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Abstract Evolving participatory learning (ePL) modeling

joins the concepts of participatory learning and evolving

fuzzy systems. It uses data streams to continuously adapt

the structure and functionality of fuzzy models. This paper

suggests an enhanced version of the ePL approach, called

ePL?, which includes both an utility measure to shrink

rule bases, and a variable cluster radius mechanism to

improve the cluster structure. These features are useful in

adaptive fuzzy rule-based modeling to recursively con-

struct local fuzzy models with variable zone of influence.

Moreover, ePL? extends ePL to multi-input, multi-output

fuzzy system modeling. Computational experiments con-

sidering financial returns volatility modeling and forecast-

ing are conducted to compare the performance of the ePL?

approach with state of the art fuzzy modeling methods and

with GARCH modeling. The experiments use actual data

of S&P 500 and Ibovespa stock market indexes. The results

suggest that the ePL? approach is highly capable to model

volatility dynamics, in a robust, flexible, parcimonious, and

autonomous way.

Keywords Adaptive systems � Participatory

learning � GARCH models � Forecasting � Volatility

1 Introduction

Real-world problem solving and decision making relies on

information management, involving high-volume and

complex non-stationary data streams. When handling

streaming data, data processing systems must extract

meaningful knowledge on line. In practice it is virtually

impossible to store all data and batch methods may become

unsuitable (Angelov and Zhou 2006). In the last decade,

data-driven rule/knowledge extraction methods have

emerged as a complementary approaches to develop

intelligent systems to deal with data streams (Attar et al.

2010; Shaker and Hüllermeier 2012). They assemble a

class of adaptive data processing and modeling systems

(Yager and Filev 1994; Kasabov 1996; Ljung 1999).

Evolving fuzzy systems (eFS) are an advanced form of

adaptive systems because they have the ability to simul-

taneous learn the model structure and functionality from

flows of data. eFS have been useful to develop adaptive

fuzzy rule-based models, control systems, neural fuzzy,

and fuzzy regression and classification trees.

Typically, eFS consider functional rule-based systems in

which the structure (number of rules and antecedents/con-

sequent components) evolves continuously using clusters

created/excluded by recursive clustering algorithms (Lemos

et al. 2011). After a pioneering approach for online learning

of evolving Takagi-Sugeno (eTS) models (Angelov and

Filev 2004) and its extensions, Simpl_eTS (Angelov and

Filev 2005), and eXtended eTS (xTS) (Angelov and Zhou

2006); Angelov (2010) proposed the eTS?, an approach in

which the antecedent parameters and rule-base structure are

updated using criteria such as age, utility, local density and

zone of influence, comprising a robust, flexible and auton-

omous technique (can start from scratch and does not use

thresholds or user-specific parameters).
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Dovzan and Skrjanc (2011a, b) suggest an alternative

method for online identification of Takagi-Sugeno fuzzy

functional models. To learn rule antecedents, they use a

recursive fuzzy c-means (rFCM) algorithm. Distinctively

from eTS (Angelov and Filev 2004), in which cluster

centers can only be data samples with the largest potential,

in rFCM the cluster centers depend on a weighted mean of

the data (Dovzan and Skrjanc 2011a, b). They also suggest

a recursive Gustafson–Kessel (rGK) method to capture the

shapes of the clusters in the data set (Dovzan and Skrjanc

2011a, b). Combining the rGK algorithm and adaptation

mechanisms such as adding, removing, splitting and

merging, an evolving fuzzy model, called eFuMo (Dovzan

et al. 2012), was constructed and shown to be effective for

online identification of fuzzy rule-based models.

A distinct, but conceptually similar approach for adap-

tive TS modeling is the dynamic evolving neural-fuzzy

inference system model (DENFIS) (Kasabov 2002). This

approach uses a distance-based recursive clustering method

to adapt the rule base structure, and a weighted recursive

least squares with forgetting factor algorithm to update

rules consequent parameters. A recursive clustering algo-

rithm derived from a modification of the vector quantiza-

tion technique, called evolving vector quantization, is

another significant methodology to construct flexible fuzzy

inference systems (FLEXFIS) (Lughofer 2008). More

recent examples of eFS in the realm of neuro-fuzzy type-2

are the self-organizing fuzzy modeling and modified least-

squares network (SOFMLS) (Rubio 2009), and the

sequential adaptive fuzzy inference system (SAFIS) (Rong

et al. 2006). SOFMLS employs an evolving nearest

neighborhood clustering algorithm, whereas SAFIS uses a

distance criterion in conjunction with an influence measure

of the new rules created to construct and update the rule

base.

The fuzzy self-organizing neural network (Leng et al.

2005) is another alternative evolvable system that adopts

an error criterion to measure the generalization perfor-

mance of the network. Similarly, Tung et al. (2011)

suggest a self-adaptive fuzzy inference network (SaFIN)

with categorical learning-induced partitioning as a clus-

tering algorithm. The idea is to avoid the need for prior

knowledge regarding the number of clusters in the input–

output space. This model also shows the flexibility to

incorporate new knowledge in the system. There exist

other online techniques for TS fuzzy models identification

considering similar mechanisms to construct and adapt

their structure as the above-mentioned methods, such as

the self-organizing fuzzy neural network (SOFNN) (Qiao

and Wang 2008), the self-constructing fuzzy neural net-

work (SCFNN) (Lin et al. 2001) and the generalized

adaptive neuro-fuzzy inference system (GANFIS) (Azzem

et al. 2003).

As reported in Lemos et al. (2011), a weakness of the

recursive clustering algorithms adopted by most eFS

approaches is the lack of robustness due to noise or outli-

ers. In these situations, the algorithms may create new

clusters instead of rejecting or smoothing noisy data or

outliers. A method to improve robustness was suggested by

Lima et al. (2010), namely, evolving participatory learning

(ePL) fuzzy modeling. This approach joins the concept of

participatory learning (PL) (Yager 1990) with the idea of

evolving fuzzy modeling (Angelov and Filev 2004). Par-

ticipatory learning induces an unsupervised clustering

algorithm and is a natural candidate to develop rule base

structures in dynamic environments. Similarly as in eTS

modeling, structure identification and self-organization in

ePL estimates the focal points of the rules, except that ePL

uses PL fuzzy clustering instead of scattering, density, or

information potential, as eTS does.

Alternatively Hartert et al. (2010) propose a validation

phase in an adaptive fuzzy K-nearest neighbors (FKNN)

method to delete non-representative groupings (outliers)

and to merge similar clusters. In the eTS? model, this

problem is coped with the use of monitoring measures such

as age and utility. The eFuMo approach uses the method of

Hartert et al. (2010) to adapt the rule base and to handle

outliers. A pruning criterion evaluates if a cluster was

added due to an outlier. If the cluster does not gather

enough support samples after a certain period of time, then

it is removed.

In this paper, we introduce an enhanced version of the

evolving participatory learning model, namely ePL?,

which incorporates in ePL an utility measure and a variable

zone of influence of clusters. The utility measure allows

shrinking of fuzzy rule bases by removing rules that have

low utility (the data pattern shifts away from the focal point

of the rules), endowing rule bases with rules of higher

summarization power. Unlike the original version of the

ePL, ePL? modeling adapts the cluster radius, an impor-

tant parameter to determine the dispersion of membership

functions, and hence, to govern the zone of influence and

activation level of the fuzzy rules. Furthermore, ePL?

modeling gives multi-input, multi-output (MIMO) system

models.

We evaluate ePL? considering asset returns volatility

modeling and forecasting. Volatility plays a central role in

asset pricing, portfolio allocation and risk management.

Despite the widespread use of GARCH models (Engle

1982) to address volatility forecasting, GARCH method-

ologies have been criticized for failing to capture dynamics

of asset returns in highly unstable environments, as during

financial crisis (Kung and Yu 2008; Tseng et al. 2008). To

overcome this limitation, the idea is to use evolving fuzzy

modeling to avoid the high computational effort needed to

process data stored in databases, and to take advantage of
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the inherent adaptability of evolving models, an essential

requirement to handle nonlinear and non-stationary

behavior such as in volatility dynamics.

Recent literature reveals several applications of evolving

fuzzy rule-based models in finance and economics.

Examples include: Value-at-Risk modeling and forecasting

(Ballini et al. 2009a), sovereign bonds modeling (Ballini

et al. 2009b), exchange rates forecasting (McDonald and

Angelov 2010), fixed income option pricing (Maciel et al.

2012a, b, c), interest rate term structure forecasting (Maciel

et al. 2012a, b, c), financial volatility forecasting (Luna and

Ballini 2012a, b), and stochastic volatility prediction (Luna

and Ballini 2012a, b).

Methods based on fuzzy set theory have been also

developed to explain complex dynamics such as financial

time series volatility (Chang et al. 2011; Helin and Koiv-

isto 2011; Hung 2011a, b). Basically, these methods con-

struct hybrid models combining fuzzy systems and

GARCH models whose structure addresses both, time-

varying volatility and volatility clustering. For example,

Popov and Bykhanov (2005); Chang et al. (2011); Helin

and Koivisto (2011); Hung (2011a, b) combine fuzzy and

GARCH models to handle volatility modeling and fore-

casting. These modeling methods require high computa-

tional effort because they estimate the parameters of the

model using all data available in the database. This may be

troublesome in situations in which forecasts are needed

whenever new data arrive. Therefore, current hybrid

modeling methods may be prohibitive in dynamic envi-

ronments which involve volatility forecasting, immuniza-

tion strategies, portfolio allocation, and risk management.

Computational results reported in this paper include

comparison of ePL? modeling with state of the art

evolving fuzzy modeling methods, and with GARCH

modeling as benchmark. Simulations were done using

actual data of S&P 500 (US) and Ibovespa (Brazil) stock

market indexes from January 2000 to September 2011.

Comparisons consider goodness of fit and statistical tests.

After this introduction, the paper proceeds as follows.

Section 2 details ePL? modeling, that is, a recursive

scheme to learn the model structure and its parameters.

Section 3 summarizes the computational results for assets

returns volatility forecasting. Section 4 concludes the paper

and suggests issues for further investigation.

2 Enhanced evolving participatory learning modeling

(ePL1)

Evolving functional fuzzy participatory learning (ePL)

modeling adopts the same philosophy as the classical

evolving Takagi–Sugeno (eTS) methodology (Angelov and

Filev 2004). After the initialization phase, data processing

is performed at each step to verify if a new cluster must be

created, if an old cluster should be modified to account for

the new data, or if redundant clusters must be eliminated, in

an online-like mode. Cluster centers are the focal points of

the rules, and to each cluster corresponds a fuzzy rule.

Parameters of the consequent functions are computed using

the local recursive least squares method.

The main difference between ePL and eTS concerns the

procedure to update the rule base structure. Differently from

eTS, ePL uses a fuzzy similarity measure to determine the

proximity between new data and the existing rule base. The

rule base structure is isomorphic to the cluster structure once

each rule is associated with a cluster. Participatory learning

assumes that model learning depends on what the system

already knows about the model (Yager 1990). Therefore, in

ePL the current model is part of the evolving process itself

and influences the way in which new observations are used

for self-organization. An essential property of participatory

learning is that the impact of new data in causing self-orga-

nization or model revision depends on its compatibility with

the current rule base structure, or equivalently, on its com-

patibility with the current cluster structure.

In this paper, we suggest an enhanced version of the

evolving participatory learning model, called ePL?. There

are essentially three main additions in ePL? that enhances

ePL. First, in ePL, clusters radiuses, which represent the

zone of influence of membership functions, are fixed and

defined by expert knowledge. All membership functions of

the fuzzy rules have the same dispersion, and hence they

have the same shape in the input–output data space. In

contrast, ePL? adopts an adaptive mechanism to compute

the zone of influence of each rule. Therefore, cluster

radiuses are different and their values modify during

learning. Because dispersion affects the activation degree

of the fuzzy rules, the mechanism to determine their values

has a major impact in the performance of the model.

Second, the participatory learning clustering algorithm of

ePL eliminates redundant clusters whenever the compati-

bility measure between cluster centers are greater than a

user selected threshold, and no adaptive mechanism to

evaluate the rule base quality is provided. On the contrary,

ePL? includes an utility measure to evaluate, recursively,

the quality of the cluster structure, similar to eTS?

(Angelov 2010). The utility measure allows rule base

shrinking by removing low utility rules, keeping only rules

with high summarization power. Third, ePL modeling was

developed for online identification of multi-input-single-

output (MISO) fuzzy systems, whereas ePL? models

multi-input-multi-output (MIMO) systems as well. There-

fore, ePL? provides a more effective methodology than

ePL because it is computationally efficient, requires less

prior knowledge about the modeling environment, and

enhances applicability in handling multivariable systems.
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Next section describes the structure and parameter

learning mechanisms of ePL? modeling, emphasizing the

points that differ from ePL. Details of the ePL modeling

approach can be found in Lima (2008); Lima et al. (2010);

Maciel et al. (2012a, b, c).

2.1 The structure of ePL? models

ePL? modeling assumes fuzzy rule-based systems whose

rule consequents are functions of the rule antecedent

variables. They form local models called local fuzzy

functional models. From now on we consider, without loss

of generality, Takagi–Sugeno (TS) type of fuzzy models

with linear functions as rule consequents. More specifi-

cally, an ePL? model is a set of functional fuzzy rules of

the following form:

Ri :IF x1 is Ci
1 AND . . . AND xn is Ci

n THEN

yi
1 ¼ ci

0;1 þ
Xn

j¼1

ci
j;1xj AND . . . AND

yi
m ¼ ci

0;m þ
Xn

j¼1

ci
j;mxj

ð1Þ

where Ri is the ith fuzzy rule (i ¼ 1; 2; . . .;R), xj 2 < is the

jth input variable (j ¼ 1; 2; . . .; n), Ci
j is the fuzzy set

associated with the jth input variable of the ith fuzzy rule,

yi
t 2 < is the output of the ith rule (t ¼ 1; 2; . . .;m)1, and

c0,t
i and cj,t

i are the parameters of the consequent of the ith

rule.

TS models are developed for fuzzy domains identified

by clusters, and to each cluster corresponds a linear local

model. Overall, it forms a nonlinear model composed by a

collection of loosely (fuzzily) coupled multiple local linear

models. The contribution of a local linear model to the

model output is proportional to the activation degree of

each rule. We assume fuzzy sets of rule ancetedents with

Gaussian membership functions to ensure generalization of

the description (Angelov and Filev 2004):

liðxjÞ ¼ e

�
ðxj � vi

jÞ
2

2ðri
jÞ

2

ð2Þ

where li(xj) is the membership degree of the input xj in

Ci
j; v

i
j corresponds to the cluster center (focal point), and ri

j

is the radius of Ci
j:. The values of ri

j define the zone of

influence of the ith rule.

ePL assumes that the values ri
j are the same and kept

fixed for all fuzzy sets of all rules antecedents. Conversely,

ePL? assumes that radiuses rj
i are different for each rule.

rj
i is an important parameter because it characterizes the

dispersion of the membership functions, the zone of

influence and the activation degree of the rules. Therefore,

in stream data processing and dynamic environments,

adaptation of rj
i provides a more effective modeling

framework and reduces the need of prior knowledge and

user-specific parameter choices.

If the algebraic product t-norm is chosen to represent

rule antecedents AND; then the activation degree of the ith

rule is:

jiðxÞ ¼
Yn

j¼1

liðxjÞ ¼ liðx1Þliðx2Þ . . . liðxnÞ ð3Þ

The output of the TS model at each step is the weighted

average of the individual rule contributions:

y ¼
XR

i¼1

hiyi; hi ¼ ji

PR
l¼1 jl

ð4Þ

where hi is the normalized activation degree of the ith rule,

and R is the number of fuzzy rules.

As stated in Angelov and Filev (2004), identification of

a TS model requires two sub-tasks: (1) learning the ante-

cedent part of the model using e.g. a fuzzy clustering

algorithm, and (2) learning the parameters of the linear rule

consequent functions. In this paper, we focus on the

evolving fuzzy participatory clustering algorithm for

antecedent learning, and on the recursive least squares

algorithm to estimate the consequent parameters.

2.2 Participatory learning clustering

The ePL? modeling approach adopts the same mechanism

to construct the rule base as ePL, i.e., the participatory

learning clustering algorithm. Generally speaking, partici-

patory learning assumes that model learning depends on

what the system already knows about the model. Therefore,

in ePL? the current model is part of the evolving process

itself and influences the way in which new data are used for

self-organization. An essential property of PL is that the

impact of new data in inducing self-organization or model

revision depends on its compatibility with the current rule

base structure or, equivalently, its compatibility with the

current cluster structure (Lima et al. 2010).

In online mode, rather than being a fixed set, training

data are collected continuously (Angelov and Zhou 2008).

Let vi
k ¼ ½vi

1k; v
i
2k; . . .; vi

nk�
T

be a vector that encodes the ith

(i ¼ 1; . . .;Rk) cluster center at step k. The aim of the

participatory mechanism is to learn the value of vk
i using a

stream of data xk ¼ ½x1k; x2k; . . .; xnk�T : In other words, each

xk; k ¼ 1; 2; . . .; is used as a vehicle to learn about vk
i . We

say that the learning process is participatory if the

1 One must note that ePL considers MISO models whereas ePL?

concerns MIMO models. This difference appears in consequent

parameters learning, as will be described in the Subsect. 2.5.
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contribution of each data xk to the learning process depends

upon its acceptance by the current estimate of vk
i being

valid. Implicit in this idea is that, to be useful and to

contribute to the learning of vk
i , data xk must somehow be

compatible with current estimates of vk
i .

In ePL?, the main object of learning is the cluster

structure. A cluster structure is formed by the collection of

cluster centers (or prototypes) that assemble the input space

partition. More formally, given an initial cluster structure

vi
0; i ¼ 1; . . .;R0; a collection of cluster centers vi

k; i ¼
1; . . .;Rk; is constructed at each k using a compatibility

measure qi
k 2 ½0; 1� and an arousal index ai

k 2 ½0; 1�: While

qk
i measures the extent to which data xk is compatible with

the current cluster structure, the arousal index ak
i acts as a

reminder of when current cluster structure should be

revised in face of new information contained in the data.

Figure 1 shows the main constituents and functioning of

PL clustering. If an initial cluster structure is not available

beforehand, then the PL algorithm assumes the first data

point as a cluster center.

Due to its unsupervised, self-organizing nature, the PL

clustering procedure may create a new cluster or modify

existing ones at each step k. If the arousal index is greater

than a threshold value s 2 ½0; 1�; a new cluster is created.

Otherwise, the ith cluster center, the one most compatible

with xk, is adjusted as follows:

vi
kþ1 ¼ vi

k þ Gi
kðxk � vi

kÞ ð5Þ

where

Gi
k ¼ aðqi

kÞ
1�ai

k ð6Þ

with a 2 ½0; 1� as the learning rate and

qi
k ¼ 1� jjxk � vi

kjj
n

ð7Þ

with jj � jj a norm, n the dimension of input space, and

i ¼ arg max
j
fqk

j g ð8Þ

Note that the ith cluster center is a convex combination of

the input data xk and the closest cluster center.

The arousal index ak
i in (6) is updated as follows:

ai
kþ1 ¼ ai

k þ bð1� qi
kþ1 � ai

kÞ ð9Þ

The value of b 2 ½0; 1� controls the rate of change of

arousal: the closer b is to one, the faster the system is to

sense compatibility variations. When

ak
i = 0, Gk

i = aqk
i , which is the PL procedure with no

arousal. If the arousal index increases, the similarity

measure has a reduced effect. The arousal index can be

interpreted as the complement of the confidence we have in

the truth of the current belief, the rule base structure. The

arousal mechanism monitors the performance of the system

by observing the compatibility of the current model with

the observations. Therefore learning is dynamic in the

sense that (5) can be viewed as a belief revision strategy

whose effective learning rate (6) depends on the

compatibility among new data, the current cluster

structure, and on model confidence as well.

Note that the learning rate is modulated by compatibil-

ity. Conventional learning models have no participatory

considerations and the learning rate is usually set small to

avoid undesirable oscillations due to spurious values of

data far from cluster centers. While protecting against the

influence of noisy data, low learning rate slow down

learning. Participatory learning allows higher values of the

learning rate, but the compatibility index lowers the

effective learning rate when large deviations occur. On the

other hand, high compatibility increases the effective rate

and speeds up the learning process.

Whenever a cluster center is updated or a new cluster

added, the PL clustering procedure verifies whether

redundant clusters were created. Updating a cluster center

using (5) can push a given center closer to another one and

a redundant cluster may be formed. Thus, a mechanism to

avoid redundancy is needed. One of such a mechanism is to

verify if distinct rules produce similar outputs. In PL

clustering, a cluster center is declared redundant whenever

its similarity with another center is greater than or equal to

a threshold value- k 2 ½0; 1�: If this is the case, then we can

either maintain the original cluster center or replace it by

the average between the new data and the current cluster

Fig. 1 Participatory learning clustering
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center. Similarly as in (7), the compatibility index between

cluster centers i and j is computed using:

qi;j
k ¼ 1�

Xn

l¼1

jvi
lk � v

j
lkj ð10Þ

Therefore, if

qi;j
k � k ð11Þ

then the cluster i is declared redundant.

Participatory clustering requires the user to choose

parameters a, b, k and s. The choice can be guided by the

following consideration. If an input data is such that the

arousal is greater than the threshold s 2 0; 1½ �; then this

data becomes the focal point of a new cluster (Lima 2008).

If the cluster with the highest compatibility s is updated,

then ak?1
s \ s, and from (9) we get:

as
k þ bð1� qs

kþ1 � as
kÞ ¼ ð1� bÞas

k þ bds
k\s

) ds
k\

s� ð1� bÞas
k

b
\

s
b

ð12Þ

where dk
s = d(vk

s, xk) is the distance between cluster center

s and input xk at k.

For any two distinct cluster i; j ¼ 1; . . .; ck; i 6¼ j; the

compatibility measure qk
i,j is such that:

qi;j
k ¼ 1� d

i;j
k \k) d

i;j
k [ 1� k ð13Þ

If dk
i,j \ 1 - k, clusters i and j are considered redundant

and become a single cluster. Here, dk
i,j = d(vk

i , vk
j ) is the

distance between clusters centers vk
i and vk

j .

To ensure that a new, non redundant cluster is added,

(12) and (13) suggest to choose values of b; k and s such

that:

0\
s
b
� 1� k� 1

where

s� b and k� 1� s

Analysis of the dynamic behavior of the participatory

learning considering the compatibility and arousal

mechanisms simultaneously with learning rate is

discussed in Lima et al. (2010). The learning rate a is a

small value, typically a 2 10�1; 10�5
� �

:

Initial cluster structure can be chosen differently if data

are available beforehand. In this case, we may consider

the use of subtractive clustering (SC) algorithm (Chiu

1994) to obtain a corresponding initial rule base because

SC does not require pre-specified number of clusters. This

adds flexibility and increases PL clustering autonomy once

the number of clusters and the clusters themselves are

derived from data. The subtractive clustering proceeds as

follows.

(1) For all training data, select the one with the highest

potential to be the first cluster center. The potential of

a point is measured as the spatial proximity between

all other data points computed by the Euclidean

distance;

(2) Reduce the potential of all other points by an amount

proportional to the potential of the chosen point and

inversely proportional to the distance to the current

center;

(3) Define two boundary (lower and upper) conditions as

a function of the maximal potential. If a potential of

data point is higher than the upper threshold, then

create a new cluster center;

(4) If the potential of a point lies between the boundaries

and if this point is very close to some cluster center,

then replace this cluster center by the current one.

See Chiu (1994) for further details.

2.3 Clusters quality measurement

Originally, the PL clustering algorithm removes redundant

clusters, but gives no mechanism to recursively evaluate

the summarization power of the rule base induced by the

cluster structure. Differently, ePL? uses an online moni-

toring scheme to evaluate the quality of a cluster structure

based on the utility measure introduced in Angelov (2010).

The utility measure is an indicator of the accumulated

relative activation degree of a rule:

Ui
k ¼

Pk
l¼1 hl

k � Ii� ð14Þ

where Ii* denotes the step at which an input data became

the focal point of the ith fuzzy rule, that is, it indicates

when the i-th fuzzy rule was generated.

The utility measure gives a clue about the extent to

which a fuzzy rule is useful. The use of the quality measure

Uk
i aims at avoiding unused clusters in the cluster structure;

that is, it eliminates fuzzy rules with steadily low activation

degrees. For this purpose, the following principle for rule

elimination is adopted (Angelov 2010):

IF Ui
k\� THEN delete Ri; Rk  Rk � 1 ð15Þ

where � 2 ½0:03; 0:1� is a threshold to control the utility of

each cluster, and Rk is the number of rules in the rule base

at step k.

This principle helps to underscore high quality rule

bases because it emphasizes the rules which are relevant

for the current structure of model. Angelov (2010) has

suggested alternative quality measures such as age, sup-

port, zone of influence, and local density. This paper

considers utility measure only because of it achieves good

performance with low computational cost.
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2.4 Adaptation of the zone of influence

A key parameter associated with Gaussian membership

functions is its cluster radius rj
i because it defines the

spread of the membership function and influences the

activation degree of the fuzzy rules (Angelov 2010).

Similarly as in Angelov and Zhou (2006), ePL? modeling

considers variable radiuses to capture the distribution of

data at each step. They are updated as follows:

ri
jk ¼ pri

jk þ ð1� pÞ.i
jk ð16Þ

where p is a learning rate (suggested values are in range

[0.3, 0.5]) (Angelov 2010), and .i
jk; j ¼ 1; 2; . . .; n; is called

the local scatter:

ð.i
kjÞ

2 ¼ 1

Si
k � 1

XSi
k
�1

l¼1

ðzi
j � zljÞ2 ð17Þ

where z = [xT, yT]T is an input/output pair and

Sk
i = Sk-1

i ? 1 is the support of the cluster i; i ¼
maxRk

i¼1 jiðxÞ: Essentially, Sk
i is the number of data samples

associated with cluster i and gives and indication of the

generalization power of the i-th fuzzy rule.

2.5 Parameter estimation

Estimation of the parameters of the linear rule consequent

functions can be formulated as a least squared problem

(Angelov and Filev 2004). Equation (4) can be put into

vector form:

y ¼ KTU ð18Þ

where y ¼ y1; y2; . . .; ym½ �T is the m-dimensional output of

the MIMO ePL? model, K ¼ k1xT
e ; k2xT

e ; . . .; knxT
e

� �T
is the

fuzzily weighted extended input vector, xe ¼ 1 xT½ �T is the

expanded data vector, U ¼ WT
1 ;W

T
2 ; . . .;WT

R

� �T
is the

matrix of rule base parameters, and

Wi ¼
ci

01 . . . ci
0m

. . . . . . . . .

ci
n1 . . . ci

nm

2
64

3
75

T

ð19Þ

is the matrix of consequent function parameters of the ith

linear local model.

Since the actual output value is available at each step,

the parameters of the consequents can be updated using

either the local or global recursive least squares algorithm

(Chiu 1994). In this paper we use the local recursive least

squares whose purpose is to minimize local modeling

errors:

min Ei
L ¼ min

Xk

l¼1

hiðxlÞ yl � xT
elW

i
l

� �2 ð20Þ

Thus, the parameters of the ith local model is updated as

follows (Angelov and Filev 2004; Angelov and Zhou 2008;

Angelov 2010):

Wi
kþ1 ¼ Wi

k þ Ri
kxekh

i
k yk � xT

ekW
i
k

� �
; Wi

1 ¼ 0 ð21Þ

Ri
kþ1 ¼ Ri

k �
hi

kR
i
kxekxT

ekR
i
k

1þ hi
kxT

ekR
i
kxek

; Ri
1 ¼ XIðnþ1Þ�ðnþ1Þ ð22Þ

where I is the (n ? 1) 9 (n ? 1) identity matrix; X is a

large number (usually X ¼ 1; 000); and R is the dispersion

matrix.

Whenever a new fuzzy rule is added, the corresponding

dispersion matrix is set as RRkþ1
k ¼ IX: Parameters of the

new rule are estimated using the parameters of the existing

Rk fuzzy rules as follows (Angelov 2010):

WRkþ1
k ¼

XRk

i¼1

hiWi
k�1 ð23Þ

If no new rule is added, then their parameters are

inherited from the previous step, and the dispersion

matrices updated accordingly. Finally, after estimation of

the consequent parameters values, the model output is

produced using (4).

The use of the recursive least squares algorithm depends

on the initial values of the parameters W0; and on the initial

values of the entries of the dispersion matrix R0: These

initial values may be chosen if previous information about

the system is available and exploring a database to get an

initial rule base and W0 and R0: When no previous infor-

mation is available we may proceed choosing large values

for the entries of the matrix, as indicated above. In this

paper, we assume the availability of a database to get the

initial rule base and corresponding parameters.

2.6 ePL? algorithm

The detailed steps of the ePL? model are specified in

pseudo-code form. All steps of the algorithm are non-

iterative. The model can develop/evolve an existing model

whenever the data pattern changes, and its recursive nature

turns it computationally effective.
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3 Computational experiments for volatility forecasting

The ePL? model introduced in this paper is a flexible

structure that can be employed to a range of problems such

as regression, time series forecasting, classification, con-

trol, clustering, and novelty detection. In Maciel et al.

(2012a, b, c), the ePL? was used to forecast nonlinear

benchmark problems such as Mackey–Glass time series

and Box–Jenkins gas furnace data. The results have shown

the efficiency of ePL? to produce accurate time series

forecasts.

This paper shows the effectiveness of ePL? to model

and forecast financial asset returns volatility. We compare

the performance of ePL? with state of the art evolving

fuzzy system modeling approaches respectively, eTS, xTS,

eTS? and ePL, and with the GARCH model, a benchmark

in the area of volatility modeling.

3.1 Data

To illustrate the performance of the ePL? model in fore-

casting stock market volatility, we took the daily values of

the S&P 500 (US) and the Ibovespa (Brazil) stock market

indexes over the period from January 3, 2000 through

September 19, 2011. The daily stock return series were

generated by considering the differences in the natural

logarithm of the daily stock index and the previous day

stock index as follows:

rt ¼ lnðPtÞ � lnðPt�1Þ ð24Þ
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where rt is the stock market return, and Pt is the stock index

at t.

The data set was split into two subsets. The first is an in-

sample set consisting of data from January 3, 2000 through

September 21, 2007. The second is an out-of-sample set

with data from September 24, 2007 through September 19,

2011. The second data set is used for forecasting. Data

splitting is needed for the GARCH modeling only. The

evolving fuzzy models learn recursively and do not require

a pre-training phase.

S&P 500 and Ibovespa intra-day data were collected for

the period from January 3, 2000 through September 19,

2011 to construct the realized volatility time series and use

it as the 0true volatility02. Realized volatility RVt at t is

computed as the sum of squared high-frequency returns

within a day. This mechanism conveniently avoids data

processing complications while covering more information

on daily transactions. Thus

RVtþ1ðDÞ ¼
X1=D

j¼1

r2
tþj�D;D ð25Þ

where rt;D is the discretely sampled D-period returns.

The evolving fuzzy models inputs are previous lags of

the realized volatility of each market index. The Bayesian

information (BIC) and Akaike information (AIC) criteria

were used to select lag values for the GARCH model

(Akaike 1974; Schwarz 1978).

3.2 Performance assignment

Evaluation of the models was done considering the root

mean square error (RMSE), and the non-dimensional error

index (NDEI) which is the ratio between the RMSE and the

standard deviation of the target data. They are computed as

follows:

RMSE ¼ 1

N

XN

k¼1

ðyk � ŷkÞ2
 !1

2

ð26Þ

NDEI ¼ RMSE

stdðykÞ
ð27Þ

where yk is the actual volatility, stdð�Þ is the standard

deviation function, ŷk is the model output, and N is the

number of forecasts.

Model validation is an important task in system identi-

fication to access the goodness of fit of the model. As stated

by Billings and Zhu (1994), nonlinear model validation can

be approached using either correlation or model-compari-

son. Correlation based validation involves computing cor-

relation functions of model residuals and system inputs,

and testing if these lie within confidence intervals (Billings

and Zhu 1994). Model-comparison based validation con-

cerns the use of statistical tests to compare models pairwise

to test whether they are equally accurate or not in terms of

their accuracy. Since ePL? and the state of the art evolving

models considered in this paper do not assume any prob-

ability distribution of data or model residuals, model-

comparison based validation appear to be the one most

appropriate.

In this paper, we employ the (Diebold and Mariano

1995) statistic test assuming equal predictive accuracy as

the null hypothesis. This statistic test is widely used for

forecasting model validation, especially in economics and

finance. If N is the sample size and e1
i ; e

2
i ði ¼ 1; 2; . . .;NÞ

are the forecast errors of two models, the mean square error

(MSE) loss functions are computed as:

LMSE
1 ðe1

i Þ ¼ ðe1
i Þ

2; LMSE
2 ðe2

i Þ ¼ ðe2
i Þ

2 ð28Þ

The Diebold–Mariano test is based on the loss

difference:

dMSE
i ¼ LMSE

1 ðe1
i Þ � LMSE

2 ðe2
i Þ ð29Þ

Thus, the null hypothesis is H0 : EðdMSE
i Þ ¼ 0; meaning

that both models are equally accurate. The alternative

hypothesis H1 : EðdMSE
i Þ 6¼ 0 means that model 1 is more

accurate than model 2. The Diebold–Mariano test statistic,

DM; is found as follows:

DM ¼ dffiffiffiffiffiffiffiffiffiffi
V̂ðdÞ

q 	Nð0; 1Þ ð30Þ

where �d ¼ N�1
PN

i¼1 dMSE
i and

V̂ð�dÞ ¼ N�1 û0 þ 2
PN�1

k¼1 ûk

h i
; uk ¼ covðdi; di�kÞ:

3.3 Control parameters

Control parameters were chosen based on simulation

experiments, attempting to produce better performance in

terms of RMSE and NDEI measures in-sample set. Table 1

shows the parameters values of all evolving fuzzy models

for S&P 500 and Ibovespa indexes. The SC algorithm was

employed to initialize the rule base of all evolving mod-

eling approaches.

3.4 Results and discussion

Table 2 summarizes the basic statistics of the return series.

The average daily returns are negative for the S&P 500 and

positive for Ibovespa. The daily returns display evidence of

skewness and kurtosis. The return series is skewed toward

the left and characterized by a distribution with tails that

are significantly thicker than for a normal distribution. The2 The database was provided by Bloomberg.
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Jarque–Bera test statistics further confirm that the daily

returns are non-normally distributed. The Ibovespa index

has a higher kurtosis than S&P 500, which explains the fact

that emerging countries, generally, exhibit more leptokurtic

behavior. Under the null hypothesis of no serial correlation

in the squared returns, the Ljung–Box Q2 (10) statistics

infer linear dependence for both, S&P 500 and Ibovespa

series. Moreover, Engle’s ARCH test for the squared

returns reveals strong ARCH effects, an evidence sup-

porting GARCH effects (that is, heteroscedasticity).

The stock indexes are shown in Fig. 2 and the corre-

sponding returns in Fig. 3. In particular, in Fig. 3 volatility

clustering becomes clearer, especially when the context of

the recent US subprime crisis is considered, which trans-

lates the idea of higher non-stationarity during unstable

events.

For the S&P 500 index, the inputs of the evolving fuzzy

models are the previous five lags of actual volatility,

measured as the realized volatility, while for the Ibovespa

Table 1 Control parameters of the evolving fuzzy models for S&500 and Ibovespa data

Model and source b s a k p X � r

S&P 500

eTS (Angelov and Filev 2004) – – – – – 1,000 – 0.5

xTS (Angelov and Zhou 2006) – – – – – 1,000 – –

eTS? (Angelov 2010) – – – – 0.5 1,000 0.1 –

ePL (Lima et al. 2010) 0.16 0.16 0.01 0.84 0.5 1,000 – 0.5

ePL? current model 0.16 0.16 0.01 0.84 0.5 1,000 0.1 –

Ibovespa

eTS (Angelov and Filev 2004) – – – – – 1,000 – 0.5

xTS (Angelov and Zhou 2006) – – – – – 1,000 – –

eTS? (Angelov 2010) – – – – 0.5 1,000 0.1 –

ePL (Lima et al. 2010) 0.02 0.02 0.02 0.11 0.5 1,000 – 0.4

ePL? current model 0.02 0.02 0.02 0.11 0.5 1,000 0.1 –

Table 2 Descriptive statistics of S&P 500 and Ibovespa daily returns

S&P 500 Ibovespa

Mean -0.0073 0.0378

Max 10.9572 13.6766

Min -9.4695 -12.0961

SD 1.3787 1.9493

Skewness -0.1580 -0.1066

Excess Kurtosis 3.6701 7.4814

J–Ba 234.9483* 277.1270*

Q2 (10)b 789.7362* 683.9531*

ARCH Test (10)c 1109.1934* 1082.7409*

a The statistics of Jarque–Bera normal distribution test
b The Ljung–Box Q-test for the 10th order serial correlation of the

squared returns
c Engle’s ARCH test also examines for autocorrelation of the squared

returns

* Significant at the 5 % level

Fig. 2 Daily closing stock price indexes for the S&P 500 and

Ibovespa

Fig. 3 S&P 500 and Ibovespa daily returns
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index the past three lags of actual volatility were chosen as

inputs. Models outputs are one-step ahead forecasts.

A GARCH (1,1) model was selected as benchmark.

Table 3 summarizes the performance of the models

when forecasting the S&P 500 and Ibovespa stock indexes

volatility in terms of error measures (RMSE and NDEI),

final number of rules (Rules), processing time, and number

of control parameters (CP). The ePL? model performs

better than the remaining models in terms of accuracy. All

evolving fuzzy models achieve better performance than the

GARCH model. The number of fuzzy rules and the

Table 3 Volatility modeling performance for one-step ahead forecast

Index Model and source RMSE NDEI Rules Time (sec) CP

S&P 500 GARCH (Engle 1982) 0.1685 0.1222 – 4.5698 –

eTS (Angelov and Filev 2004) 0.1208 0.0876 5 3.6147 2

xTS (Angelov and Zhou 2006) 0.1177 0.0854 4 3.2063 1

eTS? (Angelov 2010) 0.1098 0.0796 3 2.9881 3

ePL (Lima et al. 2010) 0.1249 0.0906 5 3.1152 7

ePL? current model 0.0984 0.0714 3 3.0511 7

Ibovespa GARCH (Engle 1982) 0.1954 0.1002 – 5.4117 –

eTS (Angelov and Filev 2004) 0.1693 0.0869 7 4.8623 2

xTS (Angelov and Zhou 2006) 0.1588 0.0815 6 4.0107 1

eTS? (Angelov 2010) 0.1473 0.0756 4 3.7719 3

ePL (Lima et al. 2010) 0.1501 0.0770 6 4.9996 7

ePL? current model 0.1306 0.0670 4 4.1143 7

Fig. 4 Number of fuzzy rules of ePL? for S&P 500

Fig. 5 Number of fuzzy rules of ePL? for Ibovespa
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Fig. 6 S&P 500 actual and volatility forecast using ePL?
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Fig. 7 Ibovespa actual and volatility forecasts using ePL?
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processing time are similar for the evolving models. From

the point of view of accuracy and model complexity, ePL?

performs best since it requires less rules to achieve com-

parable or better modeling error values.

Figures 4 and 5 depict the continuous adaptation of the

ePL? model structure, i.e., the number of fuzzy rules in the

rule base when modeling S&P 500 and Ibovespa stock

market indexes, respectively. Notice that the number of

rules increases for both indexes during 2007 and 2009,

revealing the capability of ePL? to capture instabilities due

to crises. Interestingly, the 2007–2009 period corresponds

to the US subprime mortgage crises.

To illustrate the capability of the ePL? model to deal

with volatility forecasting, Figs. 6, 7 show the 00true vola-

tility00, measured as the realized volatility, and the volatility

forecasted using the ePL? model for the S&P 500 and

Ibovespa indexes, respectively. Periods of high volatility

correspond to the volatility clustering behavior in the series

of stock returns. The S&P 500 (Fig. 6) and Ibovespa

(Fig. 7) indexes forecasts show that ePL? successfully

captures the instabilities suffered by the economies during

the subprime crisis that started in the second semester of

2008.

Figures 8 and 9 show how the values of the arousal

index of ePL? change during learning with out-of-sample

data sets for both, S&P 500 and Ibovespa indexes,

respectively. For S&P 500, out-of-sample learning starts

with five fuzzy rules and ends with three rules for arousal

threshold s = 0.16 (Fig. 8). The Ibovespa index model

starts with five rules and ends with four rules when arousal

threshold s = 0.02.

The statistical performance evaluated using the (Diebold

and Mariano 1995) using MSE loss function are summa-

rized in Table 4. Diebold–Mariano tests were done

between pairs of models, e.g., ePL? versus GARCH. The

null hypothesis, the equal forecast accuracy, is rejected in

all cases, assuming 5 % confidence level because

|DM| [ 1.96. Therefore, statistically evolving fuzzy fore-

cast models are superior than GARCH. The eFS models

can be viewed as equally accurate.
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Fig. 8 Evolution of the arousal index of ePL?, out-of-sample

learning for S&P 500 data
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Fig. 9 Evolution of the arousal index of ePL?: out-of-sample

learning for Ibovespa data

Table 4 Diebold–Mariano statistic for MSE loss function

Index Model and source eTS xTS eTS? ePL ePL?

S&P 500 GARCH (Engle 1982) -2.98* -2.54* -2.01* -2.22* -2.95*

eTS (Angelov and Filev 2004) – -0.44 -1.25 -0.15 -0.54

xTS (Angelov and Zhou 2006) – – -1.44 -1.13 -1.88

eTS? (Angelov 2010) – – – -0.62 -0.97

ePL (Lima et al. 2010) – – – – -1.12

Ibovespa GARCH (Engle 1982) -2.47* -2.25* -2.85* -2.44* -2.52*

eTS (Angelov and Filev 2004) – -0.84 -0.55 -0.60 -0.34

xTS (Angelov and Zhou 2006) – – -1.01 -1.57 -1.13

eTS? (Angelov 2010) – – – -1.41 -0.59

ePL (Lima et al. 2010) – – – – -1.17

* Significant at the 5 % level
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4 Conclusion

This paper has introduced improvements of the evolving

participatory learning fuzzy modeling (ePL), a method

based on participatory learning and evolving systems par-

adigms to build adaptive fuzzy rule-based models. The

enhanced version of ePL modeling, namelly ePL?, uses an

utility measure to monitor the quality of the rule base and

variable zone of influence of the clusters that form fuzzy

rules.

Computational results concerning the evaluation of

ePL? modeling to forecast volatility were reported. The

ePL? was compared with evolving fuzzy modeling

methods representative of the current state of the art, and

with GARCH modeling, an approach commonly used in

the economics and finance literature. Volatility forecasting

plays a central role in many financial decisions such as

asset allocation and hedging, option pricing, and risk ana-

lysis. Since volatility mirrors behavior of non-stationary

nonlinear environments, evolving modeling have been

shown to be very suitable. Empirical evidence based on

S&P 500 and Ibovespa index market data illustrates the

potential of the ePL? to forecast volatility. ePL? perform

better than ePL models in terms of both, model accuracy

and model structure because it achieves low modeling error

with smaller number of fuzzy rules than its counterparts.

Future work will address the use of the ePL? model in

financial decision making under volatility such as in option

pricing, portfolio selection, and risk analysis.
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