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base classifier and the alpha factor used to update the mem-
ber classifiers of the ensemble. Finally, the corrugator and 
zygomatic facial EMGs were found to be more reliable 
measures for detecting the valence component of affect 
compared to other channels.
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1 Introduction

There is increased motivation in using physiological sig-
nals in affect detection systems that detect either discrete 
emotional categories or affective dimensions of valence and 
arousal (Kim and André 2008; Picard et al. 2001; AlZoubi 
et al. 2011). Physiological responses such as facial muscle 
activity, skin conductivity, heart activity, and respiration have 
all been considered as potential markers for recognizing 
affective states (Whang and Lim 2008). Despite high clas-
sification rates achieved under laboratory conditions (Kim 
et al. 2004; Lichtenstein et al. 2008), the changing nature of 
physiological signals introduces significant challenges when 
one moves from the lab and into the real world (Plarre et al. 
2011; AlZoubi et al. 2012). In particular, physiological data 
is expected to exhibit daily variations or non-stationarities 
(Picard et al. 2001; AlZoubi et al. 2011), which introduce 
difficulties for building effective classification models on 
future data (i.e., signals generated by the same individual 
across time). The ability to integrate automatic affect detec-
tion capabilities in computer systems depends largely on the 
underlying models of affect, and how these models can adapt 
to the changing nature of physiological data.

Previous research has shown that affective physiological 
data exhibited daily variations (Picard et al. 2001; AlZoubi 
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et al. 2011). It was found that physiological data for a given 
emotion on a particular day (day-data) yielded a higher 
clustering cohesion or tightness compared to data for the 
same emotion across multiple days. This phenomenon 
can be attributed to a number of factors such as: (1) mood 
changes across days; (2) electrodes drift; (3) changes in 
electrode impedance; and (4) modulations by other mental 
states such as attention and motivation (Picard et al. 2001). 
Non-stationarity indicates that signals change their statis-
tical characteristics (e.g., means, standard deviation) as a 
function of time, which then propagates to features values 
extracted from the signals over time.

Non-stationarities of physiological signals represent a 
major problem for building reliable classification mod-
els that span multiple days. Most classification methods 
assume that training data is obtained from a stationary dis-
tribution (Last 2002). However, this assumption of station-
arity is routinely violated in real-world contexts. Accord-
ing to Kuncheva (2004a), every real-world classification 
system should have a mechanism to adapt to time-varying 
changes. In order to address this issue, this study utilizes 
an adaptive ensemble classification approach—discussed in 
more detail in Sect. 3.

Understanding the nature of non-stationarities in physi-
ological signals is essential for developing reliable affect 
detection systems that can be deployed in real-world affec-
tive computing applications. There is a critical need for 
basic research on how physiological signals vary over time. 
This research contributes to this goal by addressing two 
fundamental issues. First, we study temporal changes to 
diagnostic physiological features collected from four par-
ticipants over five recording sessions. The non-stationari-
ties in physiological data might indicate that diagnostic fea-
tures of affect may vary from one day/session to another. 
We test this issue and evaluate an adaptive ensemble clas-
sification approach that can potentially handle non-station-
arities in affective physiological data. The performance of 
the ensemble was tested under different conditions of fea-
tures engineering and selection. Second, we test the perfor-
mance and reliability of individual physiological channels 
for affect detection over the span of multiple day record-
ings. Our results show that a decision fusion strategy which 
combines decisions from classifiers trained on individual 
channels data outperformed a features fusion strategy. The 
results also show that the choice of the base classier, and 
the alpha factor used to update the member classifiers of 
the ensemble have an effect on the performance of the 
ensemble. The corrugator and zygomatic facial EMGs were 
found to be more reliable measures for detecting valence 
than arousal compared to other channels.

The remainder of this paper is organized as follows. Sec-
tion 2 gives an overview on affect detection using physio-
logical data. Section 3 describes the procedure of collecting 

affective physiological data and the computational methods 
employed for features extraction and classification. Sec-
tion 4 presents our results, while Sect. 5 provides discus-
sions and avenues for future work.

2  Background and related work

2.1  Physiological-based affect detection

According to Lazarus (1991) people adapt to their envi-
ronment and to emotional stimuli via autonomic nervous 
system (ANS) responses. Therefore, patterns of ANS activ-
ity should be correlated with particular emotional states. 
For example, research has revealed consistent changes in 
facial electromyogram (EMG), particularly the corrugator 
muscle, in response to pleasant or unpleasant stimuli (Lee 
et al. 2009). Similarly, electrocardiogram (ECG) features, 
such as heart rate (HR) and HR variability, can both be 
used as indicators of valence and arousal (van den Broek 
et al. 2009). Skin conductivity (SC) has been traditionally 
considered to be an index of arousal (Levenson 1992). Res-
piratory patterns may reflect and distinguish between emo-
tional states such as calmness versus excitement (Allanson 
and Fairclough 2004).

Research on emotion has typically relied on a set of dis-
crete emotional prototypes or basic emotions (e.g., happi-
ness, sadness) (Ekman 1992). As opposed to the existence 
of discrete basic emotions, Russell (1980) suggested that 
affective experience is best described in the two-dimen-
sional space of valence and arousal. The arousal dimen-
sion ranges from highly deactivated to highly activated (or 
sleepy to active), and the valence dimension from highly 
unpleasant to highly pleasant. For example, happiness is 
considered to have a positive valence and high arousal. 
On the other hand, sadness has a negative valence and low 
arousal. According to Ekman (1994), emotions are short-
lived, ranging from seconds to minutes at most.

Recent research has utilized physiological signals for 
affect detection of both arousal and valence. Kim and 
André (2008) used physiological signals to detect levels of 
valence and arousal during music listening. They recorded 
ECG, facial EMG, SC, and respiration (RSP) from three 
participants. Using an LDA classifier, they achieved 89 % 
classification accuracy for high/low valence, and 77 % 
for high/low arousal. Similarly, Lichtenstein et al. (2008) 
recorded physiological data (ECG, SC, EMG, RSP, and 
skin temperature) while 41 participants watched emo-
tionally charged films. They were able to detect high/low 
arousal with 82 % accuracy and 72 % for high/low valence 
using a support vector machine (SVM) classifier. Like-
wise, Picard et al. (2001) recorded physiological data over 
a period of 20 days from one participant (an actor who was 
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asked to self-elicit a set of eight emotions). They faced 
the problem of degraded classification performance when 
data from multiple days were combined. They attempted 
to address the problem of day variation by including day 
information as additional classification features; however, 
this did not yield a significant improvement in accuracy.

Picard et al. (2001) attempted to address the prob-
lem of daily variations in physiological data by including 
day information as classification features. However, they 
reported insignificant increase in classification accuracy. 
Similarly Vyzas and Picard (1998) found that the underly-
ing mood appears to change the features values for all emo-
tions. However, it had less of an effect on the relative inter-
relations among emotions. Therefore, they emphasized 
the need for a real-time emotion detection system that can 
adapt to a person’s underlying mood.

It is anticipated that hardware and environmental fac-
tors that affect physiological data can be mitigated with 
advances in sensors and physiological recording devices 
technology. However, users’ factors cannot be easily alle-
viated. Applying an adaptive learning strategy could be a 
possible solution to address changes in physiological data. 
In the next section, we discuss in more detail the justifi-
cation for using adaptive and ensemble classification for 
affect detection from physiological data.

2.2  Approaches to adaptive classification in changing 
environments

Many affective computing studies have relied on the use of 
traditional batch static classification techniques (Kim and 
André 2008; Picard et al. 2001; Lichtenstein et al. 2008; 
Kim et al. 2004). These classification techniques learn a 
single model by examining a large collection of instances 
at one time. These techniques are based on the assumption 
that training and future testing data are obtained from a sta-
tionary distribution, therefore there is no updating mecha-
nism to their underlining model. In real-world scenarios, 
data is collected over time, which may range from seconds 
to days to years. Therefore, changes in the data characteris-
tics are inevitable (Nishida et al. 2005; Sayed-Mouchaweh 
and Lughofer 2012). According to Cieslak and Chawla 
(2009), the existence of a one-true-model or a well-cali-
brated classifier that is able to map every unseen example 
correctly assumes that data comes from a stationary distri-
bution. However, if the data distribution changes substan-
tially and unpredictably, the one-true-model may become 
irrelevant when applied to future instances. In other words, 
a pattern discovered by a model from past data may not be 
valid on the newly acquired data (Last 2002). It is widely 
acknowledged that humans learn in changing environments 
in a sequential manner by leveraging prior knowledge in 
new situations. Therefore, the ability to make human-like 

quick responses should be developed in machines to han-
dle real-world problems of this nature. Adaptive classi-
fiers promise to give machines this human-like capability 
(Angelov et al. 2010; Nishida et al. 2005). In contrast to 
traditional classification systems which require a large sam-
ple of training data and start learning from scratch, adaptive 
classifiers learn sequentially, as data comes in, through an 
update mechanize to their underlying model.

Ensemble learning is a promising approach for handling 
non-stationary data (Kuncheva 2004a; Yue et al. 2007). The 
ensemble consists of a group of classifiers that learn from 
the incoming data, instead of a single classifier. The idea 
is to train each ensemble member on a different data seg-
ment with an unknown rate of shift in distribution (Muh-
lbaier and Polikar, 2007). The final output of the ensemble 
will depend on some defined rules (e.g., majority voting). 
In the mathematical classical bias/variance trade-off, clas-
sifier ensembles offer an extra degree of freedom, which 
allow to obtain solutions that would be difficult with a sin-
gle classifier (Oza and Tumer 2008; Oza and Russell 2001). 
When time to make decisions is not the most important fac-
tor, but high accuracy is required, an ensemble would be 
a likely solution (Kuncheva 2004a). Efficient learning in 
changing environments requires a learning algorithm that 
can adapt quickly to a change in classification environment 
by adjusting its knowledge-base, and can utilize previously 
learned knowledge in situations where old contexts reap-
pear (Kuncheva 2004a; Widmer and Kubat 1996).

It has been established that much is to be gained from 
combining classifiers if the classifiers are as independent 
as possible and are trained in different regions of features 
space as they will be able to provide complementary infor-
mation (Duda et al. 2001; Polikar et al. 2001). Thus, the 
individual weakness or instability of each classifier can be 
effectively averaged out by the combination process, which 
may significantly improve generalization of the classifica-
tion system (Polikar 2006). In general, there are multiple 
design reasons to consider ensemble-based approaches 
(Jain et al. 2000; Webb 2002; Kuncheva 2004b; Polikar 
2006), including but not limited to the following:

•	 Different classifiers can be developed in different con-
texts/representation of the same problem. An example 
is person identification by their voice, face as well as 
handwriting.

•	 Different classifiers trained on the same data may show 
strong local and global differences when deciding deci-
sion boundaries between classes.

•	 Different classifiers can be trained to solve a problem 
that is too difficult, and the decision boundary that sepa-
rates classes is too complex. Thereby, using a divide and 
conquer strategy to break the problem into smaller sub-
problems.
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In emotion detection research ensemble classifiers 
have been found to offer some enhancement in accu-
racy rates compared to single classifiers. For example, 
Kuncheva et al. (2011) compared the performance of 
eight single classifiers and six ensemble methods for 
detecting negative and positive affective states from 
physiological data (EEG, EDA and pulse sensor). They 
found that ensemble methods outperformed single clas-
sifiers in all comparisons. This shows that ensemble 
methods have the potential for building more accurate 
and reliable automatic affect detection systems. Simi-
larly, AlZoubi et al. (2009) compared the performance of 
adaptive and static classification approaches for classify-
ing 10 affective states from electroencephalogram (EEG) 
signals. They used an adaptive algorithm that updates 
its knowledge base based on most recent examples, and 
deleting the oldest examples. Results showed that adap-
tive classifiers outperformed the static versions of the 
classifiers.

Adaptive classification techniques have been used to 
handle non-stationarities in two close domains of study: 
speech recognition and brain–computer interfaces (BCI). 
For example, Maier-Hein et al. (2005) implemented an 
adaptive approach to detect non-audible speech using seven 
EMG electrodes. They found that a key problem in sur-
face EMG-based speech recognition result from electrodes 
repositioning between recording sessions, temperature 
changes in the environment, and skin characteristics of the 
speaker. In order to reduce the impact of these factors, they 
investigated a variety of signal normalization and model 
adaptation methods. An average word accuracy of 97.3 % 
was achieved using seven EMG channels with the same 
electrode positions. The performance dropped to 76.2 % 
after repositioning the electrodes, when no normalization 
or adaptation was performed. However, they were able to 
restore the recognition rate to 87.1 % using adaptive clas-
sification methods.

Adaptive classification has also been employed in BCI 
research. BCI aims at giving the ability to control devices 
through mere thoughts by analyzing brain signals, such as 
Electroencephalogram (EEG). For example, Lowne et al. 
(2010) compared the performance of a dynamic classifica-
tion approach to a static classifier and a multilayer percep-
tron (MLP) classifier on an online BCI experiment. They 
used EEG data from eight participants during a wrist exten-
sion exercise; 20 % of the data were labeled with true labels 
(movement, non-movement). The three classifiers were 
then tested on the EEG data in a sequential manner (time 
ordered) to detect one of the two classes. The performance 
of the dynamic classifier was significantly higher than that 
of the static classifier and MLP. One important feature of 
the dynamic classifier is the active label requesting, which 
employs a probabilistic model and sets a threshold about 

the confidence of the predicted class label, if the confidence 
is low the classifier might issue a request for the true class 
label.

In summary, these studies show that classifier adaptation 
might be more suitable to handle non-stationary data. Our 
approach capitalizes on the advantages of both adaptive 
and ensemble classification techniques for classifying our 
affective physiological dataset.

2.3  Fusion techniques in multimodal affect detection

Affective information can be collected from multiple 
sources such as voice, facial expressions, and physiological 
signals. Therefore there is a need for techniques that com-
bine and synthesize information from these multimodal 
sources. This process is referred to as information fusion. 
There are a number of fusion techniques associated with 
multimodal emotion detection, such as features level fusion 
and decision level fusion (Zeng et al. 2009). Features level 
fusion aims at integrating extracted features from each 
modality into one joint features vector. The issue with this 
approach is that features from different signals might have 
different temporal resolutions, which may require synchro-
nization of the extracted features. On the other hand, deci-
sion level fusion aims at integrating asynchronous but tem-
porally correlated modalities. Each modality is classified 
independently and the final decision is obtained by fusing 
the decisions of all the modalities based on some criteria 
such as averaging or voting. Designing an optimal strategy 
for decision level fusion is still an open research problem 
(Kim and André 2006).

Chanel et al. (2006) found that fusion provides more 
robust results when combining EEG and peripheral sig-
nals related to ANS responses such as ECG, EMG, SC 
and RSP. According to the authors, some participants had 
better scores with peripheral signals than with EEG and 
vice-versa. Similarly, Kim and André (2006) found that 
features level fusion provided the best results using physi-
ological signals and voice modalities, noting that features 
level fusion is more appropriate when combining modali-
ties with analogous characteristics. In this study we evalu-
ate both fusion strategies.

3  Measures, data and methods

3.1  Participants and measures

Participants were six students enrolled in an Australian 
University (five males and one female), between 24 and 
39 years of age. Participants were paid for their participa-
tion in the study. The study was approved by the University 
of Sydney’s Human Ethics Research Committee (HERC), 
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and consents were obtained from participants prior to 
data collection. Physiological data included: electrocar-
diogram (ECG), skin conductivity (SC), electromyogram 
(EMG), and respiration (RSP). The physiological signals 
were acquired using BIOPAC MP150 system and Acq-
Knowledge software with a sampling rate of 1,000 Hz for 
all channels. The ECG signal was collected with two elec-
trodes placed on both wrists. EMG was recorded from the 
corrugator (eyebrow) and zygomatic (cheek) facial mus-
cles. The SC was recorded from the index and middle fin-
gers of the non-dominant hand, and a respiration belt fixed 
around the participant chest was used to measure respira-
tion activity. These sensors were non-invasive and caused 
minimal distress to participants. Figure  1 shows a partici-
pant with the sensors attached.

Physiological signals were filtered to remove environ-
mental noise including baseline drifts, artefacts resulting 
from movements, and mains interference. The ECG signal 
was high pass filtered at 0.05 Hz and low pass at 35 Hz, 
with a notch filter applied through the recording device. 
The EMG signal was high pass filtered at 10 Hz to remove 
low frequency artefacts such eye movements, eye blinks 
and motion potentials, and low pass filtered at 500 Hz. The 
SC and RSP signals were high pass filtered at 0.05 Hz in 
order to remove slow drifts, and low pass filtered at 1 Hz 
in order to remove high frequency noise. Figure  2 shows a 
sample of a recorded signal.

The affect-inducing stimulus consisted of set of 400 
images selected from the international affective pic-
ture system (IAPS) collection (Lang et al. 1995). The 
IAPS collection is designed to provide a set of normative 
emotional stimuli for the study of emotions and atten-
tion (Lang et al. 2005). The images were selected on the 

basis of their normative valence and arousal scores. The 
mean valence normed scores range from 1.40 to 8.34 
(M = 5.03, SD = 1.77), and mean arousal normed scores 
range from 1.72 to 7.35 (M = 4.82, SD = 1.55), on a 
scale from 1 to 9. Figure  3 shows the distribution of IAPS 
images on the valence/arousal plane.

Images were selected from the four quadrants of the 
valence–arousal plane, described in Table 1. The idea was 
to select images from the extremes of both valence and 
arousal in order to maximize the differences of partici-
pants’ physiological responses. The set of 400 images was 
then divided into five sets of 80 images each (20 images 
from each category). However, we consider the valence and 
arousal dimensions separately in the classification experi-
ments described in Sect. 4.

Only four participants were able to complete the five 
recording sessions, which was due to the distressing nature 
of some IAPS images. Therefore, only data from these four 

(a) (b)

(c) (d)

Fig. 1  Sensors’ placement. a EMG sensors; b RSP sensor; c ECG 
sensor; d SC sensor
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participants were used in the current study. We note that 
even though the participant sample size is small, each par-
ticipant was recorded over five sessions. This is consistent 
with the present goal of tracking variations within an indi-
vidual rather than across individuals.

3.2  Experimental procedure

Physiological signals were continuously recorded while 
participants viewed a set of emotionally charged IAPS 
images. Each recording session lasted approximately 
60 min. Emotional trials consisted of presenting each 
image for 12 s, followed by a 2× 2 affective grid (Russell 
et al., 1989) that asked participants to rate their levels of 
valence (positive, negative), and arousal (low, high). The 
affective grid had four buttons projected on the four quad-
rants of the valence/arousal plane, each button representing 
one of the categories described in Table 1. Next, a blank 
screen was presented for 8 s to allow physiological activ-
ity to return to baseline neutral levels before a new image 
was presented. Five images were presented consecutively 
from each category in order to maintain a stable emotional 
state for that category. This protocol was designed to suit 
the intended goals of our study and is based on previous 
research (Bradley and Lang 2007; Chanel et al. 2006). 
Each participant participated in five recording sessions, 
each separated by one week. A different set of images were 
presented for each session in order to prevent habituation 
effects. However, each set contained 20 images from each 
of the four categories described in Table 1.

3.3  Day-datasets

Day-datasets were constructed separately for the two affec-
tive measures of valence and arousal. Datasets were con-
structed for both IAPS-mapped categories and self-reports 
of participants. In total there were 80 datasets, (four par-
ticipants × five recording sessions × two affective meas-
ures (valence and arousal) × two ratings (IAPS and self-
reports)), with 80 instances in each dataset. IAPS ratings 
datasets had a balanced distribution of classes with 40 

instances for each class of positive/negative valence, and 
low/high arousal. On the other hand, self-reports had unbal-
anced distribution of classes. A down-sampling procedure, 
WEKA’s SpreadSubsample which produces a random sub-
sample of a dataset, was applied to obtain a balanced dis-
tribution of classes. Therefore, the baseline classification 
accuracy is (50 %) for both types of data sets. It should be 
noted that we did not opt to use oversampling procedures, 
since they can introduce artificial patterns that may affect 
the reliability or interpretation of results.

3.4  Features extraction

The MATLAB Augsburg Biosignal Toolbox (AuBT) (Wag-
ner et al. 2005) was used to extract features from the raw 
physiological data. A total of 214 statistical features (e.g. 
mean, median, standard deviation, maxima and minima) 
were extracted from the five physiological channels using 
window size of 12 s (the length of the emotional trial). The 
same statistical features were obtained for different trans-
formations of the signals, including RSP rate, amplitude of 
the RSP signal, heart rate variability (HRV) and amplitude 
of the different segments of the QRS complex of the ECG 
signal. These same features were also computed from the 
first and second derivatives of the signals and their transfor-
mations. It is known that the temporal resolution for these 
autonomic measures vary in response to emotional stimuli. 
In general, SC responses (SCR) can be observed 1–3 s 
after stimulus presentations. EMG responses are substan-
tially faster, however, the frequency of the muscle activ-
ity can be summed up over a period of time to indicate a 
change in behavior (Andreassi 2007). ECG and respiration 
responses are considered slower, but we were constrained 
to use a window size of 12 s because this was the length 
of a single trial. However, estimating short term cardiac 
and respiratory patterns is common in psychophysiology 
research area (Kreibig 2010). Overall, eighty-four features 
were extracted from ECG, 21 from SC, 21 from each of 
the EMG channels, and 67 from the RSP channel. A com-
plete description of these features can be found in Wagner 
(2009).

3.5  Classification methods

Algorithm 1 describes the Winnow updatable ensemble 
algorithm used in this study. Winnow is an ensemble based 
algorithm that is similar to a weighted majority voting 
algorithm because it combines decisions from ensemble 
members based on their weights (Kuncheva 2004a). How-
ever, it utilizes a different updating approach for member 
classifiers. This includes promoting ensemble members 
that make correct predictions and demoting those that make 
incorrect predictions. This updating strategy ensures that 

Table 1  The four quadrants, and mean values for valence and arousal

Quadrant Mean valence and arousal range

Positive-valence/low-arousal (valence-mean > 6.03 && 
arousal-mean < 5.47)

Positive-valence/high-arousal (valence-mean > 6.03 && 
arousal-mean > 5.47)

Negative-valence/high-arousal (valence-mean < 3.71 && 
arousal-mean > 5.47)

Negative-valence/low-arousal (valence-mean < 3.71 && 
arousal-mean < 5.47)
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correct decisions made by the ensemble are amplified, and 
incorrect ones are minimized. Updating of the weights is 
done automatically based on incoming data, which makes 
this approach suitable for online applications. In order to 
construct the ensemble, we used a fixed ensemble size, 
which is equal to the number of day-datasets per partici-
pant. In our approach, each day-dataset was used to train a 
separate classifier in batch mode, which was then added to 
the ensemble.

There are other adaptive ensemble classification algo-
rithms (e.g., Dynamic Weighted Majority, and Hedge β 
algorithms) described in literature (Kuncheva 2004a; Kolter 
and Maloof 2003). Some of these algorithms may have dif-
ferent strategies for building and updating the ensemble 
compared to the one described above. This simple adap-
tive ensemble algorithm was adopted in order to demon-
strate the efficacy of adaptive ensembles for handling non-
stationarities of physiological data in comparison to batch 
static classification. This decision was also motivated by 
the nature of the classification problem at hand, with data 
generated from multiple session recordings.

We used a fixed ensemble size of four base classifiers; 
each classifier trained on data from a single session record-
ing. The reason behind this decision is twofold. Firstly, 
the nature of the data; previous work showed that data that 
comes from each session showed high clustering cohesion 
compared to data from other sessions (AlZoubi et al. 2011). 
Each ensemble member can then be viewed as a special-
ist or an expert classifier. Secondly, the small data sample 
size; we only have data from five recording sessions. How-
ever, we believe that a dynamic ensemble size is mandatory 
when more data becomes available. In this case the lowest 
performing classifier/s can be removed from the ensemble 
and newer members are added. This is a common approach 
for online ensembles with large data throughput (Bifet 
et al. 2009).

The WEKA machine learning software (Witten and 
Frank 2005) and PRTools 4.0 (Heijden et al. 2004) were 
used for preprocessing, features selection and classifica-
tion. PRTools offers a variety of data preprocessing and 
classification methods that allow for the design of custom-
specific classification programs in MATLAB. Chi-square 
features selection was used to reduce the dimensionality of 
the features space in order to avoid various problems asso-
ciated with large features spaces. A preliminary analysis 
showed that using top-five ranked features were sufficient 
to produce consistent classification results without sacri-
ficing performance. Therefore, using Chi-square features 
selection, the top five features were selected from each 
dataset and used in all subsequent analysis.

4  Results

We first tested the effectiveness and reliability of the IAPS 
images for inducing both valence and arousal (using inter-
rater Cohen’s kappa as an evaluation metric). We then 
tested how diagnostic features of affect change over time 
by applying feature ranking (Chi-square) to separate day-
datasets. A number of training strategies were designed to 
help mitigate the issue of features changes over time. A 
number of experiments were carried out to test the perfor-
mance of the Winnow ensemble algorithm under different 
conditions of features engineering and selection. We tested 
four training strategies, which are: (1) static classification; 
(2) Winnow with pooled features; (3) Winnow with day-
specific features; and (4) Winnow with decision fusion 
from individual channels data. The details of these training 
strategies are explained below:

•	 Static classification (SCL) A single baseline classifica-
tion model was constructed from pooled data of four 
days, and testing was done on data from the remaining 

Algorithm 1 The Winnow ensemble algorithm

1 Initialization: Construct a classifier ensemble D = (D1, ..., Dn), each classifier is

trained in batch mode on a given dataset, Initialize all classifiers weights; Wi = 1.

i = 1 : n.

2 Classification: For a new example X, calculate the support for each class as the sum

of the weights of all member classifiers Di that suggest class label Ck for X. Set X to

the class with largest support. K = 1:number of classes.

3 Updating: if X is classified correctly by classifier Di then its weight is increased

(promotion): Wi = alpha ∗Wi, where alpha > 1. If classifier Di incorrectly classifies X,

then its weight is decreased (demotion): Wi = Wi/alpha
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day. This process was repeated five times in order to test 
on all available data. This training strategy represents a 
static classification approach without an update mecha-
nism.

•	 Winnow with pooled features (WPF) The Winnow ensem-
ble algorithm was run with an ensemble of four base clas-
sifiers each trained on a pooled features set. Pooled fea-
tures are features selected from four days data combined. 
Testing was done on the remaining day-data. The proce-
dure was repeated five times to test on all available data.

•	 Winnow with day-specific features (WSP) The Winnow 
ensemble algorithm was run with an ensemble of four 
base classifiers each trained on a separate day–specific 
features dataset. Testing was done on the remaining 
day-data. The procedure was repeated five times to test 
on all available data.

•	 Winnow with decision fusion from individual chan-
nels data (WDF) This method used base classifiers that 
were trained on individual channels data using pooled 
features. Using datasets from four days, a new member 
classifier was constructed from the five physiological 
measures resulting in an ensemble with 20 classifiers. 
Testing was done on the remaining day-data. The pro-
cedure was repeated five times to test on all available 
data. In order to classify a new example, the decisions 
of these base classifiers are combined using the Winnow 
decision fusion strategy.

The fundamental assumption behind utilizing classifica-
tion techniques is that pre-trained classification models can 
be used to predict future unseen input. Thus, a day cross-
validation procedure was adopted so that training data 
included data from four days, and the fifth day-data was 
used for testing. This procedure was repeated five times 
to test on all day-datasets. The objective of this analysis 
is to assess the accuracy of classifiers that are trained on 

different day-data to predict exemplars from other days. 
We also test the effect of individual physiological channels 
on affect detection accuracy. In addition, we evaluated the 
effect of the two factors that can affect the performance of 
the Winnow ensemble. These are: (a) The baseline classi-
fier; and (b) The alpha factor used to update the weights of 
the ensemble.

4.1  The effectiveness of IAPS at inducing affect

We used inter-rater Cohen’s Kappa to test the effectiveness 
of the IAPS stimuli in inducing both valence and arousal. 
We test the level of agreement between participants’ self-
reports and IAPS normative ratings. Participants’ self-
reported valence showed higher agreement (kappa = 0.89) 
with IAPS normative ratings, whereas arousal self-reported 
arousal did not show that level of agreement (kappa = 0.41).  
It is evident that the IAPS stimuli were quite successful in 
eliciting valence, but was much less effective in influencing 
arousal. However, both ratings dimensions will be used to 
assess affect detection accuracy.

4.2  Day-specific features

As an example of how diagnostic features change across 
days, Table 2 presents the results of Chi-square features 
selection applied to participant S1 (applied to each day-data 
separately). It can be seen from the list of features that the 
diagnostic features are different for each day. The Chi-
square value represents the degree of relevance of a feature 
to class category. Table 2 presents the features selected from 
one participant using IAPS ratings only, however data from 
other participants showed similar patterns. An interesting 
observation is that there are some features which reoccur 
on different days (e.g., ZYG-EMG-1Diff-maxRatio, ZYG-
EMG-1Diff-minRatio). This is promising as it allows for 

Table 2  The top five selected features using Chi-square features selection performed on day-data separately for participant S1 with valence 
(IAPS) as class label

* ZYG zygomatic facial muscle, Amp amplitude, min minimum, max maximum, HRV heart rate variability, 1Diff first difference, 2Diff second 
difference

Chi square/feature name

Day 1 features Day 2 features Day 3 features Day 4 features Day 5 features

43 SC-2Diff-minRatio 23 ZYG-EMG-1Diff-minRatio 10 SC-1Diff-minRatio 16 ZYG-EMG-max 28 ZYG-EMG-2Diff-
minRatio

43 SC-2Diff-maxRatio 23 ZYG-EMG-1DiffmaxRatio 10 RSP-Ampl-1Diff-max 10 ECG-QS-min 26 SC-2Diff-maxRatio

23 ZYG-EMG-1Diff-
maxRatio

14 RSP-2Diff-range 10 SC-1Diff-maxRatio 9 ECG-QS-range 2 4 SC-2Diff-minRatio

23 ZYG-EMG-1Diff-
minRatio

13 RSP-2Diff-min 76 RSP-Ampl2Diff-maxRatio 8 ECG-HrvDistr-mean 23 ZYG-EMG-2Diff-
maxRatio

23 RSP-Pulse-max 12 ZYG-EMG-2Diff-mean 5 ECG-HrvDistr-mean 6 RSP-Pulse1Diff- 
maxRatio

12 RSP-Ampl-mean
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easier calibration of affect detection classification models. 
However this leaves us the question of whether classifica-
tion models that are built from these day-specific features 
are more accurate than those built using pooled features.

4.3  Winnow results with day-specific and pooled features

The SCL, WPF, and WSF training strategies were used 
to classify data from the four categories; valence-IAPS, 
arousal-IAPS, valence-self, and arousal-self. The results in 
Table 3 were obtained using features fusion from all five 
physiological channels; top five features were selected 
from all channels. A SVM classifier with a linear ker-
nel was used as a base classifier for the training. We also 
used the same training strategies to classify individual 
channels data. Table 4 shows the classification accura-
cies for the individual physiological channels for the four 
emotional categories using pooled features only. Results 
for day cross-validation and day-specific features are not 
shown here but will be outlined in the analysis of variance 
(ANOVA) analysis described next.

In order to examine the effect of training strategy on 
affect detection accuracy, an ANOVA was conducted on 
all accuracy scores obtained from the above described 
procedures. This is a one-way ANOVA with accuracy 
as the dependent variable and training strategy (SCL, 
WPF, WSF) as the independent variable. The analy-
sis showed significant main effect for training strategy 
(F(2,285) = 57.67, p < 0.05). Bonferroni posthoc tests 
revealed that accuracy scores for WPF (M = 65.14) 
were higher than those for WSF (M = 57.81) and SCL 
(M = 55.55). The accuracy scores using WPF and WSP 
were higher than SCL baseline accuracy. This indicates that 
we were able to leverage the dynamic learning ability of 
Winnow algorithm to enhance classification accuracy. We 
also found that WPF outperformed WSF, although we were 
expecting that day-specific features would provide higher 
performance. The explanation for the lower performance of 
day-specific features might be that day-data tends to have 
higher clustering cohesion compared to data for the same 
emotion category across multiple days. This suggests that 
using pooled features are more suitable for building predic-
tive models of affect than using day-specific features.

4.4  Physiological channels effect on affect detection 
accuracy

The effect of both channel and emotion on affect detec-
tion accuracy was tested using a two-way ANOVA. The 
ANOVA was conducted on accuracy scores obtained 
from the WPF training strategy. We found signifi-
cant main effect of channel (F(5,72) = 12.60, p < 0.05).  
Posthoc tests revealed that accuracy scores for EMG-
cur (M = 69.87) and features fusion (M = 72.25) were 
significantly higher than for other channels ECG 
(M = 62.37), EMG-zyg (M = 58.5), RSP (M = 61.62), 
and SC (M = 61.62). We did not find significant effect 

Table 3  Average classification 
accuracies using static 
classification (SCL), Winnow 
with pooled features (WPF), 
and Winnow with specific 
features (WSP) for four 
participants (S1–S4), using 
features fusion from all 
channels (%)

Subject Id Valence (IAPS) Arousal (IAPS) Valence (self) Arousal (self)

SCL WPF WSF SCL WPF WSF SCL WPF WSF SCL WPF WSF

S1 59 74 64 52 72 56 52 73 68 50 63 62

S2 54 63 61 51 69 53 53 62 59 49 65 48

S3 50 74 61 52 75 49 51 79 64 51 76 60

S4 50 76 54 48 73 59 50 70 54 52 69 69

Average 53.25 71.75 60.00 50.75 72.25 54.25 51.50 71.00 61.25 50.50 68.25 59.75

Table 4  Average classification accuracy using WPF from individual 
channels data (%)

Subject Id ECG EMGcur EMGzyg SC RSP

Valence (IAPS)

 S1 58 76 73 71 60

 S2 55 65 58 62 61

 S3 63 86 69 60 59

 S4 58 88 74 54 59

 Average 58.50 78.75 68.50 61.75 59.75

Arousal (IAPS)

 S1 62 68 59 54 61

 S2 68 79 60 60 57

 S3 61 60 63 61 70

 S4 58 74 57 58 57

 Average 62.25 70.25 59.75 58.25 61.25

Valence (self)

 S1 61 71 67 71 63

 S2 64 64 61 63 63

 S3 65 67 66 60 59

 S4 57 88 74 52 63

 Average 61.75 72.50 67.00 61.50 62.00

Arousal (self)

 S1 59 67 60 56 58

 S2 58 68 62 66 59

 S3 70 70 50 67 67

 S4 63 73 57 71 64

 Average 62.50 69.50 57.25 65.00 62.00
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for emotion category (F(3,72) = 1.14, p = 0.34). But 
when the levels of emotional categories were decreased 
to two (valence, arousal), the effect of emotion was 
only marginally insignificant (F(1,84) = 3.5, p = 0.065).  
However, a significant effect (F(5,84) = 2.36, p < 0.05)  
for the interaction between channel and emotion was 
found.

The interaction effect was further explored by 
conducting simple effects test. The test revealed 
that EMG-cur (F(1,84) = 4, p < 0.05), and EMG-
zyg (F(1, 84) = 10.44, p < 0.05) were more use-
ful for detecting valence than arousal. Other chan-
nels, ECG (F(1,84) = 43, p = 0.62), features fusion 
(F(1,84) = 70, p = 0.15), RSP (F(1,84) = 0.07, p = 0.79),  
and SC (F(1,84) = 0, p = 0.99), were equally likely to 
detect both valence and arousal with the same accuracy. 
Figure  4 shows the interaction effect between chan-
nel and emotion. Previous research has shown that SC 
for example is more useful for detecting arousal than 
valence (Levenson 1992; Lang 1995). Our findings were 
in accordance with the literature with regards to both 
EMG channels. The corrugator and zygomatic EMG have 

always shown consistent changes with the valence com-
ponent of emotion (Hamm et al. 2003). On the other hand, 
previous research has always considered SC as an index 
of arousal (Levenson 1992), but this was not observed 
here.

Our results show that detecting arousal with acceptable 
accuracy required more physiological markers in com-
parison to valence. It can be seen from Fig. 4 that features 
fusion has the highest mean compared to other channels for 
detecting arousal component. The literature is somehow 
inconsistent in this regard, with studies reporting higher 
detection rates for arousal than valence (Haag et al. 2004; 
Lichtenstein et al. 2008) and the contrary (Kim and André 
2008). However, an interesting study conducted by Gomez 
et al. (2009) found that induced physiological changes of 
participants’ valence lasted longer than those of arousal 
which dissipates quickly. This might explain the higher 
detection rates of valence compared to arousal. However, 
it should also be noted that some researchers state that 
valence detection can be more difficult to detect compared 
to arousal as valence information is conveyed more subtly 
(Picard 1997).

4.5  Classifier and alpha factor effect on the performance 
of the Winnow ensemble

In this experiment we tested the two main factors that may 
have an effect on the performance of the Winnow ensem-
ble. These are the base classifier, and the alpha factor. In 
order to test the classifier effect, we used a WPF strategy 
with different base classifiers. These are listed in Table 5. 
SVMs and linear perceptron are attractive methods due to 
their high generalization capability, while k-nearest neigh-
bor classifier is a good choice, especially with small data-
sets (Alzoubi 2012). NaiveBayes was included as a stand-
ard bench mark method. We used data from all participants, 
but we used one category (valence-IAPS) only as a dem-
onstration. In this experiment, the alpha factor was set to 
two. We conducted one-way ANOVA on accuracy scores 
obtained from training the ensemble with different base 

ECG EMGcur EMGzyg Feature fusion RSP SC
55

60

65

70

75

80

Channel

E
st

im
at

ed
 m

ar
gi

na
l m

ea
ns

 

 

Arousal

Valence
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Table 5  Base classifiers description

Classifier Description

SVM-linear Support vector machine classifier that combines a maximal margin strategy with a kernel method to find an optimal boundary in 
the features space, this process is called a kernel machine. The machine is trained according to the structural risk minimization 
criterion. svm-linear uses a linear kernel

KNNC K-nearest neighbor, classical instance-based algorithm; uses normalized Euclidean distance, k is optimized using the leave-one 
error. It assigns the class label by majority voting among nearest neighbors

SVM-sigmoid support vector machine classifier with sigmoid kernel.

perlc Linear perceptron classifier, learning rate set to 0.1

naivebc Naive Bayes, standard probabilistic classifier, the classifier assigns an example to the class that has the maximum estimated 
posterior probability
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classifiers. We found significant differences in the perfor-
mance of the Winnow ensemble with different base clas-
sifiers (F(4,75) = 9.06, p < 0.05). Bonferroni posthoc tests 
revealed that accuracy scores for SVM with a linear ker-
nel (M = 70.81) and Linear perceptron (M = 68.94) were 
higher than those for K-nearest neighbor (M = 62.25), 
Naive Bayes (M = 61.75), and SVM with sigmoid kernel 
(M = 66.31). Figure 5 shows an error bar chart of the clas-
sifier accuracy data. The error bars show the 95 % confi-
dence interval around the mean. These results indicate that 
the choice of the base classifier has an effect on the perfor-
mance of the ensemble. It is known that there is no classi-
fication algorithm that can outperform all other methods in 
all contexts (Duda et al. 2001).

We tested the performance of the ensemble for a range 
of alpha values (1.1–10) with the same base classifiers 
mentioned earlier. Figure 6 shows a plot of accuracy scores, 
averaged across all participants’ data, against alpha values. 

It can be seen that accuracy scores peek around (alpha = 2),  
and remain relatively stable afterward. Previous research 
has shown that setting alpha to two is a proper choice 
(Kuncheva 2004a).

4.6  Individual channels decision fusion

There are a number of fusion techniques that are used to 
fuse affective information from multiple channels. These 
were discussed in Sect. 2.3. Table 6 shows classification 
accuracy scores obtained using WDF training strategy. We 
compare the performance of decision fusion training strat-
egy (WDF) to that of features level fusion represented by 
(WPF) training strategy. The WPF selects features from 
all physiological channels, so it represents a features level 
fusion strategy. We conducted one-way ANOVA on accu-
racy scores obtained from both training strategies and using 
different base classifiers. We found significant differences in 
the performance of the Winnow ensemble by using the two 
training strategies (F(1,158) = 74.27, p < 0.05). The mean 
for WDF was (M = 75.67), and for WPF (M = 66.01).  
This indicates that decision fusion from individual inde-
pendent channels’ data outperformed the features fusion 
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Table 6  Average classification accuracies obtained using WDP train-
ing strategy (%)

Subject Id svmlinear knnc svmsigmoid perlc naivebc

Valence (IAPS)

 S1 67 83 65 74 70

 S2 82 71 82 77 83

 S3 84 82 78 84 79

 S4 86 88 84 84 84

 Average 79.75 81.00 77.25 79.75 79.00

Arousal (IAPS)

 S1 77 77 77 83 81

 S2 76 80 70 81 73

 S3 74 81 76 82 82

 S4 84 80 82 82 84

 Average 77.75 79.50 76.25 82.00 80.00

Valence (self)

 S1 66 67 63 75 65

 S2 82 76 81 86 87

 S3 58 71 53 76 72

 S4 85 83 83 82 83

 Average 72.75 74.25 70.00 79.75 76.75

Arousal (self)

 S1 69 67 66 75 70

 S2 70 66 67 62 59

 S3 64 63 76 72 70

 S4 74 76 71 78 76

 Average 69.25 68.00 70.00 71.75 68.75
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strategy. This could be due to the nature of asynchronous 
physiological markers of affect occurring at different times 
within a specific time frame in response to a stimulus. 
Similar findings were observed in similar setups by fusing 
decisions obtained from EEG and peripheral physiological 
signals (Chanel et al. 2006).

5  Discussions and conclusions

We have shown that diagnostic physiological features of 
affect exhibit daily variations. This is a challenging issue 
for building effective physiological-based affect detection 
systems. In order to be able to detect affect from future 
physiological data, there is a need for a classification sys-
tem that can handle these day/session variations. We have 
shown that a classifier ensemble approach offer such a 
capability by combining multiple classifier’s decisions and 
updating their weights according to their performance. This 
enhances the generalization capability of the system on 
future data. Our analysis showed that affect detection using 
day-specific features did not yield improved performance 
over using pooled features set. Our analysis also showed 
that a decision fusion strategy which combines decisions 
from classifiers trained on individual channels data of each 
day (WDF) outperformed a features fusion strategy (WPF). 
We have tested the two factors that may have an effect on 
the performance of the ensemble. We found that the per-
formance of the ensemble is affected by the choice of the 
base classifier—SVM with a linear kernel provided robust 
performance. We also found that the alpha factor with val-
ues close to 2 provided the best performance. The facial 
EMG of corrugator and zygomatic were more predictive 
of valence than arousal compared to ECG, RSP and SC. 
This should have implications if designers of affect detec-
tion systems were more interested in detecting valence than 
arousal. This also might suggest that facial EMG is more 
reliable than other measures when considering affect detec-
tion over multiple sessions. Additionally, EMG-cur and a 
fusion of features from all channels yielded the highest rec-
ognition rates for both valence and arousal.

Adaptive classification enhanced the detection rate of 
affect on this type of changing data compared to static clas-
sification. However, there are a number of limitations with 
this approach. First, adaptation comes with the cost of addi-
tional complexity, and computation time. This might not be 
favorable if time for making decisions is critical. Second, 
there is no single adaption system that fits all uses, since it 
is application dependent. Third, the updating mechanism of 
the system might require (at some point) the existence of 
true class labels (ground truth). The absence of ground truth 
when needed might affect the performance of an adaptive 
classification system. Although ground truth labels could 

be potentially estimated using unsupervised techniques, 
this comes with additional complexity and time cost. Alter-
natively, ground truth labels can be obtained from users 
when the confidence about the predicted class label drops 
below a certain level and a user intervention is needed in 
order to maintain the consistency of the system. This might 
not seem practical, however obtaining periodic and sparse 
self-reports of emotions from users will help maintain the 
effective operation and consistency of the system.

When more data becomes available, the ensemble size 
may grow unbound. In order to control the size of the 
ensemble, making structural changes for the ensemble is 
inevitable. This can be done by removing some of lowest 
performing member classifiers. This is necessary when fast 
decisions in real time is required. One primary advantage 
of the use of the ensemble is that there is no need to retrain 
existing member classifiers; only newly added member 
classifiers are needed to be trained on the newly available 
data, thereby saving time when these kinds of structural 
changes are required.

This study has provided evidence on the time-varying 
nature of affective physiological data as indicated from 
data that was acquired on multiple recording sessions. 
This characteristic of the data affected the performance of 
static classifiers which assume stationarity of the data con-
siderably, with performance near baseline. This has major 
implication on building automatic physiology-based affect 
detectors. As an alternative to static classification approach, 
an updatable ensemble-based classification approach 
proved to offer significant performance enhancement over 
static classifiers. Although the results of the ensemble were 
moderate, they warrant improvement via further research. 
Classifiers ensemble with an update mechanism could pos-
sibly offer solutions to many problems that result from the 
time-varying nature of physiological data. For example, 
the classifiers ensemble approach might be able to address 
changes in the classification environment which include 
(1) data distribution changes (features space), as is the case 
when data is obtained from different days or sessions, (2) 
changes in class distribution, which are quite prevalent dur-
ing naturalistic interactions, (3) changes in diagnostic fea-
tures, where features for discriminating particular affective 
states may change over time, (4) the introduction of new 
users over time, i.e., building user-independent models. 
Therefore, an updatable ensemble-based modeling tech-
nique might be a more practical option for building real-
world affect detection systems than static classifiers which 
are trained on initial data and are never updated to reflect 
new data.

There are two primary limitations with the present study. 
One limitation of our work is the relatively small sample size, 
so replication with a larger sample is warranted. The second 
limitation is that emotions were artificially induced rather 
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than spontaneously experienced. This approach was adopted 
because strict laboratory control was desired for assessing the 
day-data phenomenon. These types of methodological issues 
can only be solved in larger studies. Thus, replicating this 
research in more naturalistic contexts is an important step for 
future work. Naturalistic affective interactions cover a wide 
range of applications; one such example that stirred interest 
from researchers is recording emotional responses of call 
center workers going under various degrees of stress.

References

Allanson J, Fairclough SH (2004) A research agenda for physiologi-
cal computing. Interact Comput 16(5):857–878

Alzoubi O (2012) Automatic affect detection from physiologi-
cal signals: practical issues. PhD thesis, University of Sydney, 
Camperdown

AlZoubi O, D’Mello SK, Calvo RA (2012) Detecting naturalistic 
expressions of nonbasic affect using physiological signals. IEEE 
Trans Affect Comput 3(3):298–310

AlZoubi O, Calvo RA, Stevens RH (2009) Classification of EEG for 
affect recognition: an adaptive approach. In: Nicholson A, Li X 
(eds) AI 2009: advances in artificial intelligence. Springer, Hei-
delberg, pp 52–61

AlZoubi O, Hussain MS, D’Mello S, Calvo RA (2011) Affective 
modeling from multichannel physiology: analysis of day dif-
ferences. In: Proceedings of the 4th international conference on 
affective computing and intelligent interaction, vol I. Springer, 
Heidelberg, pp 4–13

Andreassi JL (2007) Psychophysiology: human behavior and physi-
ological response, 5th edn. Lawrence Erlbaum Associates, New 
Jersey

Angelov P, Filev DP, Kasabov N (2010) Evolving intelligent systems: 
methodology and applications, vol 12. Wiley, New York

Bifet A, Holmes G, Pfahringer B, Kirkby R, Gavaldà R (2009) New 
ensemble methods for evolving data streams. In: Proceedings of 
the 15th ACM SIGKDD international conference on knowledge 
discovery and data mining, ACM, New York, NY, USA, KDD 
’09, pp 139–148

Bradley M, Lang PJ (2007) The international affective picture system 
(IAPS) in the study of emotion and attention. Oxford University 
Press, New York, pp 29–46

van den Broek EL, Schut MH, Westerink JHDM, Tuinenbreijer K 
(2009) Unobtrusive sensing of emotions (use). J Ambient Intell 
Smart Environ 1(3):287–299

Chanel G, Kronegg J, Grandjean D, Pun T (2006) Emotion assess-
ment: arousal evaluation using eegs and peripheral physiologi-
cal signals. In: Gunsel B, Jain AK, Tekalp AM, Sankur B (eds) 
Multimedia content representation, classification and security. 
Springer, Heidelberg, pp 530–537

Cieslak D, Chawla N (2009) A framework for monitoring classifi-
ers performance: when and why failure occurs? Knowl Inf Syst 
18(1):83–109

Duda R, Hart P, Stork D (2001) Pattern classification. Wiley, New 
York

Ekman P (1992) An argument for basic emotions. Cognit Emot 
6(3):169–200

Ekman P (1994) Moods, emotions and traits. Oxford University Press, 
New York, 56–58

Gomez P, Zimmermann PG, Schär SG, Danuser B (2009) Valence 
lasts longer than arousal. J Psychophysiol 23(1):7–17

Haag A, Goronzy S, Schaich P, Williams J (2004) Emotion recogni-
tion using bio-sensors: first steps towards an automatic system. 
In: André E, Dybkjaer L, Minker W, Heisterkamp P (eds) Affec-
tive dialogue systems. Springer, Heidelberg, pp 36–48

Hamm AO, Schupp HT, Weike AI (2003) Motivational organization 
of emotions: autonomic changes, cortical responses, and reflex 
modulation. In: Davidson RJ, Scherer KR, Goldsmith HH (eds) 
Handbook of affective sciences. Oxford university press, Oxford, 
UK, pp 187–211

Heijden F, Duin R, Ridder D, Tax D (2004) Classification, parameter 
estimation and state estimation—an engineering approach using 
Matlab. Wiley, Chichester, UK

Jain AK, Duin RPW, Jianchang M (2000) Statistical pattern recogni-
tion: a review. IEEE Trans Pattern Anal Mach Intell 22(1):4–37

Kim K, Bang S, Kim S (2004) Emotion recognition system using 
short-term monitoring of physiological signals. Medical Biol Eng 
Comput 42(3):419–427

Kim J, André E (2006) Emotion recognition using physiological and 
speech signal in short-term observation. Perception and interac-
tive technologies. Springer, Berlin, pp 53–64

Kim J, André E (2008) Emotion recognition based on physiological 
changes in music listening. IEEE Trans Pattern Anal Mach Intell 
30(12):2067–2083

Kolter JZ, Maloof M (2003) Dynamic weighted majority: a new ensem-
ble method for tracking concept drift. In: Third IEEE international 
conference on data mining, ICDM 2003, 2003. IEEE, pp 123–130

Kreibig SD (2010) Autonomic nervous system activity in emotion: a 
review. Biol Psychol 84(3):394–421

Kuncheva L (2004a) Classifier ensembles for changing environments. 
In: Roli F, Kittler J, Windeatt T (eds) Multiple classifier systems, 
vol 3077., Lecture notes in computer scienceSpringer, Berlin, pp 
1–15

Kuncheva L (2004b) Combining pattern classifiers: methods and 
algorithms. Wiley, Hoboken, NJ

Kuncheva L, Christy T, Pierce I, Mansoor S (2011) Multi-modal 
biometric emotion recognition using classifier ensembles. In: 
Mehrotra K, Mohan C, Oh J, Varshney P, Ali M (eds) Modern 
approaches in applied intelligence, vol 6703., Lecture notes in 
computer scienceSpringer, Berlin, pp 317–326

Lang PJ, Bradley MM, Cuthbert BN et al (2005) International affec-
tive picture system (IAPS): affective ratings of pictures and 
instruction manual. NIMH, Center for the Study of Emotion and 
Attention, University of Florida, Gainesville, FL

Lang PJ (1995) The emotion probe. studies of motivation and atten-
tion. Am Psychol 50(5):372–385

Lang PJ, Bradley MM, Cuthbert BN (1995) International affective 
picture system (IAPS): technical manual and affective ratings. 
The Center for Research in Psychophysiology, University of 
Florida, Gainesville, FL

Last M (2002) Online classification of nonstationary data streams. 
Intell Data Anal 6(2):129–147

Lazarus R (1991) Emotion and adaptation. Oxford University Press, 
New York

Lee H, Shackman A, Jackson D, Davidson R (2009) Test–retest 
reliability of voluntary emotion regulation. Psychophysiol 
46(4):874–879

Levenson RW (1992) Autonomic nervous system differences among 
emotions. Psychol Sci 3(1):23–27

Lichtenstein A, Oehme A, Kupschick S, Jrgensohn T, (2008) Compar-
ing two emotion models for deriving affective states from physi-
ological data. In: Peter C, Beale R (eds) Affect and emotion in 
human–computer interaction, vol 4868. Lecture notes in com-
puter science. Springer, Berlin, pp 35–50

Lowne DR, Roberts SJ, Garnett R (2010) Sequential non-stationary 
dynamic classification with sparse feedback. Pattern Recognit 
43(3):897–905



92 Evolving Systems (2015) 6:79–92

1 3

Maier-Hein L, Metze F, Schultz T, Waibel A (2005) Session inde-
pendent non-audible speech recognition using surface electromy-
ography. In: IEEE workshop on automatic speech recognition and 
understanding, 2005, pp 331–336

Muhlbaier M, Polikar R (2007) An ensemble approach for incremen-
tal learning in nonstationary environments. In: Haindl M, Kittler 
J, Roli F (eds) Multiple classifier systems, vol 4472. Springer, 
Berlin, pp 490–500

Nishida K, Yamauchi K, Omori T (2005) ACE: adaptive classifiers–
ensemble system for concept-drifting environments. In: Oza 
N, Polikar R, Kittler J, Roli F (eds) Multiple classifier systems. 
Springer, Berlin. Lecture notes in computer science, vol 3541, pp 
176–185

Oza NC, Russell S (2001) Online bagging and boosting. In: Richard-
son T, Jaakkola T (eds) Artificial intelligence and statistics. Mor-
gan Kaufmann, Los Angeles, CA, pp 105–112

Oza NC, Tumer K (2008) Classifier ensembles: select real-world 
applications. Inf Fus 9(1):4–20

Picard RW (1997) Affective computing, 2nd edn. The MIT Press, 
Cambridge, MA

Picard RW, Vyzas E, Healey J (2001) Toward machine emotional 
intelligence: analysis of affective physiological state. IEEE Trans 
Pattern Anal Mach Intell 23(10):1175–1191

Plarre K, Raij A, Hossain M, Ali A, Nakajima M, al Absi M, Ertin E, 
Kamarck T, Kumar S, Scott M, Siewiorek D, Smailagic A, Witt-
mers L (2011) Continuous inference of psychological stress from 
sensory measurements collected in the natural environment. In: 
10th international conference on information processing in sensor 
networks (IPSN), 2011, pp 97–108

Polikar R, Upda L, Upda SS, Honavar V (2001) Learn++: an incre-
mental learning algorithm for supervised neural networks. IEEE 
Trans Syst Man Cybernet C: Applicat Rev 31(4):497–508

Polikar R (2006) Ensemble based systems in decision making. IEEE 
Circuits Syst Mag 6(3):21–45

Russell JA (1980) A circumplex model of affect. J Personal Soc Psy-
chol 39:1161–1178

Russell JA, Weiss A, Mendelsohn GA (1989) Affect grid: a single-
item scale of pleasure and arousal. J Personal Soc Psychol 
57(3):493–502

Sayed-Mouchaweh M, Lughofer E (2012) Learning in non-stationary 
environments. Springer, New York

Vyzas E, Picard RW (1998) Affective pattern classification. In: Can-
amero D (ed) Emotional and intelligent: the tangled knot of cog-
nition. Proceedings of the AAAI fall Symposium series. AAAI, 
Menlo Park, CA, pp 176–182

Wagner J (2009) Augsburg biosignal toolbox (aubt). http://hcm-
lab.de/files/project_content/33/219_AuBTGuide.pdf. Accessed 
25 Apr 2014

Wagner J, Kim J, André E (2005) From physiological signals to emo-
tions: implementing and comparing selected methods for feature 
extraction and classification. In: IEEE international conference 
on multimedia and expo, ICME 2005, pp 940–943

Webb AR (2002) Statistical pattern recognition. Wiley, New Jersey
Whang M, Lim J (2008) A physiological approach to affective com-

puting. In: Affective computing: focus on emotion expression, 
synthesis, and recognition. I-Tech Education and Publishing, 
Vienna, Austria, pp 310–318

Widmer G, Kubat M (1996) Learning in the presence of concept drift 
and hidden contexts. Mach Learn 23(1):69–101

Witten I, Frank E (2005) Data mining: practical machine learning 
tools and techniques, 2nd edn., Series in data management sys-
tems. Morgan Kaufmann, Burlington, MA

Yue S, Guojun M, Xu L, Chunnian L (2007) Mining concept drifts 
from data streams based on multi-classifiers. In: 21st interna-
tional conference on advanced information networking and appli-
cations workshops, AINAW ’07, 2007, vol 2, pp 257–263

Zeng ZH, Pantic M, Roisman GI, Huang TS (2009) A survey of affect 
recognition methods: audio, visual, and spontaneous expressions. 
IEEE Trans Pattern Anal Mach Intell 31(1):39–58

http://hcm-lab.de/files/project_content/33/219_AuBTGuide.pdf
http://hcm-lab.de/files/project_content/33/219_AuBTGuide.pdf

	Affect detection from non-stationary physiological data using ensemble classifiers
	Abstract 
	1 Introduction
	2 Background and related work
	2.1 Physiological-based affect detection
	2.2 Approaches to adaptive classification in changing environments
	2.3 Fusion techniques in multimodal affect detection

	3 Measures, data and methods
	3.1 Participants and measures
	3.2 Experimental procedure
	3.3 Day-datasets
	3.4 Features extraction
	3.5 Classification methods

	4 Results
	4.1 The effectiveness of IAPS at inducing affect
	4.2 Day-specific features
	4.3 Winnow results with day-specific and pooled features
	4.4 Physiological channels effect on affect detection accuracy
	4.5 Classifier and alpha factor effect on the performance of the Winnow ensemble
	4.6 Individual channels decision fusion

	5 Discussions and conclusions
	References




