by incrementally adapting feature
weights: features may get smoothly out-weighted over time
(→soft on-line dimension reduction) but also may become
reactivated at a later stage. Out-weighted features will con-
tribute little to the rule evolution criterion, which prevents
the generation of unnecessary rules and reduces over-fitting
due to curse of dimensionality. The criterion relies on a

 * Edwin Lughofer
 edwin.lughofer@jku.at

1 Department of Knowledge-Based Mathematical Systems,
Johannes Kepler University Linz, Linz, Austria

2 Industrial Mathematics Institute, Johannes Kepler University
Linz, Linz, Austria

3 School of Engineering and Information Technology,
University of New South Wales, Canberra, Australia

http://crossmark.crossref.org/dialog/?doi=10.1007/s12530-015-9132-6&domain=pdf

270 Evolving Systems (2015) 6:269–292

1 3

objects in video streams (Angelov et al. 2011) or evolving
modeling of user’s behaviors (Iglesias et al. 2010). In par-
ticular, changing operating conditions, environmental influ-
ences and new unexplored system states may trigger a quite
dynamic behavior, causing previously trained models to
become inefficient or even inaccurate (Sayed-Mouchaweh
and Lughofer 2012). Thus, the field of “evolving intelligent
systems (EIS)1” (Angelov et al. 2010) or, in a wider
machine learning sense, the field of “learning in dynamic
environments (LDE)” (Sayed-Mouchaweh and Lughofer
2012) enjoyed a large attraction during the last years. Both
fields support learning topologies which operate in single-
pass manner and are able to update models and surrogate
statistics on-the-fly and on demand. While EIS focus
mainly on adaptive evolving models within the field of soft
computing, LDE goes a step further and also joins incre-
mental machine learning and data mining techniques. The
update in these approaches concerns parameter adaptation
and structural changes (e.g. rule, neuron, leaf evolution and
pruning).

Evolving fuzzy systems (EFS) (Lughofer 2011) as a
sub-field of EIS are helpful whenever interpretable models
should be provided to users and operators—at least, they
allow some sort of interpretation, especially when equipped
with several concepts for assuring linguistic criteria as
deeply examined in Lughofer (2013). This is opposed to
other types of evolving models such as incremental radial
basis functions networks (Huang et al. 2004), recurrent
neural networks (Rubio 2010; Lin et al. 2013) or incremen-
tal support vector machines (Shilton et al. 2005; Diehl and
Cauwenberghs 2003). Furthermore, when equipped with
Takagi–Sugeno fuzzy systems architecture, EFS achieve
universal approximation capability (Castro and Delgado
1996).

1.2 State of the art

Almost all EFS approaches in literature use the conven-
tional flat TS fuzzy systems with axis-parallel rules (Takagi
and Sugeno 1985) [see Lughofer (2011) for a comprehen-
sive survey and further approaches since the last 2 years
as published in Hametner and Jakubek (2013), Tung et al.
(2013), Lin et al. (2013) and Soleimani et al. (2010) etc.];
some other recent approaches apply kernels in the con-
sequents, which are trained with SVMs (Komijani et al.
2012; Cheng et al. 2011); the first method which employs
generalized rules was published in Lemos et al. (2011),
later extended for the purpose of data stream mining in
Leite et al. (2012); there, however, no projection concept
was conducted to obtain interpretable (axis-parallel) rules.

1 http://en.wikipedia.org/wiki/Evolving_intelligent_system.

There, learning is done with the usage of the methodol-
ogy based on participatory learning (Yager 1990) and its
evolving version (Lima et al. 2010): rule merging is trig-
gered by a compatibility measure between two clusters,
seeking whether the center of one cluster is close to the
center of the other in terms of the Mahalanobis distance.
An extended merging approach for generalized fuzzy rules
is presented in Zdsar et al. (2014) (eFuMo), where also
the ratio of the Mahalanobis distances in both directions
(center A to rule B and vice versa) is taken into account in
the merge criterion.

In these approaches, no projection operation is per-
formed to allow interpretability of the evolved rules
and the learning is done on the full dimensional space.
In the recent published approach GENEFIS (Pratama
et al. 2014), a projection concept is integrated based on
the core span of each cluster according to each dimen-
sion. However, longer rule spreads along principal com-
ponents are not taken into account and may lead to too
pessimistic spreads. Furthermore, rule pruning is based
on expected statistical contributions of rules in the future
rather relying on the current necessary number accord-
ing to the requested actual non-linearity degree among
different local regions of the feature space. Finally, the
on-line reduction of features in case of high-dimensional
data streams has been handled in EFS for classification
problems in Lughofer (2011) [employing single model
and multi-model one-versus-rest architectures (Angelov
et al. 2008)], and for regression problems under the scope
of eTS+ methodology (Angelov 2010) and GENEFIS
(Pratama et al. 2014). The two latter ones operate on a
crisp basis, i.e. they discard features on-line on demand
due to their expected low future contributions. However,
none of these foresee any smooth selection in the sense
that features may get slowly out-weighted over time (but
still contributing to model outputs to some degree), nor
the possibility of reactivation/re-inclusion of some fea-
tures at a later stage in the stream learning phase.

1.3 Our approach: the basic concept

Our approach, termed as generalized smart evolving fuzzy
systems (Gen-Smart-EFS), builds upon the FLEXFIS learn-
ing engine (Lughofer 2008) and focusses on significant
extensions (the impacts from practical point of view men-
tioned in braces):

1. For generalized fuzzy rules in order to be able to model
local correlations more effectively (improving accu-
racy) (its definition in Sect. 2).

2. For providing more compact rule bases, reducing as
much as unnecessary complexity (improving transpar-
ency).

http://en.wikipedia.org/wiki/Evolving_intelligent_system

271Evolving Systems (2015) 6:269–292

1 3

3. For providing reduced rule lengths (improving inter-
pretability) and weakening curse of dimensional-
ity effect in incremental and soft(=smooth) manner
(improving stability and accuracy).

The latter two aspects, which guide the evolved fuzzy
models to some smartness degree, can be easily used for
other types of EFS learning engines, as they offer generic
concepts how to tackle rule redundancy, homogeneity and
length as well as curse of dimensionality in an on-line way.
These sort of complexity reduction steps are a necessary
pre-requisite for assuring interpretability of EFS, especially
meeting several important criteria, see Lughofer (2013).
The first aspect is necessary to be able to model local cor-
relations between input features, implying a more compact,
more precise model (see Sect. 2).

Instead of performing axis parallel updates of the
spreads of local data regions (=clusters) with the usage
of recursive variance formula [as in Lughofer (2008)], the
update concerns an incremental sample-wise update of a
full occupied inverse covariance matrix, which defines the
shape of the ellipsoidal clusters in arbitrary position, thus
being able to model local correlations in a more compact
form (see Sect. 2) than conventional axis-parallel rules. The
rule evolution versus update criterion is steered by a statis-
tical motivated tolerance region radius for multivariate nor-
mal distributions (Sect. 3.1). The induced “characteristic
spread” can be seen as equivalent to the (core) contours of
the ellipsoidal rules (Sun and Wang 2011). The consequent
parameters are updated by generalized recursive fuzzily
weighted least squares (RFWLS), where the weights are
the normalized membership degree of the generalized rules
(Sect. 3.3).

A minimal required model complexity is sought after
each incremental learning cycle based on novel geometric
criteria giving rise which degree of non-linearity is actually
requested among the local regions (Sect. 3.2). Thus, rules
are merged (1) which become significantly overlapping [a
generalization of the concepts as in Lughofer et al. (2011)
for generalized rules], and (2) which becoming slightly
overlapping or touching (lying nearby each other), while (a)
forming homogenous joint regions and (b) showing similar
tendencies in their consequents. The latter occurrence have
been not handled so far in state-of-the-art approaches

Furthermore, we are offering a new design for an incre-
mental reduction of the feature space. There, we introduce
feature weights which are pointing to the importance levels
of each feature for explaining the (local) relation in form of
a regression problem (Sect. 4). The reduction automatically
has two effects: (1) reducing the curse of dimensionality
in a dynamic and smooth way, i.e. features may be out-
weighted at a certain point of time, but may be reactivated
at a later stage of the on-line data stream modeling process

in an incremental manner; and (2) reducing the rule length
and thus improving transparency of the evolved fuzzy sys-
tems as features with low weights can be discarded from
the rules’ antecedents when showing the rules to users/
operators. The first point overcomes the deficiency of a
crisp incremental feature selection approach as conducted
in Pratama et al. (2014), which discards unimportant fea-
tures due their statistical influences in a strict manner (no
re-activation or a re-inclusion at a later stage possible). The
extraction of feature weights are conducted by a combined
statistical-geometric concept, motivated from Pratama et al.
(2014), but acting in both, local (weights per rule) and
global manner (weight for the whole model) (Sect. 4.1).
Furthermore, we propose a novel concept how to properly
integrate the weights into the Mahalanobis distance calcu-
lation (Sect. 4.2), which for incoming new samples decides
whether or not a new rule should be evolved. Input features
which are seen as unimportant, thus receiving low weights,
should also effect the Mahalanobis distance little, omitting
the evolution of unnecessary rules. This leads to a re-scaled
Mahalanobis distance measure which assures some sort of
monotonicity: successively decreasing feature weights trig-
ger successively lower Mahalanobis distance values.

Such a re-scaled measure assuring monotonicity has
been to our best knowledge not handled so far in literature
and could be useful in other machine learning/data min-
ing applications as well whenever features are not equally
weighted, thus conventional Mahalanobis distance not
directly applicable. A further practical usage is that such
on-line rule reduction and smartness assurance techniques
guarantee that the rule base is not growing forever and
provide more compact rule bases. The dynamic feature
weighting approach prevents a bad model performance due
to over-fitting as it reduces curse of dimensionality, mostly
due to the suppression of evolving new rules in case when
distances among unimportant features get large. Further-
more, rule lengths are decreased, increasing transparency
of rules and offering another interpretability aspect in fea-
ture level: operators/experts get a glance which system var-
iables/features are important at which point of time during
stream learning (see also the results section for two con-
crete examples). Finally, the practical usage is also given by
the direct applicability of all the on-line complexity reduc-
tion steps (on rule and input level) to all EFS approaches
using TS type architecture with Gaussian kernels, as these
are designed completely independently from any concrete
learning/adaptation algorithm for rules and fuzzy sets.

The final algorithm (termed as Gen-Smart-EFS) will be
presented in Sect. 5 and will be evaluated based on several
high-dimensional data sets from the UCI repository and
on a ten-dimensional dynamic non-linear system identifi-
cation problem (Sect. 6.2). It will be compared with other
renowned evolving fuzzy modeling methods (Lughofer

272 Evolving Systems (2015) 6:269–292

1 3

2011) [including conventional FLEXFIS (Lughofer 2008),
eMG (also employing generalized fuzzy rules) (Lemos et al.
2011), eTS (Angelov and Filev 2004), online sequential
learning of extreme learning machines (OS-ELM) (Liang
2006), FAOS-PFNN (Wang et al. 2009) and others] as well
as with classical fuzzy modeling variants in order to get a
glance how close the adaptive variant can converge to batch
solutions. Gen-Smart-EFS can achieve the models with low-
est error while providing the most compact rule base with
shorter rules in almost all cases. The computation time suf-
fers only little and may be improved in some cases when
significant rule reduction can be achieved. The comparison
will also be based on a high-dimensional dynamic real-
world scenario, where on-line measurements are recorded
at a cold rolling mills process for supervising the resistance
value. In this case, earlier results have been reported in lit-
erature with the usage of conventional evolving TS fuzzy
model architecture and without using enhanced pruning
and feature weighting concepts. These turn out to be worse
regarding model accuracy and complexity than those ones
achieved with the new Gen-Smart-EFS approach.

2 Generalized TS‑fuzzy systems and projection
concept

Due to the universal approximation capabilities (Castro and
Delgado 1996) and the ability to present a reliable trade-
off between accuracy and interpretability (Lughofer 2013),
Takagi–Sugeno fuzzy systems (Takagi and Sugeno 1985)
enjoy a wide field of application in several real-world mod-
eling problems (Pedrycz and Gomide 2007). It employs
conventional rules defined by:

where f represents a polynomial function, in particular a
hyperplane f = w0 + x1w1 + · · · + xpwp and µ. the fuzzy
sets represented by linguistic terms. It has the deficiency
not being able to model general local correlations between
input and output variables appropriately, as the t-norm
operator used for the AND connections always triggers
axis-parallel rule shapes (Klement et al. 2000). Thus, con-
ventional rules may represent inexact approximations of
the real local trends and finally causing information loss
(Abonyi et al. 2002). An example for visualizing this prob-
lematic nature is provided in Fig. 1: in the left image, axis-
parallel rules (represented by ellipsoids) are used for mod-
eling the partial tendencies of the regression curves which
are not following the input axis direction, but are rotated to
some degree; obviously, the volume of the rules are arti-
ficially blown-up and the rules do not represent the real
characteristics of the local tendencies → information loss.
In the right image, non axis-parallel rules using general
multivariate Gaussians are applied for a better representa-
tion (rotated ellipsoids).

To avoid such information loss, we are aiming for gener-
alized fuzzy rules, which are defined in Lemos et al. (2011)
as

where � denotes a high-dimensional kernel function.
Thereby, x plays the role of a high-dimensional input vec-
tor whose degree of assignment to a rule is steered by �.
When aiming for a coverage of the input space and smooth
approximation surfaces, a widely used and conventional

(1)
IF x1 IS µ1 AND x2 IS µ2 AND · · ·

AND xp IS µp THEN y = f

(2)IF x IS (about) � THEN y = f

Fig. 1 Left conventional axis parallel rules (represented by ellip-
soids) achieve an inaccurate representation of the local trends (corre-
lations) of a non-linear approximation problem (defined by noisy data

samples); right generalized rules (by rotation) achieve a much more
accurate representation

273Evolving Systems (2015) 6:269–292

1 3

choice for � [also applied in Lemos et al. (2011) and Leite
et al. (2012)] is the multivariate Gaussian distribution:

with c the center and �−1 the inverse covariance matrix.
Apart from the property of infinite support, which, on the
one hand, is valuable for a well-defined coverage of the
input space (no undefined states may appear), but, on the
other hand, triggers a more difficult input–output interpre-
tation (as all rules are firing to a certain degree) (Lughofer
2013), it is also known in the neural network literature that
Gaussian radial basis functions are a nice option to charac-
terize local properties (Lemos et al. 2011; Lippmann 1991);
especially, someone may inspect the inner core part, i.e. all
samples fulfilling (x − c)T�−1(x − c) ≤ 1, as the charac-
teristic contour/spread of the rule.

The fuzzy inference is a linear combination of multivari-
ate Gaussian distributions in the form:

with C the number of rules, fi the consequent hyper-plane
of the ith rule and �i the normalized membership degrees,
summing up to 1 for each query sample.

In order to maintain linguistic readability and further-
more interpretability of the evolved TS fuzzy models for
users/operators, we provide a projection concept to form
the fuzzy sets and the antecedent parts of the classical
rules. Our concept is an extension of the approach used in
Pratama et al. (2014) by taking into account the degree of
rotation and the spread of the ellipsoid in order to obtain a
more representative width of the projected fuzzy set. The
idea is to use the angle between the eigenvectors and the
main axes as multiplication factors of the principal axes
lengths: the higher the cosine of the angle, the closer the
eigenvector is to the axis (e.g. to x1); thus only a sightly
rotated representation takes place and the principal axes
length of the ellipsoid along x1 can be (almost) directly
used as the spread of the corresponding (on x1) projected
Gaussian fuzzy set. An illustration of this strategy is given
in Fig. 2, with r the Mahalanobis distance radius (defin-
ing the contour of the ellipsoids, usually set to 1), �1 the
eigenvalue of the first eigenvector a1 of the inverse covar-
iance matrix �−1, and ei the vector of the ith axis, set to
ei = (0, 0, . . . , 1, . . . , 0) with the 1 occurring at the ith
position.

From this illustration, it becomes quite clear that the
spread σi of the projected fuzzy set is set according to:

(3)�(x) = exp

(

−

1

2
(x − c)T�−1(x − c)

)

(4)

ŷ =

∑C
i=1

fi ∗ exp

(

−
1

2
(x − ci)

T�−1

i (x − ci)

)

∑C
i=1

exp

(

−
1

2
(x − ci)T�

−1

i (x − ci)

) =

C
∑

i=1

fi�i(x)

whereas the center of the fuzzy set in the ith dimension is
equal to the ith coordinate of the rule center, and �(ei, aj)
denoting the angle between principal component direction
(eigenvector aj) and the ith axis. The angle between two
vectors can be measured by

with ∗ the scalar product. Thus, (5) simplifies to

The maximum in (7) is necessary in order to obtain the
maximal characteristic spread of the ellipsoid along all
(principal components) directions, subject to the ith axis.
This enhanced methodology provides a much better rep-
resentation of the actual spread along the one-dimensional
axes than when using σi = r

√

�ii
 (which is the distance of

the center to the axis-parallel cutting point) in case of thin
long ellipsoids [as applied in Pratama et al. (2014)]. This is
underlined in the example of Fig. 3, where the conventional
projection onto the x-axis leads to inexact representation of
the rule span (fuzzy set much too thin), whereas our con-
cept respects the principal component length as rule span
by including it in the projection formula (5).

Inferencing for obtaining predictions on new query sam-
ples is best achieved by the classical (projected) inference.
The latter is performed in order to maintain input–output
interpretation capability (Lughofer 2013), especially when

(5)σi = maxj=1,...,p

(

r
√

�j

|cos(�(ei, aj))|

)

(6)�(ei, aj) = arccos

(

ei ∗ aj

�ei��aj�

)

(7)σi = maxj=1,...,p

(

r
√

�j

|ei. ∗ aj|

�ei��aj�

)

.

Fig. 2 Illustration of the projection concept, the width σ1 of the pro-
jected fuzzy set highlighted in thick dotted line

274 Evolving Systems (2015) 6:269–292

1 3

trying to explain the predictions, why certain outputs have
been made (Heidl et al. 2013).

3 Incremental learning concepts (rule evolution,
parameter adaptation, on‑line complexity
reduction)

3.1 Rule extraction with generalized evolving vector
quantization

The rule learning policy, including rule evolution and
modification in incremental learning steps, is performed
in the high-dimensional product clustering space (input +
output). Clustering is a concept which is frequently used
in data-driven design of fuzzy systems [no matter whether
for the batch (Pedrycz and Gomide 2007; Babuska 1998)
or for the incremental case (Lughofer 2011)], as it nicely
performs a local partitioning of the feature space, usually
according to some density-based or distance-based criteria.
Rules can be directly associated with the clusters. Here,
we use an extended version of evolving vector quantiza-
tion (eVQ) (Lughofer 2008), as is used in the conventional
FLEXFIS learning engine (Lughofer 2008) for axis-parallel
rules in the TS fuzzy systems.

In particular, recall the original eVQ as published in
Lughofer (2008):

1. For each new incoming sample x, it elicits the clus-
ter whose center coordinates are closest to it; this is
denoted as the winning cluster (rule).

2. It checks whether the new incoming sample matches
the current cluster partition: the distance of the new
point to the winning cluster is compared against a dis-

tance threshold (vigilance) vigi = fac ∗
√

p
√

2
, with p the

dimensionality of the feature space and fac a multipli-
cation constant in]0, 1].

3. If it exceeds this threshold, a new cluster is evolved by
setting its center to the sample c = x and initializing its
spread vector σ = ǫ.

4. It it does not exceed the threshold, the center and
spread of the winning cluster are updated. The update
of the center is performed by minimizing the expected
squared quantization error [as done in conventional
vector quantization (Gray 1984)]:

with p(x) a continuous probability density function,
whose approximation scheme can be derived as fol-
lows (Kohonen 1995):

Due to some nice convergence properties in evolving
clustering (Lughofer 2008) and in EFS design when
using eVQ as rule learning engine (Lughofer 2008), the
learning rate was chosen to decrease with the number
of samples by ηi = 1/ki, with ki the number of samples
belonging to cluster i so far, i.e. the number of samples
for which ci was the winning cluster. In this sense, each
cluster has its own learning rate and thus its own flex-
ibility/stability for incremental movements according
to its current support.
The distance calculations in above itemization points
are performed by the Euclidean distance, thus trig-
gering prototype-based clusters with ellipsoidal
shape in main position. Hence, the update of the
spread can be performed for each input dimension
separately as conducted by the recursive variance
formula including rank-1 modification (Qin et al.
2000).

(8)E =

∫

�x − c�p(x)dx

(9)ci(N + 1) = ci(N)+ ηwin(x − ci(N)).

Fig. 3 Left conventional projection concept according to cutting point with ellipsoidal contour of the rule leads to too thin fuzzy set on x-axis;
right our enhanced projection concept respects the maximal span of the rule along a principal component direction → more accurate projection

275Evolving Systems (2015) 6:269–292

1 3

The extension in this paper concerns the distance meas-
ure used, which is the Mahalanobis distance (Mahalano-
bis 1936) required to trigger (ellipsoidal) clusters = rules
in arbitrary rotated position as defined in (3). This changes
the formal description of a cluster i, as it is not defined
by (ci, σi, vigi) any longer, but by (ci,�

−1
i , ri). Instead of

a global vigilance parameter, the Mahalanobis distance
radius, which is specific for each rule, will decide whether
a new cluster should be evolved or not, i.e. the rule evolu-
tion criterion becomes:

with

with p the dimensionality of the input feature space and fac
an a priori defined parameter, steering the tradeoff between
stability (update of an old cluster) and plasticity (evolution
of a new cluster). This is the only sensitive parameter in our
method and will be varied during evaluation.

The second product term in (11) compensates for the
curse of dimensionality (as increasing with p), based on the
same considerations as done in eVQ, see Lughofer (2008).
The difference to the approach used there is that here we
are taking the

√

2-root of the dimensionality, instead of the
conventional square-root. We then automatically obtain a
close approximation of critical distribution values accord-
ing to χ2 statistics with p df, which serves as statisti-
cal tolerance region for multivariate normal distributions
(Krishnamoorthy and Mathew 2009; Tabata and Kudo
2010). The reason why we use the approximation and not
the real critical distribution value is the much lower com-
putational cost. The closeness of the approximation can be
visualized in Fig. 4, where for different values of p (along
the x-axis) the corresponding tolerance region values
(along the y-axis) are plotted.

Additionally, we include a third term in (11), which
compensates for the uncertainty in clusters with low sup-
port/significance (density), increasing the radius in this
case and keeping it on the original level for compact, dense
clusters. . m steers the degree of this density-based impact
and is set to 4 as default value.

3.1.1 Rule evolution and antecedent update

If condition (10) holds, a new cluster is evolved as follows:

(10)mini=1,...,C

√

(x − c)T�−1(x − c) > ri

(11)ri = fac ∗ p1/
√

2
∗

1.0

(1− 1/(ki + 1))m

(12)

cC+1 = x �−1
C+1 =

∑C
i=1�

−1
i

C
�−1

1 = diag

(

frac

range2

)

with 1
frac

 denoting a small fraction of the squared input
ranges.

If condition (10) does not hold, the components of cwin
are updated: updating the center cwin with the new sample
x can be done in the same manner as in conventional eVQ
by using (9). The difference lies in the update of the spread
as it is characterized by the inverse covariance matrix. A
possibility is to update the covariance matrix in recursive
(almost) exact manner, as done in Pang (2005), Bouchachia
and Mittermeir (2006) and Lughofer (2011), however this
requires a matrix inversion step after each incremental
learning cycle, which sometimes can get unstable (Lug-
hofer 2011) and thus requires time-intensive regularization
(Bauer and Lukas 2011). Thus, we are opting for a direct
update of the inverse covariance matrix through the inves-
tigations about infinite sum expansion of an inverse matrix
(Backer and Scheunders 2001): setting α =

1
kwin+1

 with kwin
the number of samples belonging to cluster cwin so far we
obtain (we neglect here the index win for the purpose of
transparency):

By expanding the inverse and setting γ =
α

1−α
, we obtain

(13)

�−1(k + 1) = ((1− α)�(k)+ α(x − c)(x − c)T)−1

=

(

I +
α

1− α
�−1(k)(x − c)(x − c)T

)

−1
�−1(k)

1− α
.

(14)

(

I − γ�−1(k)(v.vT)+ γ 2�−1(k)(v.vT)

�−1(k)(v.vT)− γ 3 . . .

)

.
�−1(k)

1− α

Fig. 4 Increasing χ2
p
(α) critical values for α = 5% significance level

when increasing the dimensionality (df): the original in dotted line,
our approximation in solid line

276 Evolving Systems (2015) 6:269–292

1 3

By rearranging and substituting � = vT�−1(k)v, we obtain

After rearranging the infinite sum in the braces, the follow-
ing update formula (from k to k + 1) is obtained:

3.2 On‑line merging of unnecessary generalized rules

In this section, we are aiming for EFS with minimal pos-
sible complexity, i.e. that complexity which is really nec-
essary to model the required (local) non-linearity. Thus,
we are employing geometric-based criteria, involving
adjacent rule antecedents and consequents to reflect their
local modeling characteristics. It is important to note that
these geometric-based criteria can be independently used
from the learning engine, thus can be used in connection
with all EFS approaches using TS type architecture with
Gaussian kernels. This is a different motivation opposed
to statistical-based criteria based on rule significance/con-
tribution levels [as performed in Pratama et al. (2014) for
generalized rules in evolving context before], which are
more aiming to track the (expected) usage of rules in the
future: rules which are expected to be not addressed within
the inference for predictions can be eliminated. The differ-
ence to the merging process applied in Lemos et al. (2011)
is that there a compatibility measure is used which meas-
ures the degree of overlap in terms of a simple Euclidean
distance between cluster centers. In this paper, we will go
some steps further and propose criteria for measuring the
degree of the adjacency–homogeneity relation between
two nearby lying rules, also respecting their range of
influence.

3.2.1 Problem formulation and merging criteria

During incremental data stream mining, it may happen that
clusters (rules), which originally seem to be disjoint and
necessary for resolving the particular non-linearity prop-
erly, are moving together over their life-span. In extreme
cases, they may become significantly overlapping, thus
reflecting redundant rules [for a detailed analysis, see Lug-
hofer et al. (2011)]. From the viewpoint of model repre-
sentation, such rules can always be merged as representing
the same local region, thus the model quality in terms of

(15)

=

�−1(k)

1− α
−

γ

1− α
�−1(k)(v.vT)�−1(k)(1− γ �+ γ 2

�
2
− · · ·)

=

�−1(k)

1− α
−

γ

1− α

�−1(k)(v.vT)�−1(k)

1+ γ �
.

(16)

�−1(k + 1) =
�−1(k)

1− α

−

α

1− α

(�−1(k)(x − c))(�−1(k)(x − c))T

1+ α((x − c)T�−1(k)(x − c))
.

accuracy does usually not suffer. From the view point of
distinguishability, which serves as one important aspect
in (evolving) fuzzy systems (Lughofer 2013), a merge of
overlapping rules is even mandatory to assure transparency,
readability and unambiguous rules.

Overlap degree (criterion #1) In this paper, we are
going beyond the approach demonstrated in Lughofer et al.
(2011), which employs a merging strategy for redundant
axis-parallel fuzzy rules and sets, by extending it to gener-
alized rules and by inspecting whether nearby lying, touch-
ing or even slightly overlapping rules could also be merged.
Finally, we want to maintain minimal complexity required
to resolve non-linearities contained in the actual learning/
regression problem. As dealing with multivariate Gaussian
rules, we apply the Bhattacharyya distance (Bhattachar-
yya 1943; Djouadi et al. 1990) for calculating the overlap
degree between the updated (the winning) cluster win and
the other clusters, k = {1, . . . ,C}\{win}:

with �−1
= (�−1

win +�−1
k)/2—note that, due to the arbi-

trary ellipsoidal shape of our clusters, their contours in the
p-dimensional space (according to r) are equivalent to the
characteristic (supporting) spread of multi-variate Gauss-
ian distributions (Sun and Wang 2011); thus, Bhattachar-
yya distance is in fact valid to be adopted one-to-one to our
generalized fuzzy rules. The distance delivers exactly 0 if
two ellipsoids are touching, >0 when they are overlapping
and <0 when they are disjoint. Thus, a feasible threshold
for cluster merging candidates is 0 resp. a high value below
0, allowing only those clusters to be merged which are at
least touching each other.

Certainly, when olap(win, k) is high for any k, there is a
redundant, highly overlapping situation and the two rules
can be merged no matter how the consequent vectors are
belonging to each other. In case when the consequents are
dissimilar, the two rules indicate an inconsistency in the
rule base (e.g. caused by high noise levels in the output),
which will be handled within a specific strategy, see Sect.
3.2.2 below.

Continuation of the approximation trend (criterion #2)
Whenever olap(win, k) is around 0 for any k, the two rules
are merging candidates, but the functional trend of the nearby
lying rules have to observed first in order to decide whether
a merge should be performed or not. This is essential as a
different trend indicates a necessary non-linearity contained
in the functional relation/approximation between inputs and
outputs—see Fig. 5 for an example. In this case, obviously

(17)

olap(win, k) =
1

8
(cwin − ck)

T�−1(cwin − ck)

+

1

2
ln

det�−1

�

det�−1
win det�−1

k

277Evolving Systems (2015) 6:269–292

1 3

two rules cannot be merged to one, as this would not be able
to sufficiently resolve the non-linearity any longer.

Thus, we propose an additional similarity criterion
based on the degree of deviation in the hyper-planes’ gradi-
ent information, i.e. in the consequent parameter vectors of
the two rules without the intercept. We suggest a criterion
based on the dihedral angle of the two hyper-planes they
span, which is defined by:

a = (wwin;1 wwin;2 . . .wwin;p − 1)T and
b = (−wk;1 − wk;2 · · · − wk;p + 1)T the normal vectors
of the two planes corresponding to rules win and k, show-
ing into the opposite direction with respect to target y (−1
and +1 in the last coordinate). If this is close to 180◦ (π),
the hyper-planes obviously represent the same trend of the
approximation curve, therefore the criterion should be high
(close to 1), as the rules can be merged. If it is 90◦ (π/2)
or below a change in the direction of the approximation
functions takes place, thus the criterion should be equal or
lower than 0.5. Hence, the similarity criterion becomes

We note that range normalization is important in order to
obtain comparable impacts of variables in the consequents.
This is because their influence on the target is not scale-
invariant, and thus the vectors describing the directions
of the consequents are affected by the scale. The example
shown in Fig. 6 provides a clearer picture of this aspect,
as showing a regression surface, given (and estimated) by
y = x1 + x2, where the influence of feature x1 on the target
is obviously much more intense than feature x2 (due to its
range [0, 10] versus [0, 1]). This also means that a direction

(18)φ = arccos

(

aTb

|a||b|

)

(19)Scons(wwin,wk) =
φ

π
.

change in x2 (from 0.5 on) leading to y = x1 − x2 + 1
effects the output tendency little, thus should result in a
high similarity. However, the similarity in (19) gets low
when using the two vectors (1, 1,−1) and (−1, 1, 1) with-
out range normalization. Alternatively, one may multiply
the normal vector entries with the corresponding ranges of
the features before calculating (18)—in the example above,
this would lead to an overweight of feature one in the scalar
product, achieving a value close to −1, thus an angle close
to π, hence Scons ≈ 1.

In case of a low angle (18) but high deviation between
the intercepts, the two nearby lying planes are (nearly)
parallel but with a significant gap inbetween. This usually
points to a modeling case of a step-wise function, and thus
the rule should not be merged. Hence, we may extend the
similarity expressed by (19) to:

Homogeneity of adjacent rules (criterion #3) Finally, we
also demand that the two nearby lying/touching rules form
a homogeneous shape and direction when joined together.
This is important as otherwise a merged rule may reflect a
too inaccurate representation of the two local data clouds.
An illustration example is shown in Fig. 7, the right image
representing a situation where a merge is not suggested.
Thus, in order to restrict the merging action to rules trig-
gering homogenous “smart” joint regions, we examine the
blow-up effect of the rules when virtually merged together,
i.e. we check whether

(20)Scons(wwin,wk) = min

(

φ

π
, 1−

φ

π

|wwin;0 − wk;0|

range(y)

)

Fig. 5 The corresponding two hyper-planes (consequents) of two
touching rules (shown as ellipsoids) indicating a necessary non-line-
arity in the approximation surface; merging this would end up in one
rule achieving an undesired constant behavior in that part

Fig. 6 A change in the sign of the low influencing variable (Feature
X2) from 1 to −1 (at around x2 = 0.5) still does not cause a sig-
nificant change in the tendency of the regression surface, however
wrongly triggers a low value of (19) when no range normalization is
performed

278 Evolving Systems (2015) 6:269–292

1 3

where Vk denotes the volume of rule k in the high-dimen-
sional space (Jimenez and Landgrebe 1998):

with �kj the jth eigenvalue corresponding to the jth eigen-
vector. If (21) holds, the blow-up effect is restricted.

Finally, the joined merging condition is defined by:

with thr usually set to 0.8, according to the considera-
tions and experience in Lughofer et al. (2011). The sym-
bol “ ” denotes the conventional “OR” operation, and the
symbol “∧” the conventional “AND”. Hence, in case of a
significant overlap, merging is always triggered, whereas
in case of touching rules [i.e. Eq. (17) ≥ 0] merging is
only triggered when the two clusters form a homogene-
ous region and their output (consequent) tendency is
similar.

3.2.2 Rule merging policy

Whenever two rules fulfill condition (23), the merging
should be performed in a single-pass, ideally fast, man-
ner, i.e. without using any prior data. Merging of rules
antecedents is conducted (1) by using a weighted average
of centers, where the weights are defined by the support
of the rules, assuring that the new center lies in-between
the two centers and is closer to the more supported rule;
and (2) by merging directly the inverse covariance matrices
also employing a weighted average, but correcting it with a
rank-1 modification for achieving more stability:

(21)Vmerged ≤ p(Vwin + Vk)

(22)Vk =

2 ∗
∏p

j=1

(

rk/�kj
)

∗ πp/2

Ŵ(p/2)

(23)

(Eq. (17) ≥ thr)|(Eq. (17) ≥ 0 ∧ Eq. (21) ∧ Eq. (19) ≥ 0.5)

with (cnew − ci) a row vector with i = argmin(kwin, kk),
i.e. the index of the less supported rule and diag the vec-
tor of diagonal entries; the division in the numerator (1/...)
(rank-1 modification) is done component-wise for each
matrix element. The support of the merged rule is simply
the sum of the support of the original rules.

The merging strategy of the rule consequent functions
depends on the inconsistency level, that is the level to
which the consequents are more dissimilar than the ante-
cedents. It follows the idea of Yager’s participatory learning
concept (Yager 1990), and is conducted by Lughofer et al.
(2011):

where α = kk/(kj + kk) represents the basic learning rate
and Cons(j, k) the compatibility measure between the two
rules within the participatory learning context. Here j
denotes the index of the more supported rule, i.e. kj > kk
If (17) is smaller or equal to 0, the consistency degree
Cons(j, k) is always set to 1. If it is above 0, there is an
overlap. In this case, the consistency degree is measured
by a continuous smooth function [leaned on Jin (2000), but
modified in a way such that to achieve high consistency
degrees in the case of dissimilar antecedents]:

with Srule(j, k) = olap(j, k) as in (17) and Scons(j, k) as in
(19). Another interpretation of (26) is that the higher the

(24)

cnewj =

cwinj kwin + ckj kk

kwin + kk
knew = kwin + kk

�−1

md =

kwin�
−1

win + kk�
−1

k +
kwinkk
kwin+kk

diag

(

1

((cnew−c
i)T (cnew−c

i))

)

∗ I

kwin + kk

(25)wnew = wj + α · Cons(j, k) · (wk − wj),

(26)
Cons(j, k) = e

−

(

Srule(j,k)

Scons(j,k)
−1

)2

(

1
Srule

)7

Fig. 7 Left two rules (solid ellipsoids) which are touching each other
and are homogeneous in the sense that the (volume, orientation of
the) merged rule (dotted ellipsoid) is in conformity with the original
two rules; right: two rules (solid ellipsoids) which are touching each

other and are not homogeneous → inaccurate (too wide) representa-
tion of merged rule due to an artificial blow-up, then also covering
another rule with a possible different functional local trend

279Evolving Systems (2015) 6:269–292

1 3

rule overlap, the higher the similarity of the consequents
has to be in order to achieve a high consistency degree,
which is in-line the classical consistency degree of fuzzy
rule bases (Casillas et al. 2003).

Due to (25), the consequent vector of the merged rule is
more influenced by the more supported rule when the con-
sistency degree is lower, thus increasing the belief in the
more supported rule. In the crisp (boolean) case, Cons may
be become either 0 or 1, depending whether the rule simi-
larity is higher than the consequent similarity. In case when
consistency degree is equal to 1, Eq. (25) becomes either a
weighted averaging; in case when it is 0, the vector of the
merged rule is set to that one of the more supported rule..
The same merging strategy as in (25) is conducted for the
inverse Hessian matrices Pwin and Pk, which are required as
help information for a recursive stable consequent adapta-
tion, see subsequent section.

3.3 Recursive consequent learning

The consequent learning follows the spirit of local learning,
employing the RFWLS estimator [as used in most of the
conventional EFS approaches (Lughofer 2011)]:

with Pi(k) = (Ri(k)
TQi(k)Ri(k))

−1 the inverse weighted
Hessian matrix, r(k + 1) = [1 x1(k + 1) x2(k + 1) . . .

xp(k + 1)]T the regressor values of the k + 1th data sam-
ple, and �i a forgetting factor, usually (as not denoted oth-
erwise) set to 1 for all rules (no forgetting). Local learning
for each rule separately has the favorable properties (1) of
providing more flexibility in terms of automatic rule inclu-
sion and deletion than a global estimator and (2) of being
faster and more stable than global learning, as analyzed in
detail in Angelov et al. (2008) and Lughofer (2011) (Chap-
ter 2). The most important point of local learning, however,
is that it induces hyper-planes which are snuggling along
the real trend of the approximation surface (Lughofer
2013), which will be exploited in the subsequent section
for feature weighting purposes.

Moreover, whenever a new rule is evolved, then the con-
sequent parameters wC+1 and inverse Hessian matrix of the
new rule are set to those ones of the nearest rule, i.e.

(27)

ŵi(k + 1) = ŵi(k)+ γ (k)(y(k + 1)− rT (k + 1)ŵi(k))

(28)γ (k) =
Pi(k)r(k + 1)

�i
�i(x(k+1))

+ rT (k + 1)Pi(k)r(k + 1)

(29)Pi(k + 1) =
1

�i
(I − γ (k)rT (k + 1))Pi(k)

(30)wC+1 = wnearest PC+1 = Pnearest

with nearest the index of the nearest rule in terms of
Mahalanobis distance, thus assuring a continuation of the
local trend of the nearest rule.

4 On‑line feature weighting for evolving smart
regression

Feature weighting within the environment of generalized
EFS is motivated by mainly two aspects:

•	 Measuring the importance levels/degrees of features in
different parts of the features space (modeled by differ-
ent rules), addressing another important interpretability
criterion, namely the input/output interpretation which
features really fired for the current prediction at hand
(Lughofer 2013); even more importantly, the transpar-
ency and compactness of the rule base can be increased,
whenever feature weights get low: the corresponding
features can be eliminated from both, the antecedent and
consequent parts of the rules. This reduces the length of
AND-connections and improves comprehensibility for
users and operators. This, together with the rule pruning
concepts explained in the preliminary sections, finally
provides the smartness aspect in generalized EFS.

•	 Reducing the curse of dimensionality effect in case of
medium- to high-dimensional problems in a kind of soft
and smooth manner: softness here means that features
can be down-weighted, but not completely discarded
(as still having a low weight and impact); smoothness
addresses slight continuous changes of feature weights,
thus down-weighted features may also become signifi-
cantly reactivated at a later stage of the stream learning
process. This abandons both, a crisp selection and the
forever elimination of features [as done in Pratama et al.
(2014)].

4.1 Monitoring feature importance levels

In regression problems, it is well known that the impact
of a feature onto the target concept, i.e. how a change in
a feature affects the output in which way, can be tracked
by observing the gradient of the feature (Efendic and Re
2006). If the gradient is high, a small change in the feature
effects the output already drastically. Usually, in case of
non-linear approximation functions, the gradient changes
in each point, thus an overall gradient of a feature is time-
intensive to compute. TS fuzzy models, however, offer the
possibility to track piece-wise local linear predictors over
the feature space. This is because each rule is equipped
with a hyper-plane showing the tendency in the neighbor-
hood of the rule. Especially, when using the local learn-
ing option (per rule) as recursively given by (27)–(29), the

280 Evolving Systems (2015) 6:269–292

1 3

hyper-planes are snuggling along the real trend of the sur-
face, as examined in Lughofer (2013).

In this sense, we can directly use the consequent param-
eter vector wi for the local gradients of all features around
the ith rule. Thus, in case when using normalized data, the
local impact �ij of feature j in the local region approxi-
mated by rule i is given by:

Normalization through the sum is done to obtain relative
weights between [0, 1], which are comparable and inter-
pretable among the features (1 = fully important, 0 = fully
unimportant). When data is not normalized, we have to
multiple the gradients with the feature ranges to obtain the
real impact, as already motivated in Sect. 3.2.1 (Fig. 6).
Hence, the local impact �ij of feature j is then given by:

In order to elicit global feature weights, an obvious
approach would be to sum up all local feature weights and
normalize it by the number of rules in the currently evolved
fuzzy system. However, then we assume that all rules are
equally supported by past data samples respectively pos-
sess the same statistical contribution in the system. In order
to respect rule importance levels, we apply the concept
introduced in Rong et al. (2006) and adopt it to the case of
generalized rules. There, the expected statistical contribu-
tion of rule i to the final model output when the number of
stream samples N goes to infinity is considered. It is given
by:

We are only interested in the input contribution, thus
neglect |wi0| in (33). The central challenge is to calculate
Ei = limN→∞

∑N
k=1�i(xk)/N, which can be in our case

of generalized fuzzy rules achieved through:

with p(x) =
∏p

j=1 pj(xj) and pj(xj) the density distribution
function of the jth feature. When assuming uniform sam-
pling distributions (samples come equally distributed over
their ranges), we obtain p(x) = 1/S(X) with S(X) the size
of the range X. Hence, we obtain:

(31)�ij(loc) =
wij

∑p
j=1 wij

.

(32)�ij(loc) =
wij ∗ range(j)

∑p
j=1 .wij ∗ range(j)

(33)Conti = lim
N→∞

|wi0|

∑N
k=1�i(xk)/N

∑C
j=1

∑N
k=1�j(xk)/N

.

(34)Ei =

∫

X

exp

(

−

1

2
(x − ci)

T�−1
i (x − ci)

)

p(x)dx

(35)Ei =

∫

X

exp

(

−

1

2
(x − ci)

T�−1
i (x − ci)

)

1

S(X)
dx

As the center ci does not influence the final value of the
integral (area of the rule), but just represents a shift of the
multivariate Gaussian distribution, Eq. (35) can be written
as:

As the integral over the multivariate Gauss-
ian distribution with the origin as center, defined as

1
√

(2π)p∗det(�i)
exp(− 1

2
(x)T�−1

i (x)), is equal to 1, we obtain:

Hence, by substituting (37) into (33) the contribution of
Rule i on the input side finally becomes:

Now the global feature weights are defined by a weighted
average of the local weights, where the weights in the
average are given by the relative contributions of the rules
according to (38):

It is easy to see that
∑p

j=1 �j(global) = 1. Hence, in high-
dimensional problems, most of the weights are expected
to be low. Thus, for monitoring purposes we suggest to
observe the feature weights in relation to the maximal
weight (most important feature), i.e. by:

This guarantees that the most important feature(s) have still
a significant impact in the learning phase (otherwise, nothing
will be learned, anymore). Then, those features can be ignored
whose weights are below X % of the maximal weight.

4.2 Integrating feature importance levels (on‑line curse
of dimensionality reduction)

The second issue concerns the integration of the features
weights into the incremental learning engine of EFS. This
may have a significant impact on the stability and accuracy
of the evolving fuzzy models: especially, in case of high-
dimensional feature spaces, an out-weighting of features

(36)Ei =
1

S(X)

∫

X

exp

(

−

1

2
(x)T�−1

i (x)

)

dx

(37)Ei =
det(�i)

1/2(2π)p/2

S(X)
.

(38)Conti(inp) =

√

det(�i)(2π)
p/2

∑C
j=1

√

det�j(2π)p/2
.

(39)�j(global) =

∑C
i=1 Conti(inp)�ij(loc)
∑C

i=1 Conti(inp)
.

(40)

�j(global) =
�j(global)

maxi=1,...,p(�i(global))

�ij(loc) =
�ij(loc)

maxk=1,...,p(�ik(loc))
.

281Evolving Systems (2015) 6:269–292

1 3

(e.g., in distance calculations, rule evolution criteria etc.)
may decrease the curse of dimensionality effect (Hastie
et al. 2009) by localizing and densifying. For instance,
when calculating the Mahalanobis distance to already exist-
ing clusters/rules, unimportant features with low weights
should lead to small distances, even for samples which
seem to appear outside the region of influence of a rule—an
example is provided in Fig. 8. This has the effect that the
rule evolution criterion will be triggered less frequent than
in the fully weighted high-dimensional feature space, omit-
ting unnecessary complexity and over-fitting due to unim-
portant features.

The integration into the learning process is motivated
by Fig. 8, i.e. the aim is to oppress rule evolution cases
whenever unimportant features trigger high values of the
Mahalanobis distance, whereas important features are not
significantly influencing it. Hence, we are aiming for a
“weighted” version of the Mahalanobis distance in (48) in
order to reduce the influence of unimportant features. An
ad-hoc calculation, leaned on the weighted Euclidean dis-
tance (Rao 2013), would integrate the feature weights in
the following way:

which could be interpreted as a down-weight of component-
wise distances (x − ci). However, in a closer look, it turns
out that this induces an undesired rotation of the real ellip-
soidal cluster contours by D� = diag(�). This had the con-
sequence that in various trial-and-error test runs we could
observe increasing values of (41) (due to the rotational
effect), although some feature weights were nearly dragged
down to 0, leading to an undesired non-monotonic behavior.

On the other hand, according to the singular value
decomposition, the inverse covariance matrix can be repre-
sented as follows:

(41)mahal =

√

(�. ∗ (x − ci))�
−1
i (�. ∗ (x − ci))

with V the matrix containing all eigenvectors as columns
and D a diagonal matrix containing the eigenvalues; note
that VT

= V−1 as V is orthogonal. Now, if we would have
the weights for the eigenvectors �∗ available, we could sim-
ply use the re-scaled inverse covariance matrix given by

in the rule evolution criterion (10), yielding the desired
effect. However, due to the local geometric interpretation
based on the linear hyper-planes (steepness), we are only
able to extract the importance levels for the original fea-
tures (original coordinate space). Thus, we are aiming
for a transformation of feature weights � in the original
space to the feature weights �∗ into the respective rotated
space of the corresponding rule. The scoring option, i.e.
�∗ = VT

∗ �, would lead to a similar rotational effect as in
(41), sometimes not guaranteeing monotonicity. However,
it can easily be verified that (as VT

= V−1) (41) can be
written as

with

according to (42). This can be rephrased into the form

with �∗ = VT
∗ diag(�) ∗ V . However, this matrix is not

diagonal, so this explains why (41) can lack monotonicity.
Trying to preserve monotonicity as well as interpretability
of feature weights in (41), we thus are led to use a compro-
mise: we choose the same matrix �∗ as in (46), diagonal-
ized. This leads to an approximation of the scaling in (41)
resp. (44):

(47) is then used in (43) to obtain the re-scaled inverse
covariance matrix, which is finally used in (48) for the rule
evolution criterion (comparison with ri).

In general, the approximation is an “under-estimator”,
leading to underestimated re-scaled inverse covariance
matrices and further to under-estimated Mahalanobis dis-
tances. Thus, we are integrating a scale factor δ ∈ [1.0, 1.5]
to boost a bit the distance, and then the rule evolution cri-
terion (in both cases, local and global feature weights)
becomes:

(42)
�−1

i = V ∗ D ∗ VT

(43)�−1
i (rescaled) = V ∗ diag(�∗) ∗ D ∗ diag(�∗) ∗ VT

(44)mahal =

√

(x − ci)�
−1
i,fweight(x − ci)

(45)
�−1

i,fweight = diag(�)�−1

i diag(�)

= V [VTdiag(�)V]D[VTdiag(�)V]VT

(46)�−1
i,fweight = V�∗D�∗V

T

(47)diag(�∗) = diag(VT
∗ diag(�) ∗ V)

Fig. 8 No rule evolution suggested although sample lies outside the
tolerance region of a rule, as Feature X2 is unimportant, thus the dis-
tance of a new sample to the ellipsoid shrinked

282 Evolving Systems (2015) 6:269–292

1 3

with ri as in (11). We used δ = 1.35 in all our experiments.
Integration of feature weights in all other adaptive learn-

ing components (i.e. into the update formulas for centers

(48)

min
i=1,...,C

(

δ ∗

√

(x − ci)T�
−1
i (rescaled)(x − ci)

)

> ri
and inverse covariance matrices) is neglected, as it is aimed
to achieve the best position of cluster centers and ellipsoi-
dal contours following the real characterization of the data
clouds. For instance, not adapting a center in the direction
of an unimportant feature may lead to misplacement of
centers, i.e. becoming to lie in a part of the region where no
samples have occurred at all.

Fig. 9 Flowchart GS-EFS
(Generalized Smart Evolving
Fuzzy Systems), the compo-
nents highlighted in bold font
are the new suggested ones in
this paper, and can be connected
with an arbitrary learning
engine for EFS employing
generalized rules

283Evolving Systems (2015) 6:269–292

1 3

5 Generalized smart EFS: the algorithm

The flowchart of our algorithm termed as Gen-Smart-EFS
is shown in Fig. 9, where the newly introduced compo-
nents are shown in bold font and can be connected with
any evolving learning engine for EFS employing general-
ized rules: this is because the complexity reduction tech-
niques fully operate on a geometrical basis based on the
tendency, shape and outlook of the current evolved fuzzy
rules, and because the incremental feature weighting con-
cept operate on a combined geometric-statistical-oriented
concept, where only structural information like the rule
representation (�-matrix) and the consequent parameters
need to be available. Simplifying the rule-base (bottom
component in Fig. 9) is a software-technical issue, by
making the corresponding virtual memory space free for
the merged rule.

6 Evaluation

6.1 Experimental setup

The evaluation of the new methodologies will be divided
into three parts:

•	 Three data sets from the UCI repository2 (clean, noise-
free): auto-mpg, housing and concrete; one data set from
an engine test bench (own application project), where
measurement data were collected on-line and has been
affected by some white noise and disturbances: the task is
to predict the NOX content based on other synchronously
recorded measurement channels and their time lags (→
virtual sensor). The data sets are summarized in Table 1.
For these four data sets, the same evaluation scheme as
conducted in Lughofer and Kindermann (2010) is per-
formed, where original FLEXFIS (Lughofer 2008) was
compared with other batch off-line data-driven fuzzy sys-
tems extraction methods (as hard benchmark). The evalu-
ation scheme follows a cross-validation procedure cou-
pled with best parameter grid search to find the optimal
setting (that one achieving the lowest CV-error) of the

2 http://archive.ics.uci.edu/ml/.

most sensitive parameters in each method. In case of all
incremental/adaptive modeling variants, the models are
sample-wise single-pass evolved on each combination of
folds (and tested versus the remaining fold).

•	 High-dimensional non-linear system identification
problem as tested on several EFS approaches in Lemos
et al. (2011). Here, the task is to identify the following
problem:

where u(t) = sin(2πk/20) and y(t) = 0 for
j = 1, . . . ,m, m set to 10. The purpose is to predict the
output variable y from past inputs and own lagged out-
puts, thus:

The first 3000 samples were created for data stream
learning, additional 300 samples were generated for
evaluation the model on a separate test data set. As
error measure the root mean squared error has been
used for the comparison with the approaches in Lemos
et al. (2011) and with other adaptive, evolving vari-
ants such as OS-ELM (Liang 2006) and FAOS-PFNN
(Wang et al. 2009).

•	 Real-world application: automatic prediction of resist-
ance value in rolling mill processes. In particular, the
task is to identify a prediction model for the resistance
value of a steel plate in a rolling mill. 11 measurement
variables are recorded per second additionally to the
resistance value, which are time delayed up to a maxi-
mal lag of 10. In this sense, we are including predic-
tion horizons of maximal 10 s. In sum, two data sets
with 6503 resp. 6652 samples at two different points
of time (2 months inbetween) have been recorded and
stored in the same order as they appeared on-line. The
first data set has been used as training data stream based
on which the models are evolved, the other data set as
independent test set. Original results when using con-
ventional EFS (in particular the FLEXFIS approach)
without any generalization, pruning and feature selec-
tion option have been already reported in Lughofer and
Angelov (2011) and serve as benchmark for Gen-Smart-
EFS (GS-EFS) method.

(49)y(t) =

∑m
i=1 y(t − i)

1+
∑m

i=1 y(t − 1)2
+ u(t − 1)

(50)

ŷ(t) = f (y(t − 1), y(t − 2), . . . , y(t − 10), u(t − 1))

Table 1 Some data sets
from the UCI repository and
engine test bench and their
characteristics

Training samples # Input variables Source Noise level

Auto-MPG 398 8 UCI None

Concrete 1030 8 UCI None

Housing 506 13 UCI None

NOX 667 181 Engine test bench Medium to high

http://archive.ics.uci.edu/ml/

284 Evolving Systems (2015) 6:269–292

1 3

Additionally to the model errors (in form of mean absolute
error = MAE and root mean squared error = RMSE), also a
statistical preference analysis on the residual vectors will be
performed and reported in separate preference tables, see sub-
sequent section. This is achieved with the usage of a non-para-
metric Wilcoxon pair-wise comparison tests (Hill and Lewicki
2007) coupled with Holm–Bonferroni test in order to reduce
the family wise error rate (FWER) (Holm 1979). Model com-
plexities will be reported in terms of the number of extracted
components (rules, kernels, neurons), which are comparable
over all methods we apply as serving as localizers of the fea-
ture space, indicating the degree of granulation and non-line-
arity of the models (more complex models with similar errors
are generally expected to be less robust regarding over-fitting).

6.2 Results

6.2.1 Results on data from UCI repository

Table 2 summarizes the results achieved on the three UCI
repository data sets and the virtual NOX sensor problem for

predicting its value from other sensors installed within the
engine test bench. The table includes the minimal cross-
validation error in terms of mean absolute error between
predicted and observed values, together with the standard
deviation over the CV-folds (after the ± symbol), the maxi-
mal error between predicted and observed over all train-
ing data samples and the average model complexity corre-
sponding to the minimal CV error in terms of the average
number of rules over the CV-folds. The first parts of the
two tables (before the horizontal lines) represent the batch
modeling variants for fuzzy system modeling, the second
parts correspond to the incremental, evolving variants.

Clearly, it can be recognized that our Gen-Smart-EFS,
is able to outperform conventional FLEXFIS (with no
pruning and axis-parallel rules) in three out of four cases
(Auto-MPG, Concrete, Housing), as achieving lower CV
errors with smaller complexities, especially when using
the extended pruning option which is triggered by the
full condition in (23). If using the conventional pruning
option which is the application of only the first part of (23)
(before the OR), the number of rules increases and are even

Table 2 Comparison of fuzzy modelling variants on three data sets from UCI repository and (noisy) NOX data from an engine test bench

Method Auto-MPG Concrete

MAE ± STD Max # Rules MAE ± STD Max # Rules

genfis2 (Yager and Filev 1994) 2.23 ± 0.85 3.88 6 8.37 ± 1.70 11.52 3

ANFIS (Jang 1993) 2.41 ± 0.84 4.07 16 11.25 ± 9.98 39.13 8

FMCLUST (Babuska 1998) 2.35 ± 0.91 3.99 20 7.75 ± 2.06 12.11 3

SparseFIS (Lughofer and Kindermann 2010) 2.01 ± 0.55 3.29 9 7.73 ± 1.77 21.01 7

SparseFIS uncon. (Lughofer and Kindermann 2010) 2.14 ± 0.78 4.08 22 8.05 ± 1.85 12.52 11

OS-ELM (Liang 2006) 4.45 ± 2.21 8.4 100 10.87 ± 1.23 12.68 46

FAOS-PFNN (Wang et al. 2009) 6.23 ± 1.66 9.8 144.6 7.13 ± 1.3 7.34 25.2

FLEXFIS (Lughofer 2008) 2.17 ± 0.73 3.59 11 7.73 ± 1.97 11.96 8

Gen-Smart-EFS no pruning 2.09 ± 0.62 3.60 5.8 6.04 ± 0.23 6.47 9.9

Gen-Smart-EFS conv. pruning 2.09 ± 0.62 3.60 5.8 5.99 ± 0.41 6.44 9.6

Gen-Smart-EFS ext. pruning 2.09 ± 0.62 3.60 5.8 6.35 ± 0.52 7.14 3.8

Method Housing NOX

MAE ± STD Max # Rules MAE ± STD Max # Rules

genfis2 (Yager and Filev 1994) 3.14 ± 1.31 6.53 4 12.97 ± 1.08 15.98 5

ANFIS (Jang 1993) 3.59 ± 1.39 6.56 4 13.72 ± 1.01 14.72 8

FMCLUST (Babuska 1998) 2.84 ± 1.08 5.38 6 13.99 ± 1.05 15.55 6

SparseFIS (Lughofer and Kindermann 2010) 3.02 ± 1.19 6.04 6 11.35 ± 0.97 13.63 3

SparseFIS uncon. (Lughofer and Kindermann 2010) 3.60 ± 1.56 6.86 19 14.01 ± 1.81 16.68 9

OS-ELM (Liang 2006) 3.42 ± 1.60 7.29 17 19.31 ± 1.83 21.54 36

FAOS-PFNN (Wang et al. 2009) 4.05 ± 1.75 7.12 20.3 24.94 ± 3.73 31.59 32.6

FLEXFIS (Lughofer 2008) 2.98 ± 1.27 6.09 6 12.96 ± 0.98 14.31 8

Gen-Smart-EFS no pruning 2.91 ± 1.18 5.57 11 12.91 ± 1.31 15.89 10.1

Gen-Smart-EFS conv. pruning 2.94 ± 1.18 5.63 7.6 13.08 ± 1.15 15.75 8.9

Gen-Smart-EFS ext. pruning 2.94 ± 1.18 5.84 4.9 12.91 ± 1.31 15.89 10.1

285Evolving Systems (2015) 6:269–292

1 3

higher than in case of conventional FLEXFIS for concrete
and housing data. Furthermore, the Gen-Smart-EFS in all
forms (without and with pruning options) seems to outper-
form other on-line learning methods such as OS-ELM and
FAOS-PFNN, and even compete with the batch modelling

methods, which is remarkable as it evolves sample-wise on
the CV-based training folds, rather see all the training folds
at once.

In order to confirm this first impression from the read-
ings in Table 2, we performed a statistical significance test

Table 3 Statistical preferences of one method (row) over another
(column) based on the residual vectors over time for UCI repository
and NOX emission data sets; statistical preference (p value of 0.05)

is denoted by ‘+’, strong preference (p value of 0.025) is denoted by
‘++’, whereas minus ‘−’ and ‘−−’ indicate the opposite

Zero (0) denotes no statistical preference

Set/level genfis2 ANFIS FMCLUST SparseFIS OS-ELM FAOS-PFNN FLEXFIS GS-EFS ext. prune

Auto-MPG

 genfis2 (Yager and Filev 1994) 0 0 0 0 ++ ++ 0 0

 ANFIS (Jang 1993) 0 0 0 − ++ ++ 0 −
 FMCLUST (Babuska 1998) 0 0 0 − ++ ++ 0 −
 SparseFIS (Lughofer and Kindermann

2010)
0 + + 0 ++ ++ 0 0

 OS-ELM (Liang 2006) −− −− −− −− 0 ++ −− −−
 FAOS-PFNN (Wang et al. 2009) −− −− −− −− −− 0 −− −−
 FLEXFIS (Lughofer 2008) 0 0 0 0 ++ ++ 0 0

 GS-EFS ext. prune 0 + + 0 ++ ++ 0 0

Concrete

 genfis2 (Yager and Filev 1994) 0 ++ 0 0 + − 0 −−
 ANFIS (Jang 1993) −− 0 −− −− 0 −− −− −−
 FMCLUST (Babuska 1998) 0 ++ 0 0 ++ 0 0 −
 SparseFIS (Lughofer and Kindermann

2010)
0 ++ 0 0 0 ++ 0 −

 OS-ELM (Liang 2006) − 0 −− −− 0 −− −− −−
 FAOS-PFNN (Wang et al. 2009) + ++ 0 0 ++ 0 0 0

 FLEXFIS (Lughofer 2008) 0 ++ 0 0 ++ 0 0 −
 GS-EFS ext. prune ++ ++ + + ++ 0 + 0

Housing

 genfis2 (Yager and Filev 1994) 0 0 0 0 0 + 0 0

 ANFIS (Jang 1993) 0 0 − 0 0 0 0 −
 FMCLUST (Babuska 1998) 0 + 0 0 0 + 0 0

 SparseFIS (Lughofer and Kindermann
2010)

0 0 0 0 0 + 0 0

 OS-ELM (Liang 2006) 0 0 − 0 0 0 0 0

 FAOS-PFNN (Wang et al. 2009) − 0 − − 0 0 − −
 FLEXFIS (Lughofer 2008) 0 0 0 0 0 + 0 0

 GS-EFS ext. prune 0 + 0 0 0 + 0 0

NOX

 genfis2 (Yager and Filev 1994) 0 0 0 − ++ ++ 0 0

 ANFIS (Jang 1993) 0 0 0 − ++ ++ 0 0

 FMCLUST (Babuska 1998) 0 0 0 − ++ ++ 0 −
 SparseFIS (Lughofer and Kindermann

2010)
+ + + 0 ++ ++ + 0

 OS-ELM (Liang (2006)) −− −− −− −− 0 + −− −−
 FAOS-PFNN (Wang et al. 2009) −− −− −− −− −− 0 −− −−
 FLEXFIS (Lughofer 2008) 0 0 0 - ++ ++ 0 0

 GS-EFS ext. prune 0 0 + 0 ++ ++ 0 0

286 Evolving Systems (2015) 6:269–292

1 3

with the usage of a non-parametric Wilcoxon pair-wise
comparison tests (Hill and Lewicki 2007) coupled with
Holm–Bonferroni test in order to reduce the FWER (Holm
1979). This is performed on the left out folds used as sepa-
rate test data sets within the CV procedure. The statistically
significant preferences are shown in Table 3, indicated by
‘+’ whenever a method denoted in the row is preferred over
the method denoted in the column with a significance value
of p = 0.05 (5 % probability that hypothesis that two meth-
ods are equal is wrongly rejected) and indicated by ‘++’
whenever the preference is more significant with a p value
of 0.025. From this statistical analysis, it can be seen that
our proposed method GS-EFS is clearly the best evolving
method for all data sets as reaching scores of 6, 9, 2 and
5 for the four data sets, whereas the second best method
(FLEXFIS) achieves scores of 4, 3, 1 and 3 (‘++’ equals
a score of 2, ‘+’ a score of 1, ‘−−’ and ‘−’ the negative of
it). In case of concrete data, it is also the best over all batch
modeling methods and equal to SparseFIS and FMCLUST
in case of Auto-MPG and Housing, respectively; only in
case of NOX data, SparseFIS can outperform our method
in terms of the score, however this requires multiple itera-
tions in optimization cycles over the complete data set and
thus is much slower than GS-EFS (as also been designed
for batch modelling problems). Most importantly, GS-EFS
is never outperformed by any other method for all four data
sets (no ‘−’ sign in any of the rows respresenting “GS-
EFS ext. prune”), but on the other hand outperforms vari-
ous other methods on different sets. As it also ends up with
the less complex models in three cases and having a simi-
lar complexity as FLEXFIS on NOX data, we can conclude
that it is the best choice in terms of “minimal description
length” (best fit with lowest possible model complexity)
over all data sets.

6.2.2 Results on dynamic on-line system identification
problem

The results in terms of prediction capabilities on an on-line
data stream are shown in Fig. 10, the left image shows the
observed versus predicted values on the separate test data
set: both are lying over each other. The rule evolution plot-
ted on the right hand side: at the beginning of the stream,
many rules are evolved, but after some time a saturation
takes place. No rules have been pruned for this data set,
thus the rules have been generated distinctively enough by
Gen-Smart-EFS and obviously did not move together suf-
ficiently over time. Furthermore, Table 4 performs a com-
parison of two parametrization variants of Gen-Smart-EFS
with the other evolving fuzzy modeling variants tested on
this problem in Lemos et al. (2011) and with widely used
OS-ELM (Liang 2006) and FAOS-PFNN (Wang et al.
2009). Clearly, the new method can outperform state-of-
the-art EFS approaches in terms of RMSE and also model
complexity (8 vs. 13 rules, achieving a slightly lower
RMSE than eMG). Interestingly, also to see the effect of
the integration of feature weights: in both parametrization
cases (fac = 0.45 and fac = 0.6), 1 resp. 2 rules less are
evolved due to the shrinkage of an unimportant direction in
the evolution criterion, not increasing the RMSE; in fact, in
case of fac = 0.45, the RMSE is even slightly decreased,
thus lowering curse of dimensionality.

A further comparison is conducted with another well-
known incremental learning algorithm, namely with the so-
called OS-ELM as proposed in Liang (2006). This method
opens the possibility to use four different shapes for the
neurons such as radial basis functions, sigmoid functions,
sine functions or hard-lim functions; we used the best
option out of these for each result (row) as shown in Table 4.

Fig. 10 Left observed versus predicted values on the high-dimensional non-linear system identification problem; right the rule evolution over
time

287Evolving Systems (2015) 6:269–292

1 3

The different results by parameterizing different numbers
of hidden neurons (second column) indicate that OS-ELM
needs around five times more structural components (50 in
number) to achieve approximately the same model error
as Gen-Smart-EFS. The accuracy of FAOS-PFNN (Wang
et al. 2009), another important and widely used evolving
modeling variant, is pretty good and can compete with the
best parametrization variants of Gen-Smart-EFS, however

requires more structural components (70 versus 12–14).
When reducing the complexity by increasing the overlap
factor k for the RBF units and increase β towards 1, the
error increases: in case of 12 rules, the error is the same as
for Gen-Smart-EFS in case of 8/9 rules and higher than for
Gen-Smart-EFS in case of the same number of rules.

In order to manifest and confirm our loose considerations
based on the final RMSE values, we performed again a statis-
tical preference test on the residuals (observed vs. predicted)
obtained on the independent test set (same test variant as in
the preliminary subsection). We selected for each method the
best variant, i.e. those variant leading to the smallest RMSE
as this corresponds to the residual vectors with lowest entries.
The results are presented in Table 5. From this table it gets
immediately clear that FAOS-PFNN and the new method GS-
EFS using smooth feature weights integration can be signifi-
cantly preferred among the others, as achieving a score of 8
(‘++’ count as 2 score point, one ‘+’ as 1 score points, for
the minus signs the negative), while the third best method
(OS-ELM) reaches just a score of 0. When now comparing
these two methods with respect to the final model complex-
ity, GS-EFS achieves 12 rules while FAOS-PFNN requires 70
rules to achieve the same approximation quality, and this then
also (unsurprisingly) with a much lower computation speed
as will be shown below in Table 6.

Figure 11 shows the global weights of the 11 input fea-
tures in the same order as included in the functional defi-
nition in (50): the three curves correspond to the weights
at the beginning of the learning process (after 500 samples
of the stream) as dotted line, in the middle of the learning
process (after around 1500 samples) as dashed line and
at the end of the learning process, after the stream termi-
nated (3000 samples) as solid line. Obviously, some fea-
tures which are more important at the beginning turn out
to become more and more unimportant over time [e.g. Fea-
tures #6 and #7 = Features y(t − 6) and y(t − 7)]. Obvi-
ously, y(t − 2) and y(t − 3) are the most important fea-
tures, pointing to an important output feedback prediction

Table 4 Comparison of RMSE and final number rules on high-
dimensional dynamic system identification problems, preferred
choices shown in bold font

Method # of rules/neurons RMSE

xTS (Angelov and Zhou 2006) 9 0.0331

eMG (�init = 2× 10
−1I11) (Lemos et al.

2011)
9 0.0288

FLEXFIS (Lughofer 2008) 15 0.0085

eTS (Angelov and Filev 2004) 14 0.0075

eMG (�init = 10
−1I11) (Lemos et al.

2011)
13 0.0050

FAOS-PFNN (Wang et al. 2009), k = 1.15 70 0.002

FAOS-PFNN (Wang et al. 2009), k = 2.0 39 0.003

FAOS-PFNN (Wang et al. 2009), k = 4.0 29 0.0035

FAOS-PFNN (Wang et al. 2009), k = 4.0,
β = 0.997

12 0.0042

FAOS-PFNN (Wang et al. 2009), k = 4.0,
β = 0.999

6 0.0073

OS-ELM (Liang 2006) 8 0.0462

OS-ELM (Liang 2006) 12 0.0347

OS-ELM (Liang 2006) 20 0.0229

OS-ELM (Liang 2006) 50 0.004

Gen-Smart-EFS (fac = 0.6) 9 0.0042

Gen-Smart-EFS + feat. weights
(fac = 0.6)

8 0.0042

Gen-Smart-EFS (fac = 0.45) 14 0.0020

Gen-Smart-EFS + feat. weights
(fac = 0.45)

12 0.0018

Table 5 Statistical preferences of one method (row) over another
(column) based on the residual vectors over time for dynamic on-
line system identification; statistical preference (p value of 0.05) is

denoted by ‘+’, strong preference (p value of 0.025) is denoted by
‘++’, whereas minus ‘−’ and ‘−−’ indicate the opposite

Zero (0) denotes no statistical preference

Set/level eMG (best) FLEXFIS eTS FAOS-PFNN (best) OS-ELM (best) GS-EFS (fac = 0.6) GS-EFS (fac = 0.45)

eMG (best) 0 + + −− 0 0 −−
FLEXFIS − 0 0 −− - −− −−
eTS − 0 0 −− − − −−
FAOS-PFNN (best) ++ ++ ++ 0 + + 0

OS-ELM (best) 0 + + − 0 0 −
GS-EFS (fac = 0.6) 0 ++ + − 0 0 −
GS-EFS (fac = 0.45) ++ ++ ++ 0 + + 0

288 Evolving Systems (2015) 6:269–292

1 3

horizon of 2–3. The horizontal line represents a 20 %
threshold from the maximal feature weight (0.256) after the
whole learning process. Features below this threshold can
be neglected [i.e. y(t − 1), y(t − 6), y(t − 7) and u(t − 1)]
when showing the rules to operators.

It is also surprising that the exogenous variable u is never
really important for explaining the target, finally suggesting
a pure AR (autoregressive) model instead of an ARX model
as defined in (50). This provides another (physical) inter-
pretable insight into the learning problem not necessarily
expected before hand!

Finally, computation time in sequential real-world
dynamic problems is an important issue to be studied, as
sometimes the learning engine should terminate in real-
time for processing (predicting + updating) new incoming

samples, resp. at least to be fast enough to terminate in a
reasonable short time frame. A comparison of the speed
of various methods for processing a single sample in aver-
age is provided in Table 6 (for those parametrization vari-
ants achieving the lowest RMSE in Table 4). From this, it
becomes clear that all methods (except FAOS-PFNN) can
cope with a quite high frequency of sample loadings up to
more than 100 Hz, but FAOS-PFNN is still fast enough to
approximately handle 10 Hz. It is also interesting to see
that the rotation of the ellipsoidal rules inducing covari-
ance matrix estimation and update increases the computa-
tion time much more than the integration of feature weights
for smooth dimensionality reduction—compare the differ-
ence between FLEXFIS and Gen-Smart-EFS with that one
between the last two rows (note that original FLEXFIS uses
axis-parallel rules with a vector quantization based engine
extracting such rules). OS-ELM is the fastest method, almost
two times faster than the second fastest one (FLEXFIS).
This is not a big surprise as it only updates parameters, but
does not change its structure (neuron evolution/pruning);
the number of hidden neurons have to be pre-parameterized
a priori. Due to this fixed positioning, it looses significant
accuracy when using approximately the same number of
neurons as rules in Gen-Smart-EFS, see Table 4.

6.2.3 Results on a real-world application in rolling mills

The initial situation was as follows: an analytical model has
been installed at the system in which some parameters were
estimated through linear regression and should be improved
by a non-linear soft computing model, which also possess
the possibility to adapt on-line its parameters and structure.

Original results when using conventional EFS (in par-
ticular the FLEXFIS approach) without any generalization,
pruning and feature selection option have been already
reported in Lughofer and Angelov (2011) and serve as
benchmark for our newly developed method. There, it
turned out that conventional EFS can already significantly
improve the accuracy of analytical models, namely by
around 40.7 %. Now, in this paper we investigate whether
these results can be further improved by our new approach
Gen-Smart-EFS. Table 7 shows the results in terms of the
accumulated one-step-ahead MAE on test samples, follow-
ing the interleaved-test-and-then-train procedure, which
is a quite convenient evaluation option on data streaming
mining and modeling techniques (Bifet and Kirkby 2011).

The last but one column is dedicated to the extreme
deviation values (more than 20 units). Especially, the val-
ues “too high” are the most critical ones (upon expert feed-
back), as these may cause discontinuities in the rolling mill
process. Thus, the number of predictions which are too
high (last column) on a basis of 6652 samples, serves as
the most important value in this table. From rows #4 and

Fig. 11 Feature weights at three different points of time during the
incremental learning phase (beginning, middle, end), the horizontal
line indicates 20 % of the maximum weight below which features
may be seen as unimportant and discarded when interpreting the
model (those features indicated by an ellipsis)

Table 6 Comparison of the computation times of the various evolv-
ing learning methods, which is measured as the average seconds used
to process a single sample (prediction + update) through the learning
engine

Method Seconds for single
samples in average

FLEXFIS (Lughofer 2008) 0.0018

eTS (Angelov and Filev 2004) 0.0019

eMG (�init = 10
−1I11) (Lemos et al. 2011) 0.024

FAOS-PFNN (Wang et al. 2009) 0.153

OS-ELM (Liang 2006) 0.0011

Gen-Smart-EFS (fac = 0.45) 0.0028

Gen-Smart-EFS + feat.weights (fac = 0.45) 0.0031

289Evolving Systems (2015) 6:269–292

1 3

#5, someone can immediately recognize that forgetting in
the consequents (with a slight forgetting factor of 0.99) is
essential to improve accuracy significantly (159 versus 68
MAEs higher than 20). Thus in Gen-Smart-EFS, we also
foresee only the fixed forgetting option. The interpretation
of these results should be obvious: our generalized ver-
sion is able to improve conventional EFS by about 8 % in
terms of accuracy and 33.8 % in terms of the number of
errors which are significantly too high (the essential meas-
ure!); conventional pruning achieves the same results, so
no significant overlap appeared during the evolution phase,
whereas extended pruning is able to reduce the complex-
ity by 6 rules while achieving a very similar accuracy. All
variants of our method are able to cope with the real-time
demand required by the operating system, that is, samples
are coming in with a frequency of around 1 Hz (1 sam-
ple per second) and should be processed within this time
frame (prediction + update) in order to avoid ever-growing
back-log buffers. Static fuzzy models are indeed faster
(only prediction is performed, no update), but cannot cope
with dynamic process changes and hence loose significant
model performance (50 % higher error and approx. three
times more critical errors).

Again, we perform a statistical preference analysis over
all methods on the residual vectors (observed vs. predicted
values) over time, using a non-parametric Wilcoxon pair-
wise comparison tests (Hill and Lewicki 2007) coupled
with Holm–Bonferroni test in order to reduce the FWER
(Holm 1979). The statistically significant preferences are
shown in Table 8, indicated by ‘+’ whenever a method
denoted in the row is preferred over the method denoted
in the column with a significance value of p = 0.05 (5 %
probability that hypothesis that two methods are equal
is wrongly rejected) and indicated by ‘++’ whenever the
preference is more significant with a p value of 0.025.

From this table it is easy to realize that the new method
has a statistical preference over all other evolving learn-
ing methods, especially when equipped with any pruning
strategy. In case of no pruning, the new method performs
equally to FLEXFIS. FAOS-PFNN is superior to OS-ELM
and both can be preferred to older static and analytical
models, as being implemented at the system before. It is
also interesting to see that there is no preference between
the four variants of our new method, which is not a sur-
prise as all are achieving an MAE of around 4.3. On the
other hand, integrating extending pruning scheme and
feature weights (last row and column) leads to the less
complex and thus most compact model by far (12 rules
versus 18, 24 and 30 for the other evolving methods). In
this sense, and also because its computational complexity
increase compared to the others is not that dramatic (still
being able to cope with the on-line processing demands
of the system, which is around 1 Hz), this variant may be
suggested to be finally preferred and used in the on-line
system.

Figure 12 (left) shows the development of the feature
weights for the best parametrization option (last row in
Table 7), which leads to a further simplification of the final
evolved system (12 versus 18 rules) by not loosing sig-
nificant accuracy. Finally, only five features turned out to
be really important, which after feedback of the operators
were quite expected to be among the most important ones,
as mostly influencing the rolling mill process. Interestingly,
the integration of feature weights can also slightly decrease
the computation time required for processing a single sam-
ple in average (prediction + update), as can be seen from
the last two rows in Table 7—this is due to the dynamic
decrease of the number of rules, i.e. the feature weights cal-
culation requires less additional time than the reduced time
which is achieved by the smaller complexity.

Table 7 Comparison of evolving fuzzy prediction models obtained by conventional FLEXFIS and the new approach Gen-Smart-EFS with dif-
ferent parametrization options (rule pruning variants, fac) and feature weighting switched on and off

Method MAE # of rules # MAEs >20 Comp. time

Analytical 7.84 One model 259 0.0002 (pred. only)

Static fuzzy models 6.76 N/A 176 0.0002 (pred. only)

OS-ELM (best param) 6.31 30 175 0.0020

FAOS-PFNN (best param) 5.53 24 156 0.0523

FLEXFIS (conv. EFS) no forget 5.41 N/A 159 0.0023

FLEXFIS (conv. EFS) 4.65 N/A 68 0.0023

Gen-Smart-EFS, no pruning fac = 1.55 4.28 24 45 0.0035

Gen-Smart-EFS, conv. pruning, fac = 1.55 4.28 24 45 0.0047

Gen-Smart-EFS, ext. pruning, fac = 1.55 4.28 18 47 0.021

Gen-Smart-EFS, ext. pruning + feat. weights, fac = 1.55 4.34 12 53 0.017

290 Evolving Systems (2015) 6:269–292

1 3

7 Conclusion

This paper presents a new approach for EFS which can cope
with correlation-based local relations by introducing gener-
alized rules with arbitrary rotated positions. This leads to a
more reliable, accurate representation of local approxima-
tion behavior, finally inducing a significant improvement
of model accuracy in most cases. Furthermore, the learning
engine includes enhanced methodologies in the direction of
rule merging and pruning by respecting the approximation
trends and homogeneity of nearby lying (close or touching)

rules. This leads to more compact rule bases with an accu-
racy which is very similar to the full spanned, not simplified
rule bases. Results can be even further improved by intro-
ducing feature weights pointing to the importance of features
in terms of a mixture of expected statistical contributions
in the rule contours and gradients in the hyper-planes (rule
consequents). In particular, some unnecessary rule evolution
steps (as arising due to high distances along unimportant fea-
tures) can be suppressed. Thus, in some cases even the size
of the rule base can be further reduced and the model error
decreased due to a soft dimension reduction step.

Table 8 Statistical preferences of one method (row) over another
(column) based on the residual vectors over time for rolling mill data;
statistical preference (p value of 0.05) is denoted by ‘+’, strong pref-

erence (p value of 0.025) is denoted by ‘++’, whereas minus ‘−’ and
‘−−’ indicate the opposite

Zero (0) denotes no statistical preference

Set/level Analytical Static
fuzzy

OS-ELM FAOS-
PFNN

FLEXFIS
conv.

FLEXFIS
forget

GS-EFS
no prune

GS-EFS
conv. prune

GS-EFS
ext. prune

GS-EFS
weights +
ext. pr.

Analytical 0 − −− −− −− −− −− −− −− −−
Static Fuzzy + 0 0 −− −− −− −− −− −− −−
OS-ELM ++ 0 0 −− −− −− −− −− −− −−
FAOS-PFNN ++ ++ ++ 0 0 − − − − −
FLEXFIS conv. ++ ++ ++ 0 0 − − − − −
FLEXFIS forget ++ ++ ++ + + 0 0 − − −
GS-EFS no prune ++ ++ ++ + + 0 0 0 0 0

GS-EFS conv. prune ++ ++ ++ + + + 0 0 0 0

GS-EFS ext. prune ++ ++ ++ + + + 0 0 0 0

GS-EFS weights +
ext. pr.

++ ++ ++ + + + 0 0 0 0

Fig. 12 Left feature weights development from the start of the learn-
ing phase (dotted line), through the middle (dashed line) towards the
end of the learning phase (solid line)—please note that only five fea-
tures finally appear as important, as indicated by the horizontal line;
right the rule evolution over time including expansion phase and then

contraction phase, as some rules turn out to be superfluous, also due
to the feature weights integration during learning (better “real” win-
ning clusters are elicited, thus moved), finally ending up with 12 rules
instead of 18 (achieved w/o feature weights)

291Evolving Systems (2015) 6:269–292

1 3

All these new concepts may be of great practical impor-
tance whenever a fast modeling method is required within
an on-line learning framework, guaranteeing that the size
of the rule bases are bounded and also increasing the inter-
pretability of the fuzzy systems in several aspects, namely
in the number of rules, in the compactness and consistency
of rules and in the rule lengths (features with low weights
can be excluded when showing the rules to an expert). Fur-
thermore, in real-world data stream mining problems often
the input dimensionality is huge (e.g. multi-sensor net-
works recording on-line measurements) such that a smooth
and dynamic on-line dimensionality reduction is indispen-
sable to guarantee models with a solid performance.

Acknowledgments The first author acknowledges the support of the
Austrian COMET-K2 programme of the Linz Center of Mechatron-
ics (LCM), funded by the Austrian federal government and the fed-
eral state of Upper Austria. This publication reflects only the authors’
views.

References

Abonyi J, Babuska R, Szeifert F (2002) Modified Gath-Geva fuzzy
clustering for identification of Takagi–Sugeno fuzzy models.
IEEE Trans Syst Man Cybern Part B 32(5):612–621

Angelov P (2010) Evolving Takagi–Sugeno fuzzy systems from
streaming data, eTS+. In: Angelov P, Filev D, Kasabov N (eds)
Evolving intelligent systems: methodology and applications.
Wiley, New York, pp 21–50

Angelov P, Filev D (2004) An approach to online identification of
Takagi-Sugeno fuzzy models. IEEE Trans Syst Man Cybern Part
B Cybern 34(1):484–498

Angelov P, Filev D, Kasabov N (2010) Evolving intelligent systems—
methodology and applications. Wiley, New York

Angelov P, Kordon A (2010) Evolving inferential sensors in the
chemical process industry. In: Angelov P, Filev D, Kasabov N
(eds) Evolving intelligent systems—methodology and applica-
tions. Wiley, New York, pp 313–336

Angelov P, Lughofer E, Zhou X (2008) Evolving fuzzy classi-
fiers using different model architectures. Fuzzy Sets Syst
159(23):3160–3182

Angelov P, Sadeghi-Tehran P, Ramezani R (2011) An approach to
automatic real-time novelty detection, object identification, and
tracking in video streams based on recursive density estimation
and evolving Takagi–Sugeno fuzzy systems. Int J Intell Syst
26(3):189–205

Angelov P, Zhou XW (2006) Evolving fuzzy systems from data
streams in real-time. In: 2006 international symposium on evolv-
ing fuzzy systems (EFS’06), Ambleside, pp 29–35 (2006)

Babuska R (1998) Fuzzy modeling for control. Kluwer Academic
Publishers, Norwell

Backer SD, Scheunders P (2001) Texture segmentation by frequency-
sensitive elliptical competitive learning. Image Vis Comput
19(9–10):639–648

Bauer F, Lukas M (2011) Comparing parameter choice methods
for regularization of ill-posed problems. Math Comput Simul
81(9):1795–1841

Bhattacharyya A (1943) On a measure of divergence between two
statistical populations defined by their probability distributions.
Bull Calcutta Math Soc 35:99–109

Bifet A, Kirkby R (2011) Data stream mining—a practical approach.
Tech. rep., Department of Computer Sciences, University of
Waikato, Japan

Bouchachia A, Mittermeir R (2006) Towards incremental fuzzy clas-
sifiers. Soft Comput 11(2):193–207

Casillas J, Cordon O, Herrera F, Magdalena L (2003) Interpretability
issues in fuzzy modeling. Springer, Berlin

Castro J, Delgado M (1996) Fuzzy systems with defuzzification are
universal approximators. IEEE Trans Syst Man Cybern Part B
Cybern 26(1):149–152

Chen H, Tino P, Yao X, Rodan A (2014) Learning in the model
space for fault diagnosis. IEEE Trans Neural Netw Learn Syst
25(1):124–136

Cheng W, Juang C (2011) An incremental support vector machine-
trained TS-type fuzzy system for online classification problems.
Fuzzy Sets Syst 163(1):24–44

Cohen L, Avrahami-Bakish G, Last M, Kandel A, Kipersztok O
(2008) Real-time data mining of non-stationary data streams
from sensor networks. Inf Fusion 9(3):344–353

Costa B, Angelov P, Guedes L (2015) Fully unsupervised fault
detection and identification based on recursive density estima-
tion and self-evolving cloud-based classifier. Neurocomputing
150(A):289–303

Diehl C, Cauwenberghs G (2003) SVM incremental learning, adaptation
and optimization. In: Proceedings of the international joint confer-
ence on neural networks, vol 4, pp 2685–2690, Boston (2003)

Djouadi A, Snorrason O, Garber F (1990) The quality of training-
sample estimates of the Bhattacharyya coefficient. IEEE Trans
Pattern Anal Mach Intell 12(1):92–97

Efendic H, Re LD (2006) Automatic iterative fault diagnosis approach
for complex systems. WSEAS Trans Syst 5(2):360–367

Eitzinger C, Heidl W, Lughofer E, Raiser S, Smith J, Tahir M, Sannen
D, van Brussel H (2010) Assessment of the influence of adaptive
components in trainable surface inspection systems. Mach Vis
Appl 21(5):613–626

Gama J (2010) Knowledge discovery from data streams. Chapman &
Hall/CRC, Boca Raton

Gray R (1984) Vector quantization. IEEE ASSP Mag 1(2):4–29
Hametner C, Jakubek S (2013) Local model network identification for

online engine modelling. Inf Sci 220:210–225
Hastie T, Tibshirani R, Friedman J (2009) The elements of statisti-

cal learning: data mining, inference and prediction, 2nd edn.
Springer, New York

Heidl W, Thumfart S, Lughofer E, Eitzinger C, Klement E (2013)
Machine learning based analysis of gender differences in visual
inspection decision making. Inf Sci 224:62–76

Hill T, Lewicki P (2007) Statistics: methods and applications. Stat-
Soft, Tulsa

Holm S (1979) A simple sequentially rejective multiple test proce-
dure. Scand J Stat 6:65–70

Huang G, Saratchandran P, Sundararajan N (2004) An efficient
sequential learning algorithm for growing and pruning RBF
(GAP-RBF) networks. IEEE Trans Syst Man Cybern Part B
Cybern 34(6):2284–2292

Iglesias J, Angelov P, Ledezma A, Sanchis A (2010) Evolving clas-
sification of agent’s behaviors: a general approach. Evol Syst
1(3):161–172

Jang JS (1993) ANFIS: adaptive-network-based fuzzy inference sys-
tems. IEEE Trans Syst Man Cybern 23(3):665–685

Jimenez L, Landgrebe D (1998) Supervised classification in high-
dimensional space: geometrical, statistical, and asymptotical
properties of multivariate data. IEEE Trans Syst Man Cybern
Part C Rev Appl 28(1):39–54

Jin Y (2000) Fuzzy modelling of high dimensional systems: com-
plexity reduction and interpretability improvement. IEEE Trans
Fuzzy Syst 8(2):212–221

292 Evolving Systems (2015) 6:269–292

1 3

Klement E, Mesiar R, Pap E (2000) Triangular norms. Kluwer Aca-
demic Publishers, Dordrecht

Kohonen T (1995) Self-organizing maps, 2nd edn. Springer, Berlin
Komijani M, Lucas C, Araabi B, Kalhor A (2012) Introducing evolv-

ing Takagi–Sugeno method based on local least squares support
vector machine models. Evol Syst 3(2):81–93

Krishnamoorthy K, Mathew T (2009) Statistical tolerance regions:
theory, applications, and computation. Wiley, Hoboken

Leite D, Ballini R, Costa P, Gomide F (2012) Evolving fuzzy granu-
lar modeling from nonstationary fuzzy data streams. Evol Syst
3(2):65–79

Leite D, Costa P, Gomide F (2012) Interval approach for evolving
granular system modeling. In: Sayed-Mouchaweh M, Lughofer
E (eds) Learning in non-stationary environments: methods and
applications. Springer, New York, pp 271–300

Lemos A, Caminhas W, Gomide F (2011) Multivariable Gauss-
ian evolving fuzzy modeling system. IEEE Trans Fuzzy Syst
19(1):91–104

Lemos A, Caminhas W, Gomide F (2013) Adaptive fault detection and
diagnosis using an evolving fuzzy classifier. Inf Sci 220:64–85

Liang N, Huang G, Saratchandran P, Sundararajan N (2006) A fast
and accurate online sequential learning algorithm for feedfor-
ward networks. IEEE Trans Neural Netw 17:1411–1423

Lima E, Hell M, Ballini R, Gomide F (2010) Evolving fuzzy mod-
eling using participatory learning. In: Angelov P, Filev D, Kas-
abov N (eds) Evolving intelligent systems: methodology and
applications. Wiley, New York, pp 67–86

Lin Y, Chang JY, Lin CT (2013) Identification and prediction of
dynamic systems using an interactively recurrent self-evolving
fuzzy neural network. IEEE Trans Neural Netw Learn Syst
24(2):310–321

Lippmann R (1991) A critical overview of neural network pattern
classifiers. In: Proceedings of the IEEE workshop neural net-
works and signal processing, pp 266–275

Lughofer E (2008) Extensions of vector quantization for incremental
clustering. Pattern Recognit 41(3):995–1011

Lughofer E (2008) FLEXFIS: a robust incremental learning
approach for evolving TS fuzzy models. IEEE Trans Fuzzy Syst
16(6):1393–1410

Lughofer E (2011) Evolving fuzzy systems—methodologies,
advanced concepts and applications. Springer, Berlin

Lughofer E (2011) On-line incremental feature weighting in evolving
fuzzy classifiers. Fuzzy Sets Syst 163(1):1–23

Lughofer E (2013) On-line assurance of interpretability criteria in
evolving fuzzy systems—achievements, new concepts and open
issues. Inf Sci 251:22–46

Lughofer E, Angelov P (2011) Handling drifts and shifts in on-line
data streams with evolving fuzzy systems. Appl Soft Comput
11(2):2057–2068

Lughofer E, Bouchot JL, Shaker A (2011) On-line elimination of local
redundancies in evolving fuzzy systems. Evol Syst 2(3):165–187

Lughofer E, Kindermann S (2010) SparseFIS: data-driven learning of
fuzzy systems with sparsity constraints. IEEE Trans Fuzzy Syst
18(2):396–411

Lughofer E, Smith JE, Caleb-Solly P, Tahir M, Eitzinger C, Sannen
D, Nuttin M (2009) Human–machine interaction issues in qual-
ity control based on on-line image classification. IEEE Trans
Syst Man Cybern Part A Syst Hum 39(5):960–971

Lughofer E, Trawinski B, Trawinski K, Kempa O, Lasota T (2011)
On employing fuzzy modeling algorithms for the valuation of
residential premises. Inf Sci 181(23):5123–5142

Macias-Hernandez J, Angelov P (2010) Applications of evolving
intelligent systems to the oil and gas industry. In: Angelov P,
Filev D, Kasabov N (eds) Evolving intelligent systems: method-
ology and applications. Wiley, New York, pp 401–421

Maciel L, Lemos A, Gomide F, Ballini R (2012) Evolving fuzzy sys-
tems for pricing fixed income options. Evol Syst 3(1):5–18

Mahalanobis PC (1936) On the generalised distance in statistics. Proc
Natl Inst Sci India 2(1):49–55

Pang S, Ozawa S, Kasabov N (2005) Incremental linear discriminant
analysis for classification of data streams. IEEE Trans Syst Men
Cybern Part B Cybern 35(5):905–914

Pedrycz W, Gomide F (2007) Fuzzy systems engineering: toward
human-centric computing. Wiley, Hoboken

Pratama M, Anavatti S, Lughofer E (2014) GENEFIS: towards an
effective localist network. IEEE Trans Fuzzy Syst 22(3):547–562

Qin S, Li W, Yue H (2000) Recursive PCA for adaptive process moni-
toring. J Process Control 10(5):471–486

Rao R (2013) A novel weighted euclidean distance-based approach.
In: Decision making in manufacturing environment using graph
theory and fuzzy multiple attribute decision making methods.
Springer Series in Manufacturing, New York, pp 159–191

Rong HJ, Sundararajan N, Huang GB, Saratchandran P (2006)
Sequential adaptive fuzzy inference system (SAFIS) for non-
linear system identification and prediction. Fuzzy Sets Syst
157(9):1260–1275

Rubio J (2010) Stability analysis for an on-line evolving neuro-fuzzy
recurrent network. In: Angelov P, Filev D, Kasabov N (eds)
Evolving intelligent systems: methodology and applications.
Wiley, New York, pp 173–199

Sannen D, Nuttin M, Smith J, Tahir M, Lughofer E, Eitzinger C
(2008) An interactive self-adaptive on-line image classification
framework. In: Gasteratos A, Vincze M, Tsotsos J (eds) Proceed-
ings of ICVS 2008, LNCS, vol 5008. Springer, Santorini Island,
pp 173–180

Sayed-Mouchaweh M, Lughofer E (2012) Learning in non-stationary
environments: methods and applications. Springer, New York

Shilton A, Palaniswami M, Ralph D, Tsoi A (2005) Incremental
training of support vector machines. IEEE Trans Neural Netw
16(1):114–131

Soleimani H, Lucas K, Araabi B (2010) Recursive gathgeva clus-
tering as a basis for evolving neuro-fuzzy modeling. Evol Syst
1(1):59–71

Sun H, Wang S (2011) Measuring the component overlapping in the
Gaussian mixture model. Data Min Knowl Discov 23:479–502

Tabata K, Kudo MSM (2010) Data compression by volume proto-
types for streaming data. Pattern Recognit 43(9):3162–3176

Takagi T, Sugeno M (1985) Fuzzy identification of systems and its
applications to modeling and control. IEEE Trans Syst Man
Cybern 15(1):116–132

Tung S, Quek C, Guan C (2013) eT2FIS: an evolving type-2 neural
fuzzy inference system. Inf Sci 220:124–148

Wang N, Er M, Meng X (2009) A fast and accurate online self-organ-
izing scheme for parsimonious fuzzy neural networks. Neuro-
computing 72(16–18):3818–3829

Yager R, Filev D (1994) Approximate clustering via the mountain
method. IEEE Trans Syst Man Cybern 24(8):1279–1284

Yager RR (1990) A model of participatory learning. IEEE Trans Syst
Man Cybern 20(5):1229–1234

Zdsar A, Dovzan D, Skrjanc I (2014) Self-tuning of 2 DOF control
based on evolving fuzzy model. Appl Soft Comput 19:403–418

	Generalized smart evolving fuzzy systems
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 State of the art
	1.3 Our approach: the basic concept

	2 Generalized TS-fuzzy systems and projection concept
	3 Incremental learning concepts (rule evolution, parameter adaptation, on-line complexity reduction)
	3.1 Rule extraction with generalized evolving vector quantization
	3.1.1 Rule evolution and antecedent update

	3.2 On-line merging of unnecessary generalized rules
	3.2.1 Problem formulation and merging criteria
	3.2.2 Rule merging policy

	3.3 Recursive consequent learning

	4 On-line feature weighting for evolving smart regression
	4.1 Monitoring feature importance levels
	4.2 Integrating feature importance levels (on-line curse of dimensionality reduction)

	5 Generalized smart EFS: the algorithm
	6 Evaluation
	6.1 Experimental setup
	6.2 Results
	6.2.1 Results on data from UCI repository
	6.2.2 Results on dynamic on-line system identification problem
	6.2.3 Results on a real-world application in rolling mills

	7 Conclusion
	Acknowledgments
	References

