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newly developed re-scaled Mahalanobis distance meas-
ure for assuring monotonicity between feature weights and 
distance values. Gen-Smart-EFS will be evaluated based 
on high-dimensional real-world data (streaming) sets and 
compared with other well-known (evolving) fuzzy sys-
tems approaches. The results show improved accuracy with 
lower rule base complexity as well as smaller rule length 
when using Gen-Smart-EFS.

Keywords Data stream regression · Generalized evolving 
fuzzy systems (GS-EFS) · Rule merging · Adjacency–
homogeneity relation · Soft and smooth on-line dimension 
reduction · Re-scaled Mahalanobis distance measure

1 Introduction

1.1  Motivation

Due to the increasing complexity and permanent growth of 
data acquisition sites [e.g. installed through multi-sensor 
networks (Cohen et al. 2008)], in today’s industrial systems 
there is an increasing demand of fast modeling algorithms 
from on-line data streams (Gama 2010), which are flexible 
in the sense that they can be adapted to the actual system 
situation. Application examples of such dynamic systems 
are on-line adaptive surface inspection scenarios (Eitzinger 
et al. 2010; Lughofer et al. 2009; Sannen et al. 2008), 
stock-market forecasting (Maciel et al. 2012; Leite et al. 
2012), any kind of evolving smart sensors for substituting 
cost-intensive hardware (Macias-Hernandez and Angelov 
2010; Angelov and Kordon 2010), timely changing predic-
tion of premise prices (Lughofer et al. 2011), on-line fault 
detection and condition monitoring systems (Chen et al. 
2014; Costa et al. 2015; Lemos et al. 2013), tracking of 

Abstract In this paper, we propose a new methodol-
ogy for learning evolving fuzzy systems (EFS) from data 
streams in terms of on-line regression/system identifica-
tion problems. It comes with enhanced dynamic complex-
ity reduction steps, acting on model components and on the 
input structure and by employing generalized fuzzy rules 
in arbitrarily rotated position. It is thus termed as Gen-
Smart-EFS (GS-EFS), short for generalized smart evolving 
fuzzy systems. Equipped with a new projection concept for 
high-dimensional kernels onto one-dimensional fuzzy sets, 
our approach is able to provide equivalent conventional 
TS fuzzy systems with axis-parallel rules, thus maintain-
ing interpretability when inferring new query samples. 
The on-line complexity reduction on rule level integrates 
a new merging concept based on a combined adjacency–
homogeneity relation between two clusters (rules). On 
input structure level, complexity reduction is motivated 
by a combined statistical-geometric concept and acts in a 
smooth and soft manner by incrementally adapting feature 
weights: features may get smoothly out-weighted over time 
(→soft on-line dimension reduction) but also may become 
reactivated at a later stage. Out-weighted features will con-
tribute little to the rule evolution criterion, which prevents 
the generation of unnecessary rules and reduces over-fitting 
due to curse of dimensionality. The criterion relies on a 
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objects in video streams (Angelov et al. 2011) or evolving 
modeling of user’s behaviors (Iglesias et al. 2010). In par-
ticular, changing operating conditions, environmental influ-
ences and new unexplored system states may trigger a quite 
dynamic behavior, causing previously trained models to 
become inefficient or even inaccurate (Sayed-Mouchaweh 
and Lughofer 2012). Thus, the field of “evolving intelligent 
systems (EIS)1” (Angelov et al. 2010) or, in a wider 
machine learning sense, the field of “learning in dynamic 
environments (LDE)” (Sayed-Mouchaweh and Lughofer 
2012) enjoyed a large attraction during the last years. Both 
fields support learning topologies which operate in single-
pass manner and are able to update models and surrogate 
statistics on-the-fly and on demand. While EIS focus 
mainly on adaptive evolving models within the field of soft 
computing, LDE goes a step further and also joins incre-
mental machine learning and data mining techniques. The 
update in these approaches concerns parameter adaptation 
and structural changes (e.g. rule, neuron, leaf evolution and 
pruning).

Evolving fuzzy systems (EFS) (Lughofer 2011) as a 
sub-field of EIS are helpful whenever interpretable models 
should be provided to users and operators—at least, they 
allow some sort of interpretation, especially when equipped 
with several concepts for assuring linguistic criteria as 
deeply examined in Lughofer (2013). This is opposed to 
other types of evolving models such as incremental radial 
basis functions networks (Huang et al. 2004), recurrent 
neural networks (Rubio 2010; Lin et al. 2013) or incremen-
tal support vector machines (Shilton et al. 2005; Diehl and 
Cauwenberghs 2003). Furthermore, when equipped with 
Takagi–Sugeno fuzzy systems architecture, EFS achieve 
universal approximation capability (Castro and Delgado 
1996).

1.2  State of the art

Almost all EFS approaches in literature use the conven-
tional flat TS fuzzy systems with axis-parallel rules (Takagi 
and Sugeno 1985) [see Lughofer (2011) for a comprehen-
sive survey and further approaches since the last 2 years 
as published in Hametner and Jakubek (2013), Tung et al. 
(2013), Lin et al. (2013) and Soleimani et al. (2010) etc.]; 
some other recent approaches apply kernels in the con-
sequents, which are trained with SVMs (Komijani et al. 
2012; Cheng et al. 2011); the first method which employs 
generalized rules was published in Lemos et al. (2011), 
later extended for the purpose of data stream mining in 
Leite et al. (2012); there, however, no projection concept 
was conducted to obtain interpretable (axis-parallel) rules. 

1 http://en.wikipedia.org/wiki/Evolving_intelligent_system.

There, learning is done with the usage of the methodol-
ogy based on participatory learning (Yager 1990) and its 
evolving version (Lima et al. 2010): rule merging is trig-
gered by a compatibility measure between two clusters, 
seeking whether the center of one cluster is close to the 
center of the other in terms of the Mahalanobis distance. 
An extended merging approach for generalized fuzzy rules 
is presented in Zdsar et al. (2014) (eFuMo), where also 
the ratio of the Mahalanobis distances in both directions 
(center A to rule B and vice versa) is taken into account in 
the merge criterion.

In these approaches, no projection operation is per-
formed to allow interpretability of the evolved rules 
and the learning is done on the full dimensional space. 
In the recent published approach GENEFIS (Pratama 
et al. 2014), a projection concept is integrated based on 
the core span of each cluster according to each dimen-
sion. However, longer rule spreads along principal com-
ponents are not taken into account and may lead to too 
pessimistic spreads. Furthermore, rule pruning is based 
on expected statistical contributions of rules in the future 
rather relying on the current necessary number accord-
ing to the requested actual non-linearity degree among 
different local regions of the feature space. Finally, the 
on-line reduction of features in case of high-dimensional 
data streams has been handled in EFS for classification 
problems in Lughofer (2011) [employing single model 
and multi-model one-versus-rest architectures (Angelov 
et al. 2008)], and for regression problems under the scope 
of eTS+ methodology (Angelov 2010) and GENEFIS 
(Pratama et al. 2014). The two latter ones operate on a 
crisp basis, i.e. they discard features on-line on demand 
due to their expected low future contributions. However, 
none of these foresee any smooth selection in the sense 
that features may get slowly out-weighted over time (but 
still contributing to model outputs to some degree), nor 
the possibility of reactivation/re-inclusion of some fea-
tures at a later stage in the stream learning phase.

1.3  Our approach: the basic concept

Our approach, termed as generalized smart evolving fuzzy 
systems (Gen-Smart-EFS), builds upon the FLEXFIS learn-
ing engine (Lughofer 2008) and focusses on significant 
extensions (the impacts from practical point of view men-
tioned in braces):

1. For generalized fuzzy rules in order to be able to model 
local correlations more effectively (improving accu-
racy) (its definition in Sect. 2).

2. For providing more compact rule bases, reducing as 
much as unnecessary complexity (improving transpar-
ency).

http://en.wikipedia.org/wiki/Evolving_intelligent_system
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3. For providing reduced rule lengths (improving inter-
pretability) and weakening curse of dimensional-
ity effect in incremental and soft(=smooth) manner 
(improving stability and accuracy).

The latter two aspects, which guide the evolved fuzzy 
models to some smartness degree, can be easily used for 
other types of EFS learning engines, as they offer generic 
concepts how to tackle rule redundancy, homogeneity and 
length as well as curse of dimensionality in an on-line way. 
These sort of complexity reduction steps are a necessary 
pre-requisite for assuring interpretability of EFS, especially 
meeting several important criteria, see Lughofer (2013). 
The first aspect is necessary to be able to model local cor-
relations between input features, implying a more compact, 
more precise model (see Sect. 2).

Instead of performing axis parallel updates of the 
spreads of local data regions (=clusters) with the usage 
of recursive variance formula [as in Lughofer (2008)], the 
update concerns an incremental sample-wise update of a 
full occupied inverse covariance matrix, which defines the 
shape of the ellipsoidal clusters in arbitrary position, thus 
being able to model local correlations in a more compact 
form (see Sect. 2) than conventional axis-parallel rules. The 
rule evolution versus update criterion is steered by a statis-
tical motivated tolerance region radius for multivariate nor-
mal distributions (Sect. 3.1). The induced “characteristic 
spread” can be seen as equivalent to the (core) contours of 
the ellipsoidal rules (Sun and Wang 2011). The consequent 
parameters are updated by generalized recursive fuzzily 
weighted least squares (RFWLS), where the weights are 
the normalized membership degree of the generalized rules 
(Sect. 3.3).

A minimal required model complexity is sought after 
each incremental learning cycle based on novel geometric 
criteria giving rise which degree of non-linearity is actually 
requested among the local regions (Sect. 3.2). Thus, rules 
are merged (1) which become significantly overlapping [a 
generalization of the concepts as in Lughofer et al. (2011) 
for generalized rules], and (2) which becoming slightly 
overlapping or touching (lying nearby each other), while (a) 
forming homogenous joint regions and (b) showing similar 
tendencies in their consequents. The latter occurrence have 
been not handled so far in state-of-the-art approaches

Furthermore, we are offering a new design for an incre-
mental reduction of the feature space. There, we introduce 
feature weights which are pointing to the importance levels 
of each feature for explaining the (local) relation in form of 
a regression problem (Sect. 4). The reduction automatically 
has two effects: (1) reducing the curse of dimensionality 
in a dynamic and smooth way, i.e. features may be out-
weighted at a certain point of time, but may be reactivated 
at a later stage of the on-line data stream modeling process 

in an incremental manner; and (2) reducing the rule length 
and thus improving transparency of the evolved fuzzy sys-
tems as features with low weights can be discarded from 
the rules’ antecedents when showing the rules to users/
operators. The first point overcomes the deficiency of a 
crisp incremental feature selection approach as conducted 
in Pratama et al. (2014), which discards unimportant fea-
tures due their statistical influences in a strict manner (no 
re-activation or a re-inclusion at a later stage possible). The 
extraction of feature weights are conducted by a combined 
statistical-geometric concept, motivated from Pratama et al. 
(2014), but acting in both, local (weights per rule) and 
global manner (weight for the whole model) (Sect. 4.1). 
Furthermore, we propose a novel concept how to properly 
integrate the weights into the Mahalanobis distance calcu-
lation (Sect. 4.2), which for incoming new samples decides 
whether or not a new rule should be evolved. Input features 
which are seen as unimportant, thus receiving low weights, 
should also effect the Mahalanobis distance little, omitting 
the evolution of unnecessary rules. This leads to a re-scaled 
Mahalanobis distance measure which assures some sort of 
monotonicity: successively decreasing feature weights trig-
ger successively lower Mahalanobis distance values.

Such a re-scaled measure assuring monotonicity has 
been to our best knowledge not handled so far in literature 
and could be useful in other machine learning/data min-
ing applications as well whenever features are not equally 
weighted, thus conventional Mahalanobis distance not 
directly applicable. A further practical usage is that such 
on-line rule reduction and smartness assurance techniques 
guarantee that the rule base is not growing forever and 
provide more compact rule bases. The dynamic feature 
weighting approach prevents a bad model performance due 
to over-fitting as it reduces curse of dimensionality, mostly 
due to the suppression of evolving new rules in case when 
distances among unimportant features get large. Further-
more, rule lengths are decreased, increasing transparency 
of rules and offering another interpretability aspect in fea-
ture level: operators/experts get a glance which system var-
iables/features are important at which point of time during 
stream learning (see also the results section for two con-
crete examples). Finally, the practical usage is also given by 
the direct applicability of all the on-line complexity reduc-
tion steps (on rule and input level) to all EFS approaches 
using TS type architecture with Gaussian kernels, as these 
are designed completely independently from any concrete 
learning/adaptation algorithm for rules and fuzzy sets.

The final algorithm (termed as Gen-Smart-EFS) will be 
presented in Sect. 5 and will be evaluated based on several 
high-dimensional data sets from the UCI repository and 
on a ten-dimensional dynamic non-linear system identifi-
cation problem (Sect. 6.2). It will be compared with other 
renowned evolving fuzzy modeling methods (Lughofer 
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2011) [including conventional FLEXFIS (Lughofer 2008), 
eMG (also employing generalized fuzzy rules) (Lemos et al. 
2011), eTS (Angelov and Filev 2004), online sequential 
learning of extreme learning machines (OS-ELM) (Liang 
2006), FAOS-PFNN (Wang et al. 2009) and others] as well 
as with classical fuzzy modeling variants in order to get a 
glance how close the adaptive variant can converge to batch 
solutions. Gen-Smart-EFS can achieve the models with low-
est error while providing the most compact rule base with 
shorter rules in almost all cases. The computation time suf-
fers only little and may be improved in some cases when 
significant rule reduction can be achieved. The comparison 
will also be based on a high-dimensional dynamic real-
world scenario, where on-line measurements are recorded 
at a cold rolling mills process for supervising the resistance 
value. In this case, earlier results have been reported in lit-
erature with the usage of conventional evolving TS fuzzy 
model architecture and without using enhanced pruning 
and feature weighting concepts. These turn out to be worse 
regarding model accuracy and complexity than those ones 
achieved with the new Gen-Smart-EFS approach.

2  Generalized TS‑fuzzy systems and projection 
concept

Due to the universal approximation capabilities (Castro and 
Delgado 1996) and the ability to present a reliable trade-
off between accuracy and interpretability (Lughofer 2013), 
Takagi–Sugeno fuzzy systems (Takagi and Sugeno 1985) 
enjoy a wide field of application in several real-world mod-
eling problems (Pedrycz and Gomide 2007). It employs 
conventional rules defined by:

where f  represents a polynomial function, in particular a 
hyperplane f = w0 + x1w1 + · · · + xpwp and µ. the fuzzy 
sets represented by linguistic terms. It has the deficiency 
not being able to model general local correlations between 
input and output variables appropriately, as the t-norm 
operator used for the AND connections always triggers 
axis-parallel rule shapes (Klement et al. 2000). Thus, con-
ventional rules may represent inexact approximations of 
the real local trends and finally causing information loss 
(Abonyi et al. 2002). An example for visualizing this prob-
lematic nature is provided in Fig. 1: in the left image, axis-
parallel rules (represented by ellipsoids) are used for mod-
eling the partial tendencies of the regression curves which 
are not following the input axis direction, but are rotated to 
some degree; obviously, the volume of the rules are arti-
ficially blown-up and the rules do not represent the real 
characteristics of the local tendencies → information loss. 
In the right image, non axis-parallel rules using general 
multivariate Gaussians are applied for a better representa-
tion (rotated ellipsoids).

To avoid such information loss, we are aiming for gener-
alized fuzzy rules, which are defined in Lemos et al. (2011) 
as

where � denotes a high-dimensional kernel function. 
Thereby, x plays the role of a high-dimensional input vec-
tor whose degree of assignment to a rule is steered by �. 
When aiming for a coverage of the input space and smooth 
approximation surfaces, a widely used and conventional 

(1)
IF x1 IS µ1 AND x2 IS µ2 AND · · ·

AND xp IS µp THEN y = f

(2)IF x IS (about) � THEN y = f

Fig. 1  Left conventional axis parallel rules (represented by ellip-
soids) achieve an inaccurate representation of the local trends (corre-
lations) of a non-linear approximation problem (defined by noisy data 

samples); right generalized rules (by rotation) achieve a much more 
accurate representation
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choice for � [also applied in Lemos et al. (2011) and Leite 
et al. (2012)] is the multivariate Gaussian distribution:

with c the center and �−1 the inverse covariance matrix. 
Apart from the property of infinite support, which, on the 
one hand, is valuable for a well-defined coverage of the 
input space (no undefined states may appear), but, on the 
other hand, triggers a more difficult input–output interpre-
tation (as all rules are firing to a certain degree) (Lughofer 
2013), it is also known in the neural network literature that 
Gaussian radial basis functions are a nice option to charac-
terize local properties (Lemos et al. 2011; Lippmann 1991); 
especially, someone may inspect the inner core part, i.e. all 
samples fulfilling (x − c)T�−1(x − c) ≤ 1, as the charac-
teristic contour/spread of the rule.

The fuzzy inference is a linear combination of multivari-
ate Gaussian distributions in the form:

with C the number of rules, fi the consequent hyper-plane 
of the ith rule and �i the normalized membership degrees, 
summing up to 1 for each query sample.

In order to maintain linguistic readability and further-
more interpretability of the evolved TS fuzzy models for 
users/operators, we provide a projection concept to form 
the fuzzy sets and the antecedent parts of the classical 
rules. Our concept is an extension of the approach used in 
Pratama et al. (2014) by taking into account the degree of 
rotation and the spread of the ellipsoid in order to obtain a 
more representative width of the projected fuzzy set. The 
idea is to use the angle between the eigenvectors and the 
main axes as multiplication factors of the principal axes 
lengths: the higher the cosine of the angle, the closer the 
eigenvector is to the axis (e.g. to x1); thus only a sightly 
rotated representation takes place and the principal axes 
length of the ellipsoid along x1 can be (almost) directly 
used as the spread of the corresponding (on x1) projected 
Gaussian fuzzy set. An illustration of this strategy is given 
in Fig. 2, with r the Mahalanobis distance radius (defin-
ing the contour of the ellipsoids, usually set to 1), �1 the 
eigenvalue of the first eigenvector a1 of the inverse covar-
iance matrix �−1, and ei the vector of the ith axis, set to 
ei = (0, 0, . . . , 1, . . . , 0) with the 1 occurring at the ith 
position.

From this illustration, it becomes quite clear that the 
spread σi of the projected fuzzy set is set according to:

(3)�(x) = exp

(

−

1

2
(x − c)T�−1(x − c)

)

(4)

ŷ =

∑C
i=1

fi ∗ exp

(

−
1

2
(x − ci)

T�−1

i (x − ci)

)

∑C
i=1

exp

(

−
1

2
(x − ci)T�

−1

i (x − ci)

) =

C
∑

i=1

fi�i(x)

whereas the center of the fuzzy set in the ith dimension is 
equal to the ith coordinate of the rule center, and �(ei, aj) 
denoting the angle between principal component direction 
(eigenvector aj) and the ith axis. The angle between two 
vectors can be measured by

with ∗ the scalar product. Thus, (5) simplifies to

The maximum in (7) is necessary in order to obtain the 
maximal characteristic spread of the ellipsoid along all 
(principal components) directions, subject to the ith axis. 
This enhanced methodology provides a much better rep-
resentation of the actual spread along the one-dimensional 
axes than when using σi = r

√

�ii
 (which is the distance of 

the center to the axis-parallel cutting point) in case of thin 
long ellipsoids [as applied in Pratama et al. (2014)]. This is 
underlined in the example of Fig. 3, where the conventional 
projection onto the x-axis leads to inexact representation of 
the rule span (fuzzy set much too thin), whereas our con-
cept respects the principal component length as rule span 
by including it in the projection formula (5).

Inferencing for obtaining predictions on new query sam-
ples is best achieved by the classical (projected) inference. 
The latter is performed in order to maintain input–output 
interpretation capability (Lughofer 2013), especially when 

(5)σi = maxj=1,...,p

(

r
√

�j

|cos(�(ei, aj))|

)

(6)�(ei, aj) = arccos

(

ei ∗ aj

�ei��aj�

)

(7)σi = maxj=1,...,p

(

r
√

�j

|ei. ∗ aj|

�ei��aj�

)

.

Fig. 2  Illustration of the projection concept, the width σ1 of the pro-
jected fuzzy set highlighted in thick dotted line
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trying to explain the predictions, why certain outputs have 
been made (Heidl et al. 2013).

3  Incremental learning concepts (rule evolution, 
parameter adaptation, on‑line complexity 
reduction)

3.1  Rule extraction with generalized evolving vector 
quantization

The rule learning policy, including rule evolution and 
modification in incremental learning steps, is performed 
in the high-dimensional product clustering space (input + 
output). Clustering is a concept which is frequently used 
in data-driven design of fuzzy systems [no matter whether 
for the batch (Pedrycz and Gomide 2007; Babuska 1998) 
or for the incremental case (Lughofer 2011)], as it nicely 
performs a local partitioning of the feature space, usually 
according to some density-based or distance-based criteria. 
Rules can be directly associated with the clusters. Here, 
we use an extended version of evolving vector quantiza-
tion (eVQ) (Lughofer 2008), as is used in the conventional 
FLEXFIS learning engine (Lughofer 2008) for axis-parallel 
rules in the TS fuzzy systems.

In particular, recall the original eVQ as published in 
Lughofer (2008):

1. For each new incoming sample x, it elicits the clus-
ter whose center coordinates are closest to it; this is 
denoted as the winning cluster (rule).

2. It checks whether the new incoming sample matches 
the current cluster partition: the distance of the new 
point to the winning cluster is compared against a dis-

tance threshold (vigilance) vigi = fac ∗
√

p
√

2
, with p the 

dimensionality of the feature space and fac a multipli-
cation constant in ]0, 1].

3. If it exceeds this threshold, a new cluster is evolved by 
setting its center to the sample c = x and initializing its 
spread vector σ = ǫ.

4. It it does not exceed the threshold, the center and 
spread of the winning cluster are updated. The update 
of the center is performed by minimizing the expected 
squared quantization error [as done in conventional 
vector quantization (Gray 1984)]: 

with p(x) a continuous probability density function, 
whose approximation scheme can be derived as fol-
lows (Kohonen 1995): 

Due to some nice convergence properties in evolving 
clustering (Lughofer 2008) and in EFS design when 
using eVQ as rule learning engine (Lughofer 2008), the 
learning rate was chosen to decrease with the number 
of samples by ηi = 1/ki, with ki the number of samples 
belonging to cluster i so far, i.e. the number of samples 
for which ci was the winning cluster. In this sense, each 
cluster has its own learning rate and thus its own flex-
ibility/stability for incremental movements according 
to its current support.
The distance calculations in above itemization points 
are performed by the Euclidean distance, thus trig-
gering prototype-based clusters with ellipsoidal 
shape in main position. Hence, the update of the 
spread can be performed for each input dimension 
separately as conducted by the recursive variance 
formula including rank-1 modification (Qin et al. 
2000).

(8)E =

∫

�x − c�p(x)dx

(9)ci(N + 1) = ci(N)+ ηwin(x − ci(N)).

Fig. 3  Left conventional projection concept according to cutting point with ellipsoidal contour of the rule leads to too thin fuzzy set on x-axis; 
right our enhanced projection concept respects the maximal span of the rule along a principal component direction → more accurate projection
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The extension in this paper concerns the distance meas-
ure used, which is the Mahalanobis distance (Mahalano-
bis 1936) required to trigger (ellipsoidal) clusters = rules 
in arbitrary rotated position as defined in (3). This changes 
the formal description of a cluster i, as it is not defined 
by (ci, σi, vigi) any longer, but by (ci,�

−1
i , ri). Instead of 

a global vigilance parameter, the Mahalanobis distance 
radius, which is specific for each rule, will decide whether 
a new cluster should be evolved or not, i.e. the rule evolu-
tion criterion becomes:

with

with p the dimensionality of the input feature space and fac 
an a priori defined parameter, steering the tradeoff between 
stability (update of an old cluster) and plasticity (evolution 
of a new cluster). This is the only sensitive parameter in our 
method and will be varied during evaluation.

The second product term in (11) compensates for the 
curse of dimensionality (as increasing with p), based on the 
same considerations as done in eVQ, see Lughofer (2008). 
The difference to the approach used there is that here we 
are taking the 

√

2-root of the dimensionality, instead of the 
conventional square-root. We then automatically obtain a 
close approximation of critical distribution values accord-
ing to χ2 statistics with p df, which serves as statisti-
cal tolerance region for multivariate normal distributions 
(Krishnamoorthy and Mathew 2009; Tabata and Kudo 
2010). The reason why we use the approximation and not 
the real critical distribution value is the much lower com-
putational cost. The closeness of the approximation can be 
visualized in Fig. 4, where for different values of p (along 
the x-axis) the corresponding tolerance region values 
(along the y-axis) are plotted.

Additionally, we include a third term in (11), which 
compensates for the uncertainty in clusters with low sup-
port/significance (density), increasing the radius in this 
case and keeping it on the original level for compact, dense 
clusters. . m steers the degree of this density-based impact 
and is set to 4 as default value.

3.1.1  Rule evolution and antecedent update

If condition (10) holds, a new cluster is evolved as follows:

(10)mini=1,...,C

√

(x − c)T�−1(x − c) > ri

(11)ri = fac ∗ p1/
√

2
∗

1.0

(1− 1/(ki + 1))m

(12)

cC+1 = x �−1
C+1 =

∑C
i=1�

−1
i

C
�−1

1 = diag

(

frac

range2

)

with 1
frac

 denoting a small fraction of the squared input 
ranges.

If condition (10) does not hold, the components of cwin 
are updated: updating the center cwin with the new sample 
x can be done in the same manner as in conventional eVQ 
by using (9). The difference lies in the update of the spread 
as it is characterized by the inverse covariance matrix. A 
possibility is to update the covariance matrix in recursive 
(almost) exact manner, as done in Pang (2005), Bouchachia 
and Mittermeir (2006) and Lughofer (2011), however this 
requires a matrix inversion step after each incremental 
learning cycle, which sometimes can get unstable (Lug-
hofer 2011) and thus requires time-intensive regularization 
(Bauer and Lukas 2011). Thus, we are opting for a direct 
update of the inverse covariance matrix through the inves-
tigations about infinite sum expansion of an inverse matrix 
(Backer and Scheunders 2001): setting α =

1
kwin+1

 with kwin 
the number of samples belonging to cluster cwin so far we 
obtain (we neglect here the index win for the purpose of 
transparency):

By expanding the inverse and setting γ =
α

1−α
, we obtain

(13)

�−1(k + 1) = ((1− α)�(k)+ α(x − c)(x − c)T )−1

=

(

I +
α

1− α
�−1(k)(x − c)(x − c)T

)

−1
�−1(k)

1− α
.

(14)

(

I − γ�−1(k)(v.vT )+ γ 2�−1(k)(v.vT )

�−1(k)(v.vT )− γ 3 . . .

)

.
�−1(k)

1− α

Fig. 4  Increasing χ2
p
(α) critical values for α = 5% significance level 

when increasing the dimensionality (df): the original in dotted line, 
our approximation in solid line
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By rearranging and substituting � = vT�−1(k)v, we obtain

After rearranging the infinite sum in the braces, the follow-
ing update formula (from k to k + 1) is obtained:

3.2  On‑line merging of unnecessary generalized rules

In this section, we are aiming for EFS with minimal pos-
sible complexity, i.e. that complexity which is really nec-
essary to model the required (local) non-linearity. Thus, 
we are employing geometric-based criteria, involving 
adjacent rule antecedents and consequents to reflect their 
local modeling characteristics. It is important to note that 
these geometric-based criteria can be independently used 
from the learning engine, thus can be used in connection 
with all EFS approaches using TS type architecture with 
Gaussian kernels. This is a different motivation opposed 
to statistical-based criteria based on rule significance/con-
tribution levels [as performed in Pratama et al. (2014) for 
generalized rules in evolving context before], which are 
more aiming to track the (expected) usage of rules in the 
future: rules which are expected to be not addressed within 
the inference for predictions can be eliminated. The differ-
ence to the merging process applied in Lemos et al. (2011) 
is that there a compatibility measure is used which meas-
ures the degree of overlap in terms of a simple Euclidean 
distance between cluster centers. In this paper, we will go 
some steps further and propose criteria for measuring the 
degree of the adjacency–homogeneity relation between 
two nearby lying rules, also respecting their range of 
influence.

3.2.1  Problem formulation and merging criteria

During incremental data stream mining, it may happen that 
clusters (rules), which originally seem to be disjoint and 
necessary for resolving the particular non-linearity prop-
erly, are moving together over their life-span. In extreme 
cases, they may become significantly overlapping, thus 
reflecting redundant rules [for a detailed analysis, see Lug-
hofer et al. (2011)]. From the viewpoint of model repre-
sentation, such rules can always be merged as representing 
the same local region, thus the model quality in terms of 

(15)

=

�−1(k)

1− α
−

γ

1− α
�−1(k)(v.vT )�−1(k)(1− γ �+ γ 2

�
2
− · · · )

=

�−1(k)

1− α
−

γ

1− α

�−1(k)(v.vT )�−1(k)

1+ γ �
.

(16)

�−1(k + 1) =
�−1(k)

1− α

−

α

1− α

(�−1(k)(x − c))(�−1(k)(x − c))T

1+ α((x − c)T�−1(k)(x − c))
.

accuracy does usually not suffer. From the view point of 
distinguishability, which serves as one important aspect 
in (evolving) fuzzy systems (Lughofer 2013), a merge of 
overlapping rules is even mandatory to assure transparency, 
readability and unambiguous rules.

Overlap degree (criterion #1) In this paper, we are 
going beyond the approach demonstrated in Lughofer et al. 
(2011), which employs a merging strategy for redundant 
axis-parallel fuzzy rules and sets, by extending it to gener-
alized rules and by inspecting whether nearby lying, touch-
ing or even slightly overlapping rules could also be merged. 
Finally, we want to maintain minimal complexity required 
to resolve non-linearities contained in the actual learning/
regression problem. As dealing with multivariate Gaussian 
rules, we apply the Bhattacharyya distance (Bhattachar-
yya 1943; Djouadi et al. 1990) for calculating the overlap 
degree between the updated (the winning) cluster win and 
the other clusters, k = {1, . . . ,C}\{win}:

with �−1
= (�−1

win +�−1
k )/2—note that, due to the arbi-

trary ellipsoidal shape of our clusters, their contours in the 
p-dimensional space (according to r) are equivalent to the 
characteristic (supporting) spread of multi-variate Gauss-
ian distributions (Sun and Wang 2011); thus, Bhattachar-
yya distance is in fact valid to be adopted one-to-one to our 
generalized fuzzy rules. The distance delivers exactly 0 if 
two ellipsoids are touching, >0 when they are overlapping 
and <0 when they are disjoint. Thus, a feasible threshold 
for cluster merging candidates is 0 resp. a high value below 
0, allowing only those clusters to be merged which are at 
least touching each other.

Certainly, when olap(win, k) is high for any k, there is a 
redundant, highly overlapping situation and the two rules 
can be merged no matter how the consequent vectors are 
belonging to each other. In case when the consequents are 
dissimilar, the two rules indicate an inconsistency in the 
rule base (e.g. caused by high noise levels in the output), 
which will be handled within a specific strategy, see Sect. 
3.2.2 below.

Continuation of the approximation trend (criterion #2) 
Whenever olap(win, k) is around 0 for any k, the two rules 
are merging candidates, but the functional trend of the nearby 
lying rules have to observed first in order to decide whether 
a merge should be performed or not. This is essential as a 
different trend indicates a necessary non-linearity contained 
in the functional relation/approximation between inputs and 
outputs—see Fig. 5 for an example. In this case, obviously 

(17)

olap(win, k) =
1

8
(cwin − ck)

T�−1(cwin − ck)

+

1

2
ln





det�−1

�

det�−1
win det�−1

k
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two rules cannot be merged to one, as this would not be able 
to sufficiently resolve the non-linearity any longer.

Thus, we propose an additional similarity criterion 
based on the degree of deviation in the hyper-planes’ gradi-
ent information, i.e. in the consequent parameter vectors of 
the two rules without the intercept. We suggest a criterion 
based on the dihedral angle of the two hyper-planes they 
span, which is defined by:

a = (wwin;1 wwin;2 . . .wwin;p − 1)T and 
b = (−wk;1 − wk;2 · · · − wk;p + 1)T the normal vectors 
of the two planes corresponding to rules win and k, show-
ing into the opposite direction with respect to target y (−1 
and +1 in the last coordinate). If this is close to 180◦ (π), 
the hyper-planes obviously represent the same trend of the 
approximation curve, therefore the criterion should be high 
(close to 1), as the rules can be merged. If it is 90◦ (π/2)  
or below a change in the direction of the approximation 
functions takes place, thus the criterion should be equal or 
lower than 0.5. Hence, the similarity criterion becomes

We note that range normalization is important in order to 
obtain comparable impacts of variables in the consequents. 
This is because their influence on the target is not scale-
invariant, and thus the vectors describing the directions 
of the consequents are affected by the scale. The example 
shown in Fig. 6 provides a clearer picture of this aspect, 
as showing a regression surface, given (and estimated) by 
y = x1 + x2, where the influence of feature x1 on the target 
is obviously much more intense than feature x2 (due to its 
range [0, 10] versus [0, 1]). This also means that a direction 

(18)φ = arccos

(

aTb

|a||b|

)

(19)Scons(wwin,wk) =
φ

π
.

change in x2 (from 0.5 on) leading to y = x1 − x2 + 1 
effects the output tendency little, thus should result in a 
high similarity. However, the similarity in (19) gets low 
when using the two vectors (1, 1,−1) and (−1, 1, 1) with-
out range normalization. Alternatively, one may multiply 
the normal vector entries with the corresponding ranges of 
the features before calculating (18)—in the example above, 
this would lead to an overweight of feature one in the scalar 
product, achieving a value close to −1, thus an angle close 
to π, hence Scons ≈ 1.

In case of a low angle (18) but high deviation between 
the intercepts, the two nearby lying planes are (nearly) 
parallel but with a significant gap inbetween. This usually 
points to a modeling case of a step-wise function, and thus 
the rule should not be merged. Hence, we may extend the 
similarity expressed by (19) to:

Homogeneity of adjacent rules (criterion #3) Finally, we 
also demand that the two nearby lying/touching rules form 
a homogeneous shape and direction when joined together. 
This is important as otherwise a merged rule may reflect a 
too inaccurate representation of the two local data clouds. 
An illustration example is shown in Fig. 7, the right image 
representing a situation where a merge is not suggested. 
Thus, in order to restrict the merging action to rules trig-
gering homogenous “smart” joint regions, we examine the 
blow-up effect of the rules when virtually merged together, 
i.e. we check whether

(20)Scons(wwin,wk) = min

(

φ

π
, 1−

φ

π

|wwin;0 − wk;0|

range(y)

)

Fig. 5  The corresponding two hyper-planes (consequents) of two 
touching rules (shown as ellipsoids) indicating a necessary non-line-
arity in the approximation surface; merging this would end up in one 
rule achieving an undesired constant behavior in that part

Fig. 6  A change in the sign of the low influencing variable (Feature 
X2) from 1 to −1 (at around x2 = 0.5) still does not cause a sig-
nificant change in the tendency of the regression surface, however 
wrongly triggers a low value of (19) when no range normalization is 
performed
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where Vk denotes the volume of rule k in the high-dimen-
sional space (Jimenez and Landgrebe 1998):

with �kj the jth eigenvalue corresponding to the jth eigen-
vector. If (21) holds, the blow-up effect is restricted.

Finally, the joined merging condition is defined by:

with thr usually set to 0.8, according to the considera-
tions and experience in Lughofer et al. (2011). The sym-
bol “ ” denotes the conventional “OR” operation, and the 
symbol “∧” the conventional “AND”. Hence, in case of a 
significant overlap, merging is always triggered, whereas 
in case of touching rules [i.e. Eq. (17) ≥ 0] merging is 
only triggered when the two clusters form a homogene-
ous region and their output (consequent) tendency is 
similar.

3.2.2  Rule merging policy

Whenever two rules fulfill condition (23), the merging 
should be performed in a single-pass, ideally fast, man-
ner, i.e. without using any prior data. Merging of rules 
antecedents is conducted (1) by using a weighted average 
of centers, where the weights are defined by the support 
of the rules, assuring that the new center lies in-between 
the two centers and is closer to the more supported rule; 
and (2) by merging directly the inverse covariance matrices 
also employing a weighted average, but correcting it with a 
rank-1 modification for achieving more stability:

(21)Vmerged ≤ p(Vwin + Vk)

(22)Vk =

2 ∗
∏p

j=1

(

rk/�kj
)

∗ πp/2

Ŵ(p/2)

(23)

(Eq. (17) ≥ thr)|(Eq. (17) ≥ 0 ∧ Eq. (21) ∧ Eq. (19) ≥ 0.5)

with (cnew − ci) a row vector with i = argmin(kwin, kk), 
i.e. the index of the less supported rule and diag the vec-
tor of diagonal entries; the division in the numerator (1/...) 
(rank-1 modification) is done component-wise for each 
matrix element. The support of the merged rule is simply 
the sum of the support of the original rules.

The merging strategy of the rule consequent functions 
depends on the inconsistency level, that is the level to 
which the consequents are more dissimilar than the ante-
cedents. It follows the idea of Yager’s participatory learning 
concept (Yager 1990), and is conducted by Lughofer et al. 
(2011):

where α = kk/(kj + kk) represents the basic learning rate 
and Cons(j, k) the compatibility measure between the two 
rules within the participatory learning context. Here j 
denotes the index of the more supported rule, i.e. kj > kk 
If (17) is smaller or equal to 0, the consistency degree 
Cons(j, k) is always set to 1. If it is above 0, there is an 
overlap. In this case, the consistency degree is measured 
by a continuous smooth function [leaned on Jin (2000), but 
modified in a way such that to achieve high consistency 
degrees in the case of dissimilar antecedents]:

with Srule(j, k) = olap(j, k) as in (17) and Scons(j, k) as in 
(19). Another interpretation of (26) is that the higher the 

(24)

cnewj =

cwinj kwin + ckj kk

kwin + kk
knew = kwin + kk

�−1

md =

kwin�
−1

win + kk�
−1

k +
kwinkk
kwin+kk

diag

(

1

((cnew−c
i)T (cnew−c

i))

)

∗ I

kwin + kk

(25)wnew = wj + α · Cons(j, k) · (wk − wj),

(26)
Cons(j, k) = e

−

(

Srule(j,k)

Scons(j,k)
−1

)2

(

1
Srule

)7

Fig. 7  Left two rules (solid ellipsoids) which are touching each other 
and are homogeneous in the sense that the (volume, orientation of 
the) merged rule (dotted ellipsoid) is in conformity with the original 
two rules; right: two rules (solid ellipsoids) which are touching each 

other and are not homogeneous → inaccurate (too wide) representa-
tion of merged rule due to an artificial blow-up, then also covering 
another rule with a possible different functional local trend
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rule overlap, the higher the similarity of the consequents 
has to be in order to achieve a high consistency degree, 
which is in-line the classical consistency degree of fuzzy 
rule bases (Casillas et al. 2003).

Due to (25), the consequent vector of the merged rule is 
more influenced by the more supported rule when the con-
sistency degree is lower, thus increasing the belief in the 
more supported rule. In the crisp (boolean) case, Cons may 
be become either 0 or 1, depending whether the rule simi-
larity is higher than the consequent similarity. In case when 
consistency degree is equal to 1, Eq. (25) becomes either a 
weighted averaging; in case when it is 0, the vector of the 
merged rule is set to that one of the more supported rule.. 
The same merging strategy as in (25) is conducted for the 
inverse Hessian matrices Pwin and Pk, which are required as 
help information for a recursive stable consequent adapta-
tion, see subsequent section.

3.3  Recursive consequent learning

The consequent learning follows the spirit of local learning, 
employing the RFWLS estimator [as used in most of the 
conventional EFS approaches (Lughofer 2011)]:

with Pi(k) = (Ri(k)
TQi(k)Ri(k))

−1 the inverse weighted 
Hessian matrix, r(k + 1) = [1 x1(k + 1) x2(k + 1) . . .

xp(k + 1)]T the regressor values of the k + 1th data sam-
ple, and �i a forgetting factor, usually (as not denoted oth-
erwise) set to 1 for all rules (no forgetting). Local learning 
for each rule separately has the favorable properties (1) of 
providing more flexibility in terms of automatic rule inclu-
sion and deletion than a global estimator and (2) of being 
faster and more stable than global learning, as analyzed in 
detail in Angelov et al. (2008) and Lughofer (2011) (Chap-
ter 2). The most important point of local learning, however, 
is that it induces hyper-planes which are snuggling along 
the real trend of the approximation surface (Lughofer 
2013), which will be exploited in the subsequent section 
for feature weighting purposes.

Moreover, whenever a new rule is evolved, then the con-
sequent parameters wC+1 and inverse Hessian matrix of the 
new rule are set to those ones of the nearest rule, i.e.

(27)

ŵi(k + 1) = ŵi(k)+ γ (k)(y(k + 1)− rT (k + 1)ŵi(k))

(28)γ (k) =
Pi(k)r(k + 1)

�i
�i(x(k+1))

+ rT (k + 1)Pi(k)r(k + 1)

(29)Pi(k + 1) =
1

�i
(I − γ (k)rT (k + 1))Pi(k)

(30)wC+1 = wnearest PC+1 = Pnearest

with nearest the index of the nearest rule in terms of 
Mahalanobis distance, thus assuring a continuation of the 
local trend of the nearest rule.

4  On‑line feature weighting for evolving smart 
regression

Feature weighting within the environment of generalized 
EFS is motivated by mainly two aspects:

•	 Measuring the importance levels/degrees of features in 
different parts of the features space (modeled by differ-
ent rules), addressing another important interpretability 
criterion, namely the input/output interpretation which 
features really fired for the current prediction at hand 
(Lughofer 2013); even more importantly, the transpar-
ency and compactness of the rule base can be increased, 
whenever feature weights get low: the corresponding 
features can be eliminated from both, the antecedent and 
consequent parts of the rules. This reduces the length of 
AND-connections and improves comprehensibility for 
users and operators. This, together with the rule pruning 
concepts explained in the preliminary sections, finally 
provides the smartness aspect in generalized EFS.

•	 Reducing the curse of dimensionality effect in case of 
medium- to high-dimensional problems in a kind of soft 
and smooth manner: softness here means that features 
can be down-weighted, but not completely discarded 
(as still having a low weight and impact); smoothness 
addresses slight continuous changes of feature weights, 
thus down-weighted features may also become signifi-
cantly reactivated at a later stage of the stream learning 
process. This abandons both, a crisp selection and the 
forever elimination of features [as done in Pratama et al. 
(2014)].

4.1  Monitoring feature importance levels

In regression problems, it is well known that the impact 
of a feature onto the target concept, i.e. how a change in 
a feature affects the output in which way, can be tracked 
by observing the gradient of the feature (Efendic and Re 
2006). If the gradient is high, a small change in the feature 
effects the output already drastically. Usually, in case of 
non-linear approximation functions, the gradient changes 
in each point, thus an overall gradient of a feature is time-
intensive to compute. TS fuzzy models, however, offer the 
possibility to track piece-wise local linear predictors over 
the feature space. This is because each rule is equipped 
with a hyper-plane showing the tendency in the neighbor-
hood of the rule. Especially, when using the local learn-
ing option (per rule) as recursively given by (27)–(29), the 
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hyper-planes are snuggling along the real trend of the sur-
face, as examined in Lughofer (2013).

In this sense, we can directly use the consequent param-
eter vector wi for the local gradients of all features around 
the ith rule. Thus, in case when using normalized data, the 
local impact �ij of feature j in the local region approxi-
mated by rule i is given by:

Normalization through the sum is done to obtain relative 
weights between [0, 1], which are comparable and inter-
pretable among the features (1 = fully important, 0 = fully 
unimportant). When data is not normalized, we have to 
multiple the gradients with the feature ranges to obtain the 
real impact, as already motivated in Sect. 3.2.1 (Fig. 6). 
Hence, the local impact �ij of feature j is then given by:

In order to elicit global feature weights, an obvious 
approach would be to sum up all local feature weights and 
normalize it by the number of rules in the currently evolved 
fuzzy system. However, then we assume that all rules are 
equally supported by past data samples respectively pos-
sess the same statistical contribution in the system. In order 
to respect rule importance levels, we apply the concept 
introduced in Rong et al. (2006) and adopt it to the case of 
generalized rules. There, the expected statistical contribu-
tion of rule i to the final model output when the number of 
stream samples N goes to infinity is considered. It is given 
by:

We are only interested in the input contribution, thus 
neglect |wi0| in (33). The central challenge is to calculate 
Ei = limN→∞

∑N
k=1�i(xk)/N, which can be in our case 

of generalized fuzzy rules achieved through:

with p(x) =
∏p

j=1 pj(xj) and pj(xj) the density distribution 
function of the jth feature. When assuming uniform sam-
pling distributions (samples come equally distributed over 
their ranges), we obtain p(x) = 1/S(X) with S(X) the size 
of the range X. Hence, we obtain:

(31)�ij(loc) =
wij

∑p
j=1 wij

.

(32)�ij(loc) =
wij ∗ range(j)

∑p
j=1 .wij ∗ range(j)

(33)Conti = lim
N→∞

|wi0|

∑N
k=1�i(xk)/N

∑C
j=1

∑N
k=1�j(xk)/N

.

(34)Ei =

∫

X

exp

(

−

1

2
(x − ci)

T�−1
i (x − ci)

)

p(x)dx

(35)Ei =

∫

X

exp

(

−

1

2
(x − ci)

T�−1
i (x − ci)

)

1

S(X)
dx

As the center ci does not influence the final value of the 
integral (area of the rule), but just represents a shift of the 
multivariate Gaussian distribution, Eq. (35) can be written 
as:

As the integral over the multivariate Gauss-
ian distribution with the origin as center, defined as 

1
√

(2π)p∗det(�i)
exp(− 1

2
(x)T�−1

i (x)), is equal to 1, we obtain:

Hence, by substituting (37) into (33) the contribution of 
Rule i on the input side finally becomes:

Now the global feature weights are defined by a weighted 
average of the local weights, where the weights in the 
average are given by the relative contributions of the rules 
according to (38):

It is easy to see that 
∑p

j=1 �j(global) = 1. Hence, in high-
dimensional problems, most of the weights are expected 
to be low. Thus, for monitoring purposes we suggest to 
observe the feature weights in relation to the maximal 
weight (most important feature), i.e. by:

This guarantees that the most important feature(s) have still 
a significant impact in the learning phase (otherwise, nothing 
will be learned, anymore). Then, those features can be ignored 
whose weights are below X % of the maximal weight.

4.2  Integrating feature importance levels (on‑line curse 
of dimensionality reduction)

The second issue concerns the integration of the features 
weights into the incremental learning engine of EFS. This 
may have a significant impact on the stability and accuracy 
of the evolving fuzzy models: especially, in case of high-
dimensional feature spaces, an out-weighting of features 

(36)Ei =
1

S(X)

∫

X

exp

(

−

1

2
(x)T�−1

i (x)

)

dx

(37)Ei =
det(�i)

1/2(2π)p/2

S(X)
.

(38)Conti(inp) =

√

det(�i)(2π)
p/2

∑C
j=1

√

det�j(2π)p/2
.

(39)�j(global) =

∑C
i=1 Conti(inp)�ij(loc)
∑C

i=1 Conti(inp)
.

(40)

�j(global) =
�j(global)

maxi=1,...,p(�i(global))

�ij(loc) =
�ij(loc)

maxk=1,...,p(�ik(loc))
.
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(e.g., in distance calculations, rule evolution criteria etc.) 
may decrease the curse of dimensionality effect (Hastie 
et al. 2009) by localizing and densifying. For instance, 
when calculating the Mahalanobis distance to already exist-
ing clusters/rules, unimportant features with low weights 
should lead to small distances, even for samples which 
seem to appear outside the region of influence of a rule—an 
example is provided in Fig. 8. This has the effect that the 
rule evolution criterion will be triggered less frequent than 
in the fully weighted high-dimensional feature space, omit-
ting unnecessary complexity and over-fitting due to unim-
portant features.

The integration into the learning process is motivated 
by Fig. 8, i.e. the aim is to oppress rule evolution cases 
whenever unimportant features trigger high values of the 
Mahalanobis distance, whereas important features are not 
significantly influencing it. Hence, we are aiming for a 
“weighted” version of the Mahalanobis distance in (48) in 
order to reduce the influence of unimportant features. An 
ad-hoc calculation, leaned on the weighted Euclidean dis-
tance (Rao 2013), would integrate the feature weights in 
the following way:

which could be interpreted as a down-weight of component-
wise distances (x − ci). However, in a closer look, it turns 
out that this induces an undesired rotation of the real ellip-
soidal cluster contours by D� = diag(�). This had the con-
sequence that in various trial-and-error test runs we could 
observe increasing values of (41) (due to the rotational 
effect), although some feature weights were nearly dragged 
down to 0, leading to an undesired non-monotonic behavior.

On the other hand, according to the singular value 
decomposition, the inverse covariance matrix can be repre-
sented as follows:

(41)mahal =

√

(�. ∗ (x − ci))�
−1
i (�. ∗ (x − ci))

with V  the matrix containing all eigenvectors as columns 
and D a diagonal matrix containing the eigenvalues; note 
that VT

= V−1 as V  is orthogonal. Now, if we would have 
the weights for the eigenvectors �∗ available, we could sim-
ply use the re-scaled inverse covariance matrix given by

in the rule evolution criterion (10), yielding the desired 
effect. However, due to the local geometric interpretation 
based on the linear hyper-planes (steepness), we are only 
able to extract the importance levels for the original fea-
tures (original coordinate space). Thus, we are aiming 
for a transformation of feature weights � in the original 
space to the feature weights �∗ into the respective rotated 
space of the corresponding rule. The scoring option, i.e. 
�∗ = VT

∗ �, would lead to a similar rotational effect as in 
(41), sometimes not guaranteeing monotonicity. However, 
it can easily be verified that (as VT

= V−1) (41) can be 
written as

with

according to (42). This can be rephrased into the form

with �∗ = VT
∗ diag(�) ∗ V . However, this matrix is not 

diagonal, so this explains why (41) can lack monotonicity. 
Trying to preserve monotonicity as well as interpretability 
of feature weights in (41), we thus are led to use a compro-
mise: we choose the same matrix �∗ as in (46), diagonal-
ized. This leads to an approximation of the scaling in (41) 
resp. (44):

(47) is then used in (43) to obtain the re-scaled inverse 
covariance matrix, which is finally used in (48) for the rule 
evolution criterion (comparison with ri).

In general, the approximation is an “under-estimator”, 
leading to underestimated re-scaled inverse covariance 
matrices and further to under-estimated Mahalanobis dis-
tances. Thus, we are integrating a scale factor δ ∈ [1.0, 1.5] 
to boost a bit the distance, and then the rule evolution cri-
terion (in both cases, local and global feature weights) 
becomes:

(42)
�−1

i = V ∗ D ∗ VT

(43)�−1
i (rescaled) = V ∗ diag(�∗) ∗ D ∗ diag(�∗) ∗ VT

(44)mahal =

√

(x − ci)�
−1
i,fweight(x − ci)

(45)
�−1

i,fweight = diag(�)�−1

i diag(�)

= V [VTdiag(�)V ]D[VTdiag(�)V ]VT

(46)�−1
i,fweight = V�∗D�∗V

T

(47)diag(�∗) = diag(VT
∗ diag(�) ∗ V)

Fig. 8  No rule evolution suggested although sample lies outside the 
tolerance region of a rule, as Feature X2 is unimportant, thus the dis-
tance of a new sample to the ellipsoid shrinked
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with ri as in (11). We used δ = 1.35 in all our experiments.
Integration of feature weights in all other adaptive learn-

ing components (i.e. into the update formulas for centers 

(48)

min
i=1,...,C

(

δ ∗

√

(x − ci)T�
−1
i (rescaled)(x − ci)

)

> ri
and inverse covariance matrices) is neglected, as it is aimed 
to achieve the best position of cluster centers and ellipsoi-
dal contours following the real characterization of the data 
clouds. For instance, not adapting a center in the direction 
of an unimportant feature may lead to misplacement of 
centers, i.e. becoming to lie in a part of the region where no 
samples have occurred at all.

Fig. 9  Flowchart GS-EFS 
(Generalized Smart Evolving 
Fuzzy Systems), the compo-
nents highlighted in bold font 
are the new suggested ones in 
this paper, and can be connected 
with an arbitrary learning 
engine for EFS employing 
generalized rules
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5  Generalized smart EFS: the algorithm

The flowchart of our algorithm termed as Gen-Smart-EFS 
is shown in Fig. 9, where the newly introduced compo-
nents are shown in bold font and can be connected with 
any evolving learning engine for EFS employing general-
ized rules: this is because the complexity reduction tech-
niques fully operate on a geometrical basis based on the 
tendency, shape and outlook of the current evolved fuzzy 
rules, and because the incremental feature weighting con-
cept operate on a combined geometric-statistical-oriented 
concept, where only structural information like the rule 
representation (�-matrix) and the consequent parameters 
need to be available. Simplifying the rule-base (bottom 
component in Fig. 9) is a software-technical issue, by 
making the corresponding virtual memory space free for 
the merged rule.

6  Evaluation

6.1  Experimental setup

The evaluation of the new methodologies will be divided 
into three parts:

•	 Three data sets from the UCI repository2 (clean, noise-
free): auto-mpg, housing and concrete; one data set from 
an engine test bench (own application project), where 
measurement data were collected on-line and has been 
affected by some white noise and disturbances: the task is 
to predict the NOX content based on other synchronously 
recorded measurement channels and their time lags (→
virtual sensor). The data sets are summarized in Table 1. 
For these four data sets, the same evaluation scheme as 
conducted in Lughofer and Kindermann (2010) is per-
formed, where original FLEXFIS (Lughofer 2008) was 
compared with other batch off-line data-driven fuzzy sys-
tems extraction methods (as hard benchmark). The evalu-
ation scheme follows a cross-validation procedure cou-
pled with best parameter grid search to find the optimal 
setting (that one achieving the lowest CV-error) of the 

2 http://archive.ics.uci.edu/ml/.

most sensitive parameters in each method. In case of all 
incremental/adaptive modeling variants, the models are 
sample-wise single-pass evolved on each combination of 
folds (and tested versus the remaining fold).

•	 High-dimensional non-linear system identification 
problem as tested on several EFS approaches in Lemos 
et al. (2011). Here, the task is to identify the following 
problem: 

where u(t) = sin(2πk/20) and y(t) = 0 for 
j = 1, . . . ,m, m set to 10. The purpose is to predict the 
output variable y from past inputs and own lagged out-
puts, thus: 

The first 3000 samples were created for data stream 
learning, additional 300 samples were generated for 
evaluation the model on a separate test data set. As 
error measure the root mean squared error has been 
used for the comparison with the approaches in Lemos 
et al. (2011) and with other adaptive, evolving vari-
ants such as OS-ELM (Liang 2006) and FAOS-PFNN 
(Wang et al. 2009).

•	 Real-world application: automatic prediction of resist-
ance value in rolling mill processes. In particular, the 
task is to identify a prediction model for the resistance 
value of a steel plate in a rolling mill. 11 measurement 
variables are recorded per second additionally to the 
resistance value, which are time delayed up to a maxi-
mal lag of 10. In this sense, we are including predic-
tion horizons of maximal 10 s. In sum, two data sets 
with 6503 resp. 6652 samples at two different points 
of time (2 months inbetween) have been recorded and 
stored in the same order as they appeared on-line. The 
first data set has been used as training data stream based 
on which the models are evolved, the other data set as 
independent test set. Original results when using con-
ventional EFS (in particular the FLEXFIS approach) 
without any generalization, pruning and feature selec-
tion option have been already reported in Lughofer and 
Angelov (2011) and serve as benchmark for Gen-Smart-
EFS (GS-EFS) method.

(49)y(t) =

∑m
i=1 y(t − i)

1+
∑m

i=1 y(t − 1)2
+ u(t − 1)

(50)

ŷ(t) = f (y(t − 1), y(t − 2), . . . , y(t − 10), u(t − 1))

Table 1  Some data sets 
from the UCI repository and 
engine test bench and their 
characteristics

# Training samples # Input variables Source Noise level

Auto-MPG 398 8 UCI None

Concrete 1030 8 UCI None

Housing 506 13 UCI None

NOX 667 181 Engine test bench Medium to high

http://archive.ics.uci.edu/ml/
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Additionally to the model errors (in form of mean absolute 
error = MAE and root mean squared error = RMSE), also a 
statistical preference analysis on the residual vectors will be 
performed and reported in separate preference tables, see sub-
sequent section. This is achieved with the usage of a non-para-
metric Wilcoxon pair-wise comparison tests (Hill and Lewicki 
2007) coupled with Holm–Bonferroni test in order to reduce 
the family wise error rate (FWER) (Holm 1979). Model com-
plexities will be reported in terms of the number of extracted 
components (rules, kernels, neurons), which are comparable 
over all methods we apply as serving as localizers of the fea-
ture space, indicating the degree of granulation and non-line-
arity of the models (more complex models with similar errors 
are generally expected to be less robust regarding over-fitting).

6.2  Results

6.2.1  Results on data from UCI repository

Table 2 summarizes the results achieved on the three UCI 
repository data sets and the virtual NOX sensor problem for 

predicting its value from other sensors installed within the 
engine test bench. The table includes the minimal cross-
validation error in terms of mean absolute error between 
predicted and observed values, together with the standard 
deviation over the CV-folds (after the ± symbol), the maxi-
mal error between predicted and observed over all train-
ing data samples and the average model complexity corre-
sponding to the minimal CV error in terms of the average 
number of rules over the CV-folds. The first parts of the 
two tables (before the horizontal lines) represent the batch 
modeling variants for fuzzy system modeling, the second 
parts correspond to the incremental, evolving variants.

Clearly, it can be recognized that our Gen-Smart-EFS, 
is able to outperform conventional FLEXFIS (with no 
pruning and axis-parallel rules) in three out of four cases 
(Auto-MPG, Concrete, Housing), as achieving lower CV 
errors with smaller complexities, especially when using 
the extended pruning option which is triggered by the 
full condition in (23). If using the conventional pruning 
option which is the application of only the first part of (23) 
(before the OR), the number of rules increases and are even 

Table 2  Comparison of fuzzy modelling variants on three data sets from UCI repository and (noisy) NOX data from an engine test bench

Method Auto-MPG Concrete

MAE ± STD Max # Rules MAE ± STD Max # Rules

genfis2 (Yager and Filev 1994) 2.23 ±  0.85 3.88 6 8.37 ±  1.70 11.52 3

ANFIS (Jang 1993) 2.41 ±  0.84 4.07 16 11.25 ±  9.98 39.13 8

FMCLUST (Babuska 1998) 2.35 ±  0.91 3.99 20 7.75 ± 2.06 12.11 3

SparseFIS (Lughofer and Kindermann 2010) 2.01 ± 0.55 3.29 9 7.73 ±  1.77 21.01 7

SparseFIS uncon. (Lughofer and Kindermann 2010) 2.14 ±  0.78 4.08 22 8.05 ±  1.85 12.52 11

OS-ELM (Liang 2006) 4.45 ±  2.21 8.4 100 10.87 ± 1.23 12.68 46

FAOS-PFNN (Wang et al. 2009) 6.23 ±  1.66 9.8 144.6 7.13 ± 1.3 7.34 25.2

FLEXFIS (Lughofer 2008) 2.17 ±  0.73 3.59 11 7.73 ±  1.97 11.96 8

Gen-Smart-EFS no pruning 2.09 ±  0.62 3.60 5.8 6.04 ±  0.23 6.47 9.9

Gen-Smart-EFS conv. pruning 2.09 ± 0.62 3.60 5.8 5.99 ±  0.41 6.44 9.6

Gen-Smart-EFS ext. pruning 2.09 ± 0.62 3.60 5.8 6.35 ± 0.52 7.14 3.8

Method Housing NOX

MAE ± STD Max # Rules MAE ± STD Max # Rules

genfis2 (Yager and Filev 1994) 3.14 ±  1.31 6.53 4 12.97 ±  1.08 15.98 5

ANFIS (Jang 1993) 3.59 ±  1.39 6.56 4 13.72 ±  1.01 14.72 8

FMCLUST (Babuska 1998) 2.84 ± 1.08 5.38 6 13.99 ±  1.05 15.55 6

SparseFIS (Lughofer and Kindermann 2010) 3.02 ±  1.19 6.04 6 11.35 ± 0.97 13.63 3

SparseFIS uncon. (Lughofer and Kindermann 2010) 3.60 ±  1.56 6.86 19 14.01 ±  1.81 16.68 9

OS-ELM (Liang 2006) 3.42 ±  1.60 7.29 17 19.31 ± 1.83 21.54 36

FAOS-PFNN (Wang et al. 2009) 4.05 ±  1.75 7.12 20.3 24.94 ± 3.73 31.59 32.6

FLEXFIS (Lughofer 2008) 2.98 ±  1.27 6.09 6 12.96 ± 0.98 14.31 8

Gen-Smart-EFS no pruning 2.91 ±  1.18 5.57 11 12.91 ±  1.31 15.89 10.1

Gen-Smart-EFS conv. pruning 2.94 ±  1.18 5.63 7.6 13.08 ±  1.15 15.75 8.9

Gen-Smart-EFS ext. pruning 2.94 ± 1.18 5.84 4.9 12.91 ±  1.31 15.89 10.1
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higher than in case of conventional FLEXFIS for concrete 
and housing data. Furthermore, the Gen-Smart-EFS in all 
forms (without and with pruning options) seems to outper-
form other on-line learning methods such as OS-ELM and 
FAOS-PFNN, and even compete with the batch modelling 

methods, which is remarkable as it evolves sample-wise on 
the CV-based training folds, rather see all the training folds 
at once.

In order to confirm this first impression from the read-
ings in Table 2, we performed a statistical significance test 

Table 3  Statistical preferences of one method (row) over another 
(column) based on the residual vectors over time for UCI repository 
and NOX emission data sets; statistical preference (p value of 0.05) 

is denoted by ‘+’, strong preference (p value of 0.025) is denoted by 
‘++’, whereas minus ‘−’ and ‘−−’ indicate the opposite

Zero (0) denotes no statistical preference

Set/level genfis2 ANFIS FMCLUST SparseFIS OS-ELM FAOS-PFNN FLEXFIS GS-EFS ext. prune

Auto-MPG

 genfis2 (Yager and Filev 1994) 0 0 0 0 ++ ++ 0 0

 ANFIS (Jang 1993) 0 0 0 − ++ ++ 0 −
 FMCLUST (Babuska 1998) 0 0 0 − ++ ++ 0 −
 SparseFIS (Lughofer and Kindermann 

2010)
0 + + 0 ++ ++ 0 0

 OS-ELM (Liang 2006) −− −− −− −− 0 ++ −− −−
 FAOS-PFNN (Wang et al. 2009) −− −− −− −− −− 0 −− −−
 FLEXFIS (Lughofer 2008) 0 0 0 0 ++ ++ 0 0

 GS-EFS ext. prune 0 + + 0 ++ ++ 0 0

Concrete

 genfis2 (Yager and Filev 1994) 0 ++ 0 0 + − 0 −−
 ANFIS (Jang 1993) −− 0 −− −− 0 −− −− −−
 FMCLUST (Babuska 1998) 0 ++ 0 0 ++ 0 0 −
 SparseFIS (Lughofer and Kindermann 

2010)
0 ++ 0 0 0 ++ 0 −

 OS-ELM (Liang 2006) − 0 −− −− 0 −− −− −−
 FAOS-PFNN (Wang et al. 2009) + ++ 0 0 ++ 0 0 0

 FLEXFIS (Lughofer 2008) 0 ++ 0 0 ++ 0 0 −
 GS-EFS ext. prune ++ ++ + + ++ 0 + 0

Housing

 genfis2 (Yager and Filev 1994) 0 0 0 0 0 + 0 0

 ANFIS (Jang 1993) 0 0 − 0 0 0 0 −
 FMCLUST (Babuska 1998) 0 + 0 0 0 + 0 0

 SparseFIS (Lughofer and Kindermann 
2010)

0 0 0 0 0 + 0 0

 OS-ELM (Liang 2006) 0 0 − 0 0 0 0 0

 FAOS-PFNN (Wang et al. 2009) − 0 − − 0 0 − −
 FLEXFIS (Lughofer 2008) 0 0 0 0 0 + 0 0

 GS-EFS ext. prune 0 + 0 0 0 + 0 0

NOX

 genfis2 (Yager and Filev 1994) 0 0 0 − ++ ++ 0 0

 ANFIS (Jang 1993) 0 0 0 − ++ ++ 0 0

 FMCLUST (Babuska 1998) 0 0 0 − ++ ++ 0 −
 SparseFIS (Lughofer and Kindermann 

2010)
+ + + 0 ++ ++ + 0

 OS-ELM (Liang (2006)) −− −− −− −− 0 + −− −−
 FAOS-PFNN (Wang et al. 2009) −− −− −− −− −− 0 −− −−
 FLEXFIS (Lughofer 2008) 0 0 0 - ++ ++ 0 0

 GS-EFS ext. prune 0 0 + 0 ++ ++ 0 0
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with the usage of a non-parametric Wilcoxon pair-wise 
comparison tests (Hill and Lewicki 2007) coupled with 
Holm–Bonferroni test in order to reduce the FWER (Holm 
1979). This is performed on the left out folds used as sepa-
rate test data sets within the CV procedure. The statistically 
significant preferences are shown in Table 3, indicated by 
‘+’ whenever a method denoted in the row is preferred over 
the method denoted in the column with a significance value 
of p = 0.05 (5 % probability that hypothesis that two meth-
ods are equal is wrongly rejected) and indicated by ‘++’ 
whenever the preference is more significant with a p value 
of 0.025. From this statistical analysis, it can be seen that 
our proposed method GS-EFS is clearly the best evolving 
method for all data sets as reaching scores of 6, 9, 2 and 
5 for the four data sets, whereas the second best method 
(FLEXFIS) achieves scores of 4, 3, 1 and 3 (‘++’ equals 
a score of 2, ‘+’ a score of 1, ‘−−’ and ‘−’ the negative of 
it). In case of concrete data, it is also the best over all batch 
modeling methods and equal to SparseFIS and FMCLUST 
in case of Auto-MPG and Housing, respectively; only in 
case of NOX data, SparseFIS can outperform our method 
in terms of the score, however this requires multiple itera-
tions in optimization cycles over the complete data set and 
thus is much slower than GS-EFS (as also been designed 
for batch modelling problems). Most importantly, GS-EFS 
is never outperformed by any other method for all four data 
sets (no ‘−’ sign in any of the rows respresenting “GS-
EFS ext. prune”), but on the other hand outperforms vari-
ous other methods on different sets. As it also ends up with 
the less complex models in three cases and having a simi-
lar complexity as FLEXFIS on NOX data, we can conclude 
that it is the best choice in terms of “minimal description 
length” (best fit with lowest possible model complexity) 
over all data sets.

6.2.2  Results on dynamic on-line system identification 
problem

The results in terms of prediction capabilities on an on-line 
data stream are shown in Fig. 10, the left image shows the 
observed versus predicted values on the separate test data 
set: both are lying over each other. The rule evolution plot-
ted on the right hand side: at the beginning of the stream, 
many rules are evolved, but after some time a saturation 
takes place. No rules have been pruned for this data set, 
thus the rules have been generated distinctively enough by 
Gen-Smart-EFS and obviously did not move together suf-
ficiently over time. Furthermore, Table 4 performs a com-
parison of two parametrization variants of Gen-Smart-EFS 
with the other evolving fuzzy modeling variants tested on 
this problem in Lemos et al. (2011) and with widely used 
OS-ELM (Liang 2006) and FAOS-PFNN (Wang et al. 
2009). Clearly, the new method can outperform state-of-
the-art EFS approaches in terms of RMSE and also model 
complexity (8 vs. 13 rules, achieving a slightly lower 
RMSE than eMG). Interestingly, also to see the effect of 
the integration of feature weights: in both parametrization 
cases ( fac = 0.45 and fac = 0.6), 1 resp. 2 rules less are 
evolved due to the shrinkage of an unimportant direction in 
the evolution criterion, not increasing the RMSE; in fact, in 
case of fac = 0.45, the RMSE is even slightly decreased, 
thus lowering curse of dimensionality.

A further comparison is conducted with another well-
known incremental learning algorithm, namely with the so-
called OS-ELM as proposed in Liang (2006). This method 
opens the possibility to use four different shapes for the 
neurons such as radial basis functions, sigmoid functions, 
sine functions or hard-lim functions; we used the best 
option out of these for each result (row) as shown in Table 4.  

Fig. 10  Left observed versus predicted values on the high-dimensional non-linear system identification problem; right the rule evolution over 
time
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The different results by parameterizing different numbers 
of hidden neurons (second column) indicate that OS-ELM 
needs around five times more structural components (50 in 
number) to achieve approximately the same model error 
as Gen-Smart-EFS. The accuracy of FAOS-PFNN (Wang 
et al. 2009), another important and widely used evolving 
modeling variant, is pretty good and can compete with the 
best parametrization variants of Gen-Smart-EFS, however 

requires more structural components (70 versus 12–14). 
When reducing the complexity by increasing the overlap 
factor k for the RBF units and increase β towards 1, the 
error increases: in case of 12 rules, the error is the same as 
for Gen-Smart-EFS in case of 8/9 rules and higher than for 
Gen-Smart-EFS in case of the same number of rules.

In order to manifest and confirm our loose considerations 
based on the final RMSE values, we performed again a statis-
tical preference test on the residuals (observed vs. predicted) 
obtained on the independent test set (same test variant as in 
the preliminary subsection). We selected for each method the 
best variant, i.e. those variant leading to the smallest RMSE 
as this corresponds to the residual vectors with lowest entries. 
The results are presented in Table 5. From this table it gets 
immediately clear that FAOS-PFNN and the new method GS-
EFS using smooth feature weights integration can be signifi-
cantly preferred among the others, as achieving a score of 8 
(‘++’ count as 2 score point, one ‘+’ as 1 score points, for 
the minus signs the negative), while the third best method 
(OS-ELM) reaches just a score of 0. When now comparing 
these two methods with respect to the final model complex-
ity, GS-EFS achieves 12 rules while FAOS-PFNN requires 70 
rules to achieve the same approximation quality, and this then 
also (unsurprisingly) with a much lower computation speed 
as will be shown below in Table 6.

Figure 11 shows the global weights of the 11 input fea-
tures in the same order as included in the functional defi-
nition in (50): the three curves correspond to the weights 
at the beginning of the learning process (after 500 samples 
of the stream) as dotted line, in the middle of the learning 
process (after around 1500 samples) as dashed line and 
at the end of the learning process, after the stream termi-
nated (3000 samples) as solid line. Obviously, some fea-
tures which are more important at the beginning turn out 
to become more and more unimportant over time [e.g. Fea-
tures #6 and #7 = Features y(t − 6) and y(t − 7)]. Obvi-
ously, y(t − 2) and y(t − 3) are the most important fea-
tures, pointing to an important output feedback prediction 

Table 4  Comparison of RMSE and final number rules on high-
dimensional dynamic system identification problems, preferred 
choices shown in bold font

Method # of rules/neurons RMSE

xTS (Angelov and Zhou 2006) 9 0.0331

eMG (�init = 2× 10
−1I11) (Lemos et al. 

2011)
9 0.0288

FLEXFIS (Lughofer 2008) 15 0.0085

eTS (Angelov and Filev 2004) 14 0.0075

eMG (�init = 10
−1I11) (Lemos et al. 

2011)
13 0.0050

FAOS-PFNN (Wang et al. 2009), k = 1.15 70 0.002

FAOS-PFNN (Wang et al. 2009), k = 2.0 39 0.003

FAOS-PFNN (Wang et al. 2009), k = 4.0 29 0.0035

FAOS-PFNN (Wang et al. 2009), k = 4.0, 
β = 0.997

12 0.0042

FAOS-PFNN (Wang et al. 2009), k = 4.0, 
β = 0.999

6 0.0073

OS-ELM (Liang 2006) 8 0.0462

OS-ELM (Liang 2006) 12 0.0347

OS-ELM (Liang 2006) 20 0.0229

OS-ELM (Liang 2006) 50 0.004

Gen-Smart-EFS ( fac = 0.6) 9 0.0042

Gen-Smart-EFS + feat. weights 
( fac = 0.6)

8 0.0042

Gen-Smart-EFS ( fac = 0.45) 14 0.0020

Gen-Smart-EFS + feat. weights 
( fac = 0.45)

12 0.0018

Table 5  Statistical preferences of one method (row) over another 
(column) based on the residual vectors over time for dynamic on-
line system identification; statistical preference (p value of 0.05) is 

denoted by ‘+’, strong preference (p value of 0.025) is denoted by 
‘++’, whereas minus ‘−’ and ‘−−’ indicate the opposite

Zero (0) denotes no statistical preference

Set/level eMG (best) FLEXFIS eTS FAOS-PFNN (best) OS-ELM (best) GS-EFS (fac = 0.6) GS-EFS (fac = 0.45)

eMG (best) 0 + + −− 0 0 −−
FLEXFIS − 0 0 −− - −− −−
eTS − 0 0 −− − − −−
FAOS-PFNN (best) ++ ++ ++ 0 + + 0

OS-ELM (best) 0 + + − 0 0 −
GS-EFS (fac = 0.6) 0 ++ + − 0 0 −
GS-EFS (fac = 0.45) ++ ++ ++ 0 + + 0
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horizon of 2–3. The horizontal line represents a 20 % 
threshold from the maximal feature weight (0.256) after the 
whole learning process. Features below this threshold can 
be neglected [i.e. y(t − 1), y(t − 6), y(t − 7) and u(t − 1)] 
when showing the rules to operators.

It is also surprising that the exogenous variable u is never 
really important for explaining the target, finally suggesting 
a pure AR (autoregressive) model instead of an ARX model 
as defined in (50). This provides another (physical) inter-
pretable insight into the learning problem not necessarily 
expected before hand!

Finally, computation time in sequential real-world 
dynamic problems is an important issue to be studied, as 
sometimes the learning engine should terminate in real-
time for processing (predicting + updating) new incoming 

samples, resp. at least to be fast enough to terminate in a 
reasonable short time frame. A comparison of the speed 
of various methods for processing a single sample in aver-
age is provided in Table 6 (for those parametrization vari-
ants achieving the lowest RMSE in Table 4). From this, it 
becomes clear that all methods (except FAOS-PFNN) can 
cope with a quite high frequency of sample loadings up to 
more than 100 Hz, but FAOS-PFNN is still fast enough to 
approximately handle 10 Hz. It is also interesting to see 
that the rotation of the ellipsoidal rules inducing covari-
ance matrix estimation and update increases the computa-
tion time much more than the integration of feature weights 
for smooth dimensionality reduction—compare the differ-
ence between FLEXFIS and Gen-Smart-EFS with that one 
between the last two rows (note that original FLEXFIS uses 
axis-parallel rules with a vector quantization based engine 
extracting such rules). OS-ELM is the fastest method, almost 
two times faster than the second fastest one (FLEXFIS). 
This is not a big surprise as it only updates parameters, but 
does not change its structure (neuron evolution/pruning); 
the number of hidden neurons have to be pre-parameterized 
a priori. Due to this fixed positioning, it looses significant 
accuracy when using approximately the same number of 
neurons as rules in Gen-Smart-EFS, see Table 4.

6.2.3  Results on a real-world application in rolling mills

The initial situation was as follows: an analytical model has 
been installed at the system in which some parameters were 
estimated through linear regression and should be improved 
by a non-linear soft computing model, which also possess 
the possibility to adapt on-line its parameters and structure.

Original results when using conventional EFS (in par-
ticular the FLEXFIS approach) without any generalization, 
pruning and feature selection option have been already 
reported in Lughofer and Angelov (2011) and serve as 
benchmark for our newly developed method. There, it 
turned out that conventional EFS can already significantly 
improve the accuracy of analytical models, namely by 
around 40.7 %. Now, in this paper we investigate whether 
these results can be further improved by our new approach 
Gen-Smart-EFS. Table 7 shows the results in terms of the 
accumulated one-step-ahead MAE on test samples, follow-
ing the interleaved-test-and-then-train procedure, which 
is a quite convenient evaluation option on data streaming 
mining and modeling techniques (Bifet and Kirkby 2011).

The last but one column is dedicated to the extreme 
deviation values (more than 20 units). Especially, the val-
ues “too high” are the most critical ones (upon expert feed-
back), as these may cause discontinuities in the rolling mill 
process. Thus, the number of predictions which are too 
high (last column) on a basis of 6652 samples, serves as 
the most important value in this table. From rows #4 and 

Fig. 11  Feature weights at three different points of time during the 
incremental learning phase (beginning, middle, end), the horizontal 
line indicates 20 % of the maximum weight below which features 
may be seen as unimportant and discarded when interpreting the 
model (those features indicated by an ellipsis)

Table 6  Comparison of the computation times of the various evolv-
ing learning methods, which is measured as the average seconds used 
to process a single sample (prediction + update) through the learning 
engine

Method Seconds for single 
samples in average

FLEXFIS (Lughofer 2008) 0.0018

eTS (Angelov and Filev 2004) 0.0019

eMG (�init = 10
−1I11) (Lemos et al. 2011) 0.024

FAOS-PFNN (Wang et al. 2009) 0.153

OS-ELM (Liang 2006) 0.0011

Gen-Smart-EFS ( fac = 0.45) 0.0028

Gen-Smart-EFS + feat.weights ( fac = 0.45) 0.0031
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#5, someone can immediately recognize that forgetting in 
the consequents (with a slight forgetting factor of 0.99) is 
essential to improve accuracy significantly (159 versus 68 
MAEs higher than 20). Thus in Gen-Smart-EFS, we also 
foresee only the fixed forgetting option. The interpretation 
of these results should be obvious: our generalized ver-
sion is able to improve conventional EFS by about 8 % in 
terms of accuracy and 33.8 % in terms of the number of 
errors which are significantly too high (the essential meas-
ure!); conventional pruning achieves the same results, so 
no significant overlap appeared during the evolution phase, 
whereas extended pruning is able to reduce the complex-
ity by 6 rules while achieving a very similar accuracy. All 
variants of our method are able to cope with the real-time 
demand required by the operating system, that is, samples 
are coming in with a frequency of around 1 Hz (1 sam-
ple per second) and should be processed within this time 
frame (prediction + update) in order to avoid ever-growing 
back-log buffers. Static fuzzy models are indeed faster 
(only prediction is performed, no update), but cannot cope 
with dynamic process changes and hence loose significant 
model performance (50 % higher error and approx. three 
times more critical errors).

Again, we perform a statistical preference analysis over 
all methods on the residual vectors (observed vs. predicted 
values) over time, using a non-parametric Wilcoxon pair-
wise comparison tests (Hill and Lewicki 2007) coupled 
with Holm–Bonferroni test in order to reduce the FWER 
(Holm 1979). The statistically significant preferences are 
shown in Table 8, indicated by ‘+’ whenever a method 
denoted in the row is preferred over the method denoted 
in the column with a significance value of p = 0.05 (5 % 
probability that hypothesis that two methods are equal 
is wrongly rejected) and indicated by ‘++’ whenever the 
preference is more significant with a p value of 0.025.

From this table it is easy to realize that the new method 
has a statistical preference over all other evolving learn-
ing methods, especially when equipped with any pruning 
strategy. In case of no pruning, the new method performs 
equally to FLEXFIS. FAOS-PFNN is superior to OS-ELM 
and both can be preferred to older static and analytical 
models, as being implemented at the system before. It is 
also interesting to see that there is no preference between 
the four variants of our new method, which is not a sur-
prise as all are achieving an MAE of around 4.3. On the 
other hand, integrating extending pruning scheme and 
feature weights (last row and column) leads to the less 
complex and thus most compact model by far (12 rules 
versus 18, 24 and 30 for the other evolving methods). In 
this sense, and also because its computational complexity 
increase compared to the others is not that dramatic (still 
being able to cope with the on-line processing demands 
of the system, which is around 1 Hz), this variant may be 
suggested to be finally preferred and used in the on-line 
system.

Figure 12 (left) shows the development of the feature 
weights for the best parametrization option (last row in 
Table 7), which leads to a further simplification of the final 
evolved system (12 versus 18 rules) by not loosing sig-
nificant accuracy. Finally, only five features turned out to 
be really important, which after feedback of the operators 
were quite expected to be among the most important ones, 
as mostly influencing the rolling mill process. Interestingly, 
the integration of feature weights can also slightly decrease 
the computation time required for processing a single sam-
ple in average (prediction + update), as can be seen from 
the last two rows in Table 7—this is due to the dynamic 
decrease of the number of rules, i.e. the feature weights cal-
culation requires less additional time than the reduced time 
which is achieved by the smaller complexity.

Table 7  Comparison of evolving fuzzy prediction models obtained by conventional FLEXFIS and the new approach Gen-Smart-EFS with dif-
ferent parametrization options (rule pruning variants, fac) and feature weighting switched on and off

Method MAE # of rules # MAEs >20 Comp. time

Analytical 7.84 One model 259 0.0002 (pred. only)

Static fuzzy models 6.76 N/A 176 0.0002 (pred. only)

OS-ELM (best param) 6.31 30 175 0.0020

FAOS-PFNN (best param) 5.53 24 156 0.0523

FLEXFIS (conv. EFS) no forget 5.41 N/A 159 0.0023

FLEXFIS (conv. EFS) 4.65 N/A 68 0.0023

Gen-Smart-EFS, no pruning fac = 1.55 4.28 24 45 0.0035

Gen-Smart-EFS, conv. pruning, fac = 1.55 4.28 24 45 0.0047

Gen-Smart-EFS, ext. pruning, fac = 1.55 4.28 18 47 0.021

Gen-Smart-EFS, ext. pruning + feat. weights, fac = 1.55 4.34 12 53 0.017
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7  Conclusion

This paper presents a new approach for EFS which can cope 
with correlation-based local relations by introducing gener-
alized rules with arbitrary rotated positions. This leads to a 
more reliable, accurate representation of local approxima-
tion behavior, finally inducing a significant improvement 
of model accuracy in most cases. Furthermore, the learning 
engine includes enhanced methodologies in the direction of 
rule merging and pruning by respecting the approximation 
trends and homogeneity of nearby lying (close or touching) 

rules. This leads to more compact rule bases with an accu-
racy which is very similar to the full spanned, not simplified 
rule bases. Results can be even further improved by intro-
ducing feature weights pointing to the importance of features 
in terms of a mixture of expected statistical contributions 
in the rule contours and gradients in the hyper-planes (rule 
consequents). In particular, some unnecessary rule evolution 
steps (as arising due to high distances along unimportant fea-
tures) can be suppressed. Thus, in some cases even the size 
of the rule base can be further reduced and the model error 
decreased due to a soft dimension reduction step.

Table 8  Statistical preferences of one method (row) over another 
(column) based on the residual vectors over time for rolling mill data; 
statistical preference (p value of 0.05) is denoted by ‘+’, strong pref-

erence (p value of 0.025) is denoted by ‘++’, whereas minus ‘−’ and 
‘−−’ indicate the opposite

Zero (0) denotes no statistical preference

Set/level Analytical Static 
fuzzy

OS-ELM FAOS-
PFNN

FLEXFIS 
conv.

FLEXFIS 
forget

GS-EFS 
no prune

GS-EFS 
conv. prune

GS-EFS 
ext. prune

GS-EFS 
weights + 
ext. pr.

Analytical 0 − −− −− −− −− −− −− −− −−
Static Fuzzy + 0 0 −− −− −− −− −− −− −−
OS-ELM ++ 0 0 −− −− −− −− −− −− −−
FAOS-PFNN ++ ++ ++ 0 0 − − − − −
FLEXFIS conv. ++ ++ ++ 0 0 − − − − −
FLEXFIS forget ++ ++ ++ + + 0 0 − − −
GS-EFS no prune ++ ++ ++ + + 0 0 0 0 0

GS-EFS conv. prune ++ ++ ++ + + + 0 0 0 0

GS-EFS ext. prune ++ ++ ++ + + + 0 0 0 0

GS-EFS weights + 
ext. pr.

++ ++ ++ + + + 0 0 0 0

Fig. 12  Left feature weights development from the start of the learn-
ing phase (dotted line), through the middle (dashed line) towards the 
end of the learning phase (solid line)—please note that only five fea-
tures finally appear as important, as indicated by the horizontal line; 
right the rule evolution over time including expansion phase and then 

contraction phase, as some rules turn out to be superfluous, also due 
to the feature weights integration during learning (better “real” win-
ning clusters are elicited, thus moved), finally ending up with 12 rules 
instead of 18 (achieved w/o feature weights)
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All these new concepts may be of great practical impor-
tance whenever a fast modeling method is required within 
an on-line learning framework, guaranteeing that the size 
of the rule bases are bounded and also increasing the inter-
pretability of the fuzzy systems in several aspects, namely 
in the number of rules, in the compactness and consistency 
of rules and in the rule lengths (features with low weights 
can be excluded when showing the rules to an expert). Fur-
thermore, in real-world data stream mining problems often 
the input dimensionality is huge (e.g. multi-sensor net-
works recording on-line measurements) such that a smooth 
and dynamic on-line dimensionality reduction is indispen-
sable to guarantee models with a solid performance.
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