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Abstract Time series prediction has been extensively

researched in both the statistical and computational intel-

ligence literature with robust methods being developed that

can be applied across any given application domain. A

much less researched problem is multiple time series pre-

diction where the objective is to simultaneously forecast

the values of multiple variables which interact with each

other in time varying amounts continuously over time. In

this paper we describe the use of a novel integrated multi-

model framework (IMMF) that combined models devel-

oped at three different levels of data granularity, namely

the global, local and transductive models to perform mul-

tiple time series prediction. The IMMF is implemented by

training a neural network to assign relative weights to

predictions from the models at the three different levels of

data granularity. Our experimental results indicate that

IMMF significantly outperforms well established methods

of time series prediction when applied to the multiple time

series prediction problem.

Keywords DENFIS � Local trend models � Dynamic

interaction networks � Integrated multi model framework �
Transductive modelling

1 Introduction

Previous research has shown that dynamic relationships

exists over time between different variables relating to real

world phenomena in the biological and economic domains.

For example, it is well known that in a gene regulatory

network (GRN) the expression level of a gene is determined

by its time varying interactions with other genes (Davidson

2006; Kasabov et al. 2004; Levine and Davidson 2005; Li

et al. 2010). Similarly, the movement of stock market index

in a given country is influenced by the movement of other

markets in the region that trade heavily with the country in

question (Antoniou et al. 2003; Chowdhury 1994; Collins

and Biekpe 2003; Masin and Masih 2001).

The problem of forecasting multiple time series is fun-

damentally different from that of forecasting single time

series. The multiple time series prediction problem cannot be

simply decomposed into a set of single time series problems

due to inter-dependencies between the variables. This means

that traditional time series forecasting methods such as the

multi layer perceptron and support vector machines will be

less effective. There has been some research into modeling

the dynamics of interactions between multiple variables

(Antoniou et al. 2003; Chiang and Doong 2001; Collins and

Biekpe 2003; Kasabov et al. 2004; Ozawa et al. 2010), but

none of these studies have directly addressed the problem of

forecasting multiple time series simultaneously.

This research seeks to fill this gap by exploring an

integrated framework for multiple time series prediction.

This framework, henceforth referred to as the integrated

multi-model framework (IMMF) consists of three layers of

models, namely global, local and transductive models.

Global models are built using all historical data and are

useful for capturing long-term trends in data. However,

they are less effective in tracking localised changes that
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take place at discrete points in time. Local models that

work on subsets of data are better equipped to capture

shorter term disturbances than global models. Clustering

offers a natural solution to the problem of capturing dis-

crete changes in data and we employ an evolving clustering

method that has been inspired by Kasabov’s evolving

connectionist systems (Watts 2008) and more specifically

by the DENFIS model (Kasabov and Song 2002) for

building clusters incrementally. The third layer of the

framework consists of the transductive model whose role is to

learn from individual instances rather than from the entire

dataset or subsets of it and perform prediction based on sim-

ilarity with instances that have been presented in the past.

The key contributions in this research are formulation of

an integrated framework for multiple time series prediction

and the construction of methods that adapt to new data,

evolve their structure and operate on different levels of data

granularity. Our experimental results in Sect. 5 on both real

world and synthetic data show that each model has it own

strengths. The main role of the global model is to explicitly

identify complex inter-dependencies between the variables

over time, while the local model tends to produce better

accuracy than the Global model while being able to capture

recurring trends. The transductive model when used on its

own also performs similarly to the local model, while

sometimes outperforming both the global and local model

in some scenarios. Our experimentation also showed that a

high degree of synergy exists between the models as the

integrated model consistently outperforms any of the three

models on their own, thus reinforcing the need for an

integrated mechanism.

The rest of the paper is organized as follows. Section 2

reviews prominent methods used in time series forecasting

which have relevance to this research. In Sect. 3 we present

the design principles behind the construction of each of the

three different models developed at the global, local and

instance levels. Section 4 formulates a weighting scheme

that combines information from each of the models to form

an overall prediction that is more robust than that produced

by each model on it own. Our experimentation is presented

in Sect. 5 where we show the accuracy of each model, the

knowledge extracted and the role that integration plays.

Our conclusions and directions for future research are

outlined in Sect. 6.

2 Related work

Univariate time-series prediction has been very well

researched in both the statistical and machine learning

literature. Well developed and mature methods exist in the

statistical literature such as Box Jenkins auto regressive

moving average (ARMA), and its generalised form, called

the auto regressive integrated moving average (ARIMA)

model. Such models represent the value of a time series at a

given time step t as a recurrence relation consisting of a

weighted product of its values and corresponding coeffi-

cients at previous time lags t � 1; t � 2; . . .; t � p; together

with the addition of white Gaussian noise. The coefficients of

the recurrence relation are determined by formulating the

problem as minimizing a function which is solved through the

application of the ordinary least squares method.

Many methods for time series prediction have been

proposed by the machine learning community and these

include the well known multi layer perceptron (MLP) and

the support vector machine, among others. Both types of

methods are capable of modeling non linear trajectories

and in general are much more accurate than traditional

linear estimation methods such as linear regression. The

main drawback of these methods in the univariate context

is that they do not adapt to new data arriving in a stream.

Thus in the context of a continuous stream of time series

data, computationally expensive rebuilding of models

would need to be performed on a regular basis in order to

preserve a high level of accuracy. A range of evolving

connectionist systems or ECOS was proposed by Kasabov

et al. in a series of papers (Kasabov 2001, 2007b; Kasabov

and Pang 2003; Kasabov and Song 2002) with DENFIS as

one prominent method that is incremental in nature as it

uses on line clustering. DENFIS is a powerful tool for

neuro fuzzy inference that uses principles of evolving

connectionist systems to incrementally build and maintain

clusters. It creates Takagi–Sugeno type fuzzy rules for each

cluster and thus can also be considered to belong to the

class of evolving intelligent systems. It can be used for

prediction purposes by fitting the data in each cluster with a

regression function based on a Gaussian Kernel. It turns

out, as our results in Sect. 5 show, that DENFIS is better

than methods such as MLP not just in terms of flexibility

but also in terms of prediction accuracy. In view of the

good performance of DENFIS (Kasabov and Song 2002)

and its adaptive nature we used it as the core method to

build our Local model.

We acknowledge that more recent methods such as

sequential adaptive fuzzy inference system (SAFIS)

(Hai-Jun et al. 2006), flexible fuzzy inference systems

(FLEXFIS) (Lughofer 2008), evolving fuzzy model eFuMo

(Dovzan et al. 2012), Evolving Takagi Sugeno model

(eTS) (Angelov and Filev 2004) that we review below may

outperform DENFIS in some situations, but our objective

in this research is to demonstrate the effectiveness of the

integrated framework for multiple time series prediction. In

principle, any of the three aforementioned methods may be

used to replace DENFIS with a careful estimation of

parameter values, with a possible effect of increasing

prediction accuracy further.
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Angelov and Filev (2004) proposed an evolving Takagi

Sugeno model (eTS) that recursively updates a TS model

structure. The concept of information potential was defined

as the spatial proximity of the new instance to all existing

instances received so far to assess whether new data

arriving should result in a new rule or whether existing

rules should be modified. If the informative potential of the

new data sample is higher than the average potential of the

existing rules it is added to the rule base. If the new data,

which is accepted as a focal point of a new rule is too close

to a previously existing rule then an existing rule is

replaced by a new one. The eTS scheme was compared

with a number of other neuro-fuzzy systems such as ESOM

and DENFIS. A simplified version of the eTS learning

algorithm that simplifies the rule base, called the Sim-

pl_eTS, was proposed by Angleov and Filev (2005) in a

follow up paper.

The sequential adaptive fuzzy inference system (SAFIS)

proposed by Rong et al. uses the concept of rule influence

of fuzzy rules to incrementally add or remove rules. SAFIS

uses a five layered structure consisting of input variables,

fuzzy membership functions, fuzzy rules and output vari-

ables. An extended Kalman filter scheme was used to

update fuzzy rules produced. SAFIS was compared to other

fuzzy rule generators and was found to have similar accuracy

to DENFIS, ESOM and eTS while producing more compact

rule bases for benchmark time series datasets.

The FLEXFIS scheme uses vector quantization in

combination with a vigilance parameter to update cluster

centers with each new incoming data point and for the

generation of a new cluster whenever required by new data.

Vector quantization is used to incrementally update cluster

centers when new data arrives. Unlike conventional use of

vector quantization, when new data arrives it calculates the

distance to the surface of existing clusters and thus pre-

vents the generation of a new cluster very close to an

existing cluster. New clusters are added depending on the

value of the vigilance parameter which is set on the basis of

a trial and error process. With proper setting of the vigi-

lance parameter a new cluster center is never created that is

far away from the centroid of a newly emerging mass of

data, unlike conventional use of vector quantization

methods. The FLEXFIS scheme was found to have better

accuracy than DENFIS, SAFIS, eTS on a non linear

dynamic prediction problem and the Mackay Glass data-

set although its rule base was larger in the case of the

Mackay Glass dataset.

Comprehensive surveys on evolving intelligent systems

and evolving neuro-fuzzy systems in particular can be

found in Angelov et al. (2010) and Lughofer (2011)

respectively.

In using DENFIS we note that it is limited to univariate

time series prediction and the core algorithm needed to be

modified in several ways to adapt it to the multivariate case

as described in Widiputra et al. (2011b) and in Sect. 3 of

this paper.

In terms of multivariate methods two prominent tech-

niques exist, one is the multivariate version of the Box

Jenkins model, known as the VARMA and the other is the

Kalman filter. Neither of these methods were designed to

deal with continuous streaming data having non-stationary

data distributions and hence require modification to deal

with such scenarios. Such modifications are described in

Sect. 3.1 whereby the basic Kalman filter method was

modified to incrementally update the trajectory of each

time series variable without the need for recomputing the

entire transition matrix that specifies the inter-relationships

between the multiple time series variables.

3 Formulation of global, local and transductive models

In this section we describe the three basic schemes that we

have used for forecasting. We start with the Global model

which utilizes all available historical data to build a single

model that is used for modeling as well as prediction. We

then go on to describe the formulation of the Local model

which is based on an evolving clustering architecture.

Given a dataset, local modeling will give rise to a number

of local models, each of which will define a partition or

cluster of the dataset as whole. Forecasting is achieved by

combining the predictions made by each of the local

models. Lastly, we present the transductive scheme that

makes predictions on the basis of each observation, rather

than groups of observations.

3.1 Global modeling with evolving dynamic

interaction networks (eDin)

Given a set of observations X = (x1, x2, …, xi) of a vari-

able x at time points (1, 2, …, i), the estimated trajectory

of x at time point i ? 1 is given by the Kalman filter

recursive equation:

x̂iþ1
e ¼ Ax̂i

u ð1Þ

where x̂i
u denotes the updated value of x given the ith obser-

vation and A is the transition matrix that governs the move-

ment of x between consecutive time points. We initialize A to

be the identity matrix at the start of the time series.

The error co-variance of x̂iþ1
e is given from the error

co-variance matrix, where P is defined by:

Piþ1
u ¼ APi

uAT þ Q ð2Þ

where Q is an n by n noise co-variance matrix which is

initialized to a very small value 1e-5. Likewise, P is also

initialized to 1e-5. Now
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x̂i
u ¼ x̂i

e þ Kiðx̂i � Ix̂i
eÞ ð3Þ

where K is the Kalman gain given by:

Kiþ1 ¼ PIþ1
e ITðQþ IPiþ1

e ITÞ�1 ð4Þ

The above Eqs. (1–4) are sufficient to model the

progression of m variables x1, x2, …, xm over time in off-

line mode. However, to monitor the progression of these

variables in on-line mode an efficient method is required of

incrementally updating the transition matrix A instead of

recalculating it at each new observation.

In order to achieve this we used an expectation maxi-

mization (EM) process where we iterate between expec-

tation and maximization steps. In the expectation step, we

obtain the smoothed estimate of x at the previous time

point i-1 as follows:

Ji�1 ¼ P�1
u AT ½Pi

e�
�1; x̂i�1

s ¼ x̂i�1
u þ Ji�1ðx̂i

s � x̂i
eÞ

where x̂i
s ¼ x̂i

u

Note that the smoothing operation above needs to be

applied to the previous time step only and not to the historical

data as a whole. We can now perform the expectation step.

Following (Welling 2001) the sufficient statistics required in

the expectation step are:

E½xixijX� ¼ Pi
s þ x̂i

sx̂
i
s; E½xixi�1jX� ¼ Ci

s þ x̂i
sx̂

i�1
s

where C is the lag one co-variance smoother given by:

Cs
i = (I - KiI)APs

i .

In the Maximization step, matrix A is updated to max-

imize the expectation of the joint probability density

function over the posterior density:

Anew ¼
Xi

k¼1

E½xkxkjX�
" #

Xi

k¼2

E½xkxk�1jX�
" #�1

: ð5Þ

Equation 5 above ensures that on-line predictions for a set

of interacting variables x can be implemented efficiently

without the need to recreate entire models at every time step.

In addition to the global prediction model given above

we also construct a dynamic interaction network (DIN) that

captures the dynamics of the interactions between the

variables. The DIN modeling approach was first proposed

by Kasabov et al. (2004). The construction of a DIN from a

transition matrix is illustrated in Fig. 1. Here, only the most

significant time-series relationships defined by a threshold

value, are elucidated from the transition matrix. All tran-

sitions xi,j with values in A that are greater than a user defined

threshold (say 0.1) are flagged as positive, i.e. time-series xi is

influencing time-series xj. By analogy, values below -0.1 are

labeled as negative. The values and direction of influence are

reflected in the directed network diagram.

The ability to capture time varying patterns of inter-

relationships between multiple time-series is an important

prerequisite to predicting the future values of the series.

The DIN meets this requirement as it is able to evolve its

structure and to learn incrementally with incoming data. As

such a modeling and prediction process with on-line

learning is implemented, whereby the transition matrix and

the DIN model are updated at every time step. We will

denote this model as eDIN in order to distinguish it from

the original DIN model which did not posses an evolving

capability.

As shown in Fig. 2, a eDIN model is initially trained

over a certain number of time steps, e.g. 50 time-points of

data. Afterwards, the extracted eDIN model is used to

predict the next time step’s values. This eDIN model is

then updated using Eqs. (1–5) at the following time-point

with new data arriving whereupon the updated eDIN model

is used to predict values for next time step and so forth.

This process is performed simply by using the recursive

measurement update property of the Kalman filter and the

EM algorithm as outlined in the algorithm above. The

incremental learning process then continues into the future,

where prediction and training operations are interleaved

with each other.

3.2 Local modeling

We now turn our attention to local modeling. Traditionally

time series prediction has been viewed as a global mod-

eling activity whereby a single global model is induced

from all available historical data (Wu et al. 1999a, b).

However, this may not be the optimal approach as global

models often fail to track localized changes that take place

at discrete points in time. This is due to the fact that tra-

jectories produced by global models tend to smooth

localized deviations by averaging the effects of such

deviations over a long period of time (Widiputra et al.

2011a).

In reality, localized deviations from the norm may be of

great significance as they capture the conditions under

which a time series behaves quite differently from its

recent behavior. For example, financial markets react very

favorably when interest rates are cut or when better than

expected Economic fundamentals are announced by a

Government under which they operate. Capturing such

phenomena with a global model is difficult as it requires a

discontinuity in the global trajectory function and this goes

against the fundamental design philosophy behind the

construction of any global model. This motivates a local-

ized modeling approach. Several studies in time series

prediction have shown that an ensemble of local models

perform better than a single global model (Cevikalp and

Polikar 2008; Islam et al. 2008; Zhou and Jiang 2003).

Local models are commonly created by forming clusters

of instances that have many features in common. Cluster-

ing is ideally suited to building evolving models as new
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instances streaming in can be assigned to the cluster whose

centroid most closely matches with the new instance, thus

only requiring small localized (to the cluster in question)

changes to be implemented without affecting the other

local models comprising the ensemble. Thus clusters are

naturally suited to data that changes over time. Further-

more, it is of interest to capture similar deviations from a

global trajectory that take place repeatedly over time, in

other words to capture recurring deviations from the norm

that are similar in shape and magnitude. Such localized

phenomena can only be captured accurately by localized

models that are built only on data that defines the phe-

nomenon under consideration and are not contaminated by

data outside the underlying phenomenon. Our clustering

approach is based on the Evolving Clustering Model

(ECM) proposed by Kasabov and Song (2002). We

implement a two phased strategy in building local models.

In stage 1, profiles of relationships between the time series

variables are extracted and stored in a repository, while in

stage 2 the detection and grouping of recurring trends of

movement between time series is carried out when a par-

ticular profile emerges. It should be noted that the trends

that we capture are not merely movements of a single time

series but the pattern of movement of a group of time series

with respect to each other. As an example consider the

movement of five stock market indexes from New Zealand,

Australia, Hong Kong, Japan and United States in the

Pacific region. If one is able to learn that at a particular

point in time that the New Zealand and Australia markets

are moving together collectively, Hong Kong and Japan are

progressing mutually, while the United States travels by

itself, then it would be relevant to use only data of stock

market indexes from the past which possesses the same

profiles of relationships to predict future values of these

stock market indexes, rather than to use the entire data set.

3.2.1 Extracting profiles of relationships from multiple

time-series

Most of the research in time-series clustering has concen-

trated on clustering at the instance level rather than on

clustering at the level of variables (Rodrigues et al. 2008).

However, one of the key tasks in our research is to group

together series or variables, and not samples that are highly

correlated or have similar shapes of movement, as it is our

belief that multiple local models representing clusters of

similar profiles will provide a better basis than a single

global model for predicting future movements of the

multiple time-series.

The first step in extracting profiles of relationships

between multiple time-series is the computation of local

cross-correlation coefficients between the observed time-

series using Pearsons correlation analysis. Statistically

significant correlations, which are determined through the

use of the t-test with a confidence level of 95 % is used.

After the most significant correlations are identified, the

rooted normalized one-minus correlation (RNOMC) coeffi-

cients (Kim et al. 2006; Rodrigues et al. 2008) (henceforth

known as normalized correlation) is calculated to assess the

local strength of the linear relationship between a pair of time

series (a, b). The normalized correlation is given by:

RNOMCða; bÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� corrða; bÞÞ

2

r
ð6Þ

where corr(a, b) is given by:

corrða; bÞ ¼
Pn

i¼1ðai � �aÞðbi � �bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ððai � �aÞ2 � ðbi � �bÞÞ2

q ð7Þ

The normalized correlation coefficient defined by Eq. 6

ranges from 0 to 1,where 0 denotes high similarity and 1

Fig. 1 Illustration of

interaction network construction

in DIN. a The transition matrix;

b the corresponding influence

matrix when a threshold of 0.1

is used; c the interaction

network

Fig. 2 Illustration of

incremental learning in DIN.

Transition matrix A is being

re-estimated as new

observations become available
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signifies the opposite condition. Figure 3 illustrates the

computation of the RNOMC measure from Pearson’s

correlation coefficient for a hypothetical example of four

time series that are interacting with each other. The figure

shows the statistically significant correlations at the 95 %

significance level from which the RNOMC measure is

Fig. 4 Creation of knowledge

repository LTM-knowledge

repository

Fig. 3 Formation of clusters of

time series variables
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computed, which in turn drives the formation of two

clusters, whereby series 1 and 3 fall into one cluster while

series 2 and 4 end up in the other cluster.

Algorithm 1 outlines the scheme for clustering together

similar time series. Basically variables that are highly

correlated with each other are assigned to the same

cluster, as is the case in lines 11 and 15 below. Once a

variable is assigned to a particular cluster (say X) it may

be reassigned at a later point in time to another cluster

(Y) should its correlation with one or more variables in

cluster Y may be greater than its correlation with its

variables in the former cluster X, as is the case in lines 17

and 26.

3.2.2 Clustering recurring trends of a time-series

After the profiles have been extracted, the next step is to

mine and cluster trends of movement from each profile.

With n as the number of multiple time-series being ana-

lyzed, the worst case time-complexity of Algorithm 1 is

O(n2), which means that it will be necessary to store and

dynamically update relationships profiles in order to avoid

expensive re-computation and extraction of profiles.

Maintaining profiles of relationships between multiple

time-series ensures that we can identify the time-series that

most influences the movement of other time-series in a

particular time locality. However, this type of knowledge
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on its own does not offer predictive power to estimate the

future values of the time-series ensemble. To ensure pre-

diction with local models, it will be necessary to capture

the different shapes of movement of time series within a

profile and to utilize these shapes in constructing an

ensemble of local models that can be used for prediction.

Shapes of movement can be modeled and captured in many

different ways, including the use of polynomial regression

functions. Widiputra et al. (2009) reports on the use of

polynomial functions of degree 2 and degree 3 in capturing

non linear relationships between time series in a stock

market environment. However, it is problematic to know

the degree of the polynomial that should be used and so for

these reasons we shall use kernel regression that can deal

with any given data distribution.

The local models constructed through the process of

kernel regression are derived from the clusters defined by

Algorithm 1. However due to the dynamic nature of time

series data, it will be necessary to adapt the clusters

formed to reflect evolving trends in the underlying data.

Our dynamic clustering scheme has been inspired by

evolving clustering method (ECM) (Kasabov and Song

2002; Song and Kasabov 2001). ECM is a flexible clus-

tering scheme whereby changes in the data are easily

accommodated by adding a new instance to an existing

cluster when sufficient similarity exists or creating a new

cluster when the instance is sufficiently different from all

existing clusters.

We now describe in detail the algorithm used to cluster

recurring trends. The algorithm proceeds by breaking up

the dataset into chunks of data. We gather a sample of the

dataset as a training sample and perform a bootstrapping

process to obtain the chunk size. The bootstrap is imple-

mented by performing an autocorrelation analysis on the

training sample to determine the chunk size. The time lag

that yields the maximum correlation determines the chunk

size. Thereafter we scan new incoming chunks of data and

use the Nadaraya Watson kernel weighted average function

(Bierens 1994) to estimate the trajectories of each time

series variable at each data chunk is described in Algo-

rithm 2 below.

BEGIN {Algorithm 2}

1. Create the first cluster C1 and populate it with trajec-

tories (X1, X2, …, Xn) for each of the time series

variables. The fitted value X̂ij at the jth observation

¼
Pm

j¼1
wijXijPm

j¼1
Xij

where m is the size of a data chunk; wij is

the kernel weight of the jth observation for variable i.

Each X̂ij is fitted by the Gaussian membership func-

tion: expð� ðz�XijÞ2
2a2 Þ, where a is the kernel bandwidth

and z takes values in the range ½0; 1; 2; . . .; ð m
dX þ 1Þ�;

dX is the sampling rate for each observation Xij.

The kernel weights wij are estimated using ordinary

least square fitting so that SSE ¼
Pm

j¼1ðXij � X̂ijÞ2 is

minimized. The ith term of the centroid of the cluster

is then given by ci ¼
Pm

j¼1
wij

m .

2. If there are no more data chunks the algorithm

terminates; else the next data chunk or snapshot is

read. The new set of kernel weights are estimated as in

step 1 above and distances between the trajectory Xi

and all k existing cluster centers are calculated by:

dil = RNOMC(wi, cs
i) where wi, ci represents the ker-

nel weight vector of trajectory Xi and the cluster

centroid of cluster l respectively. If, for an existing

cluster l we have dil \ Rl where Rl is the radius of

cluster l, then we assign the current trajectory Xi to

cluster Cl, else we perform step 3 below.

3. Find a cluster e that requires the minimum extension of

radius to accommodate Xi. This cluster is given by

e ¼ argmin1� l� kðdilÞ.
4. If Si,e B 2Dthr (which is a threshold that determines

the maximum size of a cluster radius), the current

trajectory Xi is assigned to cluster e. Cluster e is

updated by moving its center, ce, and increasing the

value of its radius Re. The updated radius Re
new is set to

Si,e/2 where

Si;e ¼ Di;e þ Re ð8Þ

and the new center ca
new is now the mean value of all trends

of movement that belong to cluster e. Distance from the

new center ca
new to current trend wi, is equal to Rnew. The

algorithm then returns to Step 2.

5. If Si,a [ 2Dthr, where Dthr, then Xi does not belong to

any of the existing clusters. A new cluster is then

created in the same way as described in Step 1, and the

algorithm returns to Step 2;

6. The prediction of the next value of a given time series

variable is made by considering its distance from all

the cluster centers. Clusters that are closer contribute

to a greater extent. The contribution of cluster j to

variable Xi is given by: wij ¼ ðmaxðDÞ�ðDij�minðDÞÞ
maxðDÞ where

Dij represent the distance between variable i and

cluster j, while min(D), max(D) represent the distance

to the nearest and furthest clusters respectively.

END {Algorithm 2}

The predicted value is then given by: Xnext
i ¼

Pm

j¼1
wijcjPm

j¼1
wij

Figure 4 illustrates how a repository containing trajec-

tories are built and maintained over a period of time for a

hypothetical dataset. After the arrival of the first data

chunk, the first cluster contains time-series #1 (TS1) and

time-series #3 (TS3) as they are correlated and moving

together, while the second cluster captures the fact that
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time-series #2 (TS2) and time-series #4 (TS4) are pro-

gressing in a similar fashion. As the second data chunk

becomes available, the same trends for each of the four

time series remains the same, so the four trajectories in the

two clusters are retained. However, the second chunk also

contains two additional trends for TS1 and TS3, thus

adding two new entries to cluster 1, while an additional

trend for TS4 is created as the trend for TS2 remains the

same. In the third data chunk all four time series are

uncorrelated with each other, thus causing four additional

clusters to be created, each containing one of the time

series. The knowledge repository created acts as a knowl-

edge base and is the key data resource to perform

prediction.

3.3 Transductive inference and prediction

In contrast to global and local prediction systems where

models are constructed from sets of instances, transductive

prediction is made on a set of instances that most closely

match with a given instance. In its most basic form, the

learning is made with a k nearest neighbor algorithm and

the prediction for a given instance is simply the average of

the values of the nearest neighbors. In an early version of

this research the K-NN and WK-NN algorithms were used

to perform prediction of stock market indexes in the Asia

Pacific region (Widiputra et al. 2008). A WW-KNN

method (Kasabov 2007a), that suggests using weighted

importance of the variables in the local neighbourhood

when weighing the distance between the instances, was

applied on bioinformatics problems (Kasabov 2007a). The

results showed that transductive learning is capable of

capturing recurring patterns of movement from the past.

In general, transductive reasoning has the advantage of

using only the data that is most relevant to the instance

given. It also has the potential to reduce the effect of

outliers, since only a relevant subset of the instances in the

dataset is used to derive the solution. Transductive learning

has been used in wide range of applications such as data

stream mining (Shaker and Hullermeier 2012), text clas-

sification (Joachims 1999), bioinformatics (Kasabov and

Pang 2003) and surveillance (Li and Wechsle 2004),

amongst others.

In this research we use a modified version of the neuro

fuzzy inference (NFI) system proposed by Song and

Kasabov (2005). NFI is a dynamic neuro-fuzzy inference

system which uses either Zadeh (1973), or Takagi and

Sugano (1985) types of fuzzy inference. In the Zadeh–

Mamdani type of NFI model, Gaussian fuzzy membership

functions are applied to each fuzzy rule on both antecedent

and consequent parts, while for the Takagi–Sugeno varia-

tion, the consequent part is represented by a linear or non-

linear function. A back propagation learning algorithm is

used for optimizing the parameters of the fuzzy member-

ship functions. We make two modifications to the basic

NFI algorithm. We use the first order rate of change of

value instead of the absolute value for each time series

variable. The second change involves the use of Correla-

tion Coefficient instead of Euclidean distance measure to

quantify similarity level between instances when locating

nearest neighbors. Figure 5 shows how prediction is per-

formed with our modified version of NFI which we refer to

as mNFI.

4 An integrated framework for multiple time series

prediction

All three approaches discussed so far with respect to pre-

diction have their own strengths and limitations. Global

modeling has the advantage of using a larger quantity of

data but a possible drawback is that global models may fail

Data set D
for training

New input 
vector xi

Existing 
model M

Local model Mi
generated for the 

input vector xi

Output yi

Data Di selected from 
D in the vicinity of the 

input vector xi

Data D0,i generated in 
the vicinity of the input 

vector xi

Fig. 5 Transductive prediction

with NFI
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to track localized changes that take place at discrete points

in time. Local models on the other hand have the advantage

of capturing changes that take place in different time

localities and are also more flexible as prediction can be

performed either on the basis of a single model that covers

a subset of the space or from an ensemble of local models

that collectively cover the entire space. Transductive

models take the local model concept a step further by

personalizing prediction to instances rather than subsets of

data. Given the advantages of each approach, it is of

interest to investigate how they would perform together in

one integrated framework. Such an integrated framework

should be capable of weighing the contributions of each

approach and form a composite prediction based on a

weighted sum of the predicted values from each of the

three different models.

Kasabov (2007a) has proposed such an integrated

framework in the Bioinformatics domain. However, no

specification as to how such a framework can be actually

put into practice was given. One of the key contributions of

this research is a detailed scheme for implementing the

integrated framework. Such an implementation funda-

mentally involves solving a linear optimization problem of

finding weights wG, wL and wT that represents the impor-

tance of global, local and transductive models respectively.

Figure 6 shows from a high level perspective how the

global, local and transductive models can be combined into

one single framework.

The requirement that the weights be adapted as the data

distribution of each series changes continuously in time

suggests the use of a neural network architecture for

solving this problem. However, since the optimization

required is linear in nature a simple architecture based on a

single hidden layer with a single neuron will be sufficient

to determine an accurate solution. Employing such a sim-

ple architecture has the important advantage of efficiency

as a relatively straightforward back propagation process

can be used to estimate the optimal weights.

Figure 7 presents the Adaline neural network (Widrow

and Lehr 1993) as a solution to the weight optimization

problem in model integration. The Adaline neural network

has a feed forward structure and in the learning phase the

weights are adjusted according to the weighted sum of the

inputs, instead of passing inputs through an activation

(transfer) function in the standard perceptron model. The

purelin(wp?b) represents a linear function of the weight

Fig. 6 Adalaine network

architecture for weight

adaptation and optimization
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vector and the inputs which are the predictions made by

each of the global, local and transductive models. A bias b

is introduced in general in an Adaline network to model

any external interference in the system. In our case we

consider the optimization to represent a closed system with

no external interference, so b is set to 0. The objective

function to be minimized is given by:

si ¼ wg
i pg

i þ wl
ip

l
i þ wt

ip
t
i; i ¼ 1; 2; . . .; n ð9Þ

where n is the number of time series and the p vectors

correspond to the prediction from each of global, local and

transductive models. In effect the network presented in

Fig. 7 is a simplified version as an input is required for

each combination of time series variable and model type.

The learning algorithm employed in the optimization

process is outlined as follows:

BEGIN {Algorithm 3} Step 1: Calculate the mean

absolute error of the prediction for each combination of

time series variable and model type. The weight vectors are

initialized by mapping the absolute error of predictions at

time step 0 to a Gaussian membership function where the

model with the smallest absolute error is assigned to the

center of the membership function.

Step 2: Weight vectors at time step t are updated based

on the difference between the prediction value of the

objective function Eq. 9 and the actual value at time step

t - 1.

Step 3: The optimization process terminates when

the number of epochs reaches a given threshold value or

the predictions obtained by using the weight vectors on the

integrated model is less than some user defined tolerance

value.

END {Algorithm 3}

As our experimentation shows, the integrated model

improves the accuracy of prediction. The key to this

improvement is the adaptation of the weights to the

changing data distribution. Thus for example, when con-

ditions for the local model are not optimal for it to perform
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best it assigns more weight to the predictions made by the

global and transductive models, thus compensating for

shortcomings in each of the models at different points in

time.

5 Experimental study

Our experimentation took two different forms. We first

experimented with synthetic data in order to conduct a

performance study of each of the models under controlled

conditions. Secondly, we conducted two real life studies

from two different application domains, namely stock

market index prediction and prediction of air pressure

levels across geographically dispersed sites in a selected

country. We start by describing our experimentation with

synthetic data.

5.1 Experimentation on synthetic data

We generated four different synthetic time series exhibiting

different characteristics in order to test the performance of

the different prediction models. We modeled the time

series using three different polynomial functions of degree

6, thus producing non linear trajectories. The functions are

given by:

f1ðxÞ ¼
1

30
ðx6 � 22:5x5 þ 189:5x4 � 735:75x3

þ 1296:56x2 � 822:66xþ 180Þ ð10Þ

f2ðxÞ ¼ 0:08x6 � 1:8x5 þ 15:16x4 � 58:86x3

þ 103:72x2 � 65:81xþ 8 ð11Þ

f3ðxÞ ¼ �0:1x6 � 2:25x5 þ 18:95x4 þ 73:5x3 � 1296x2

þ 85x� 7:5

ð12Þ

In order to inject inter-dependency, another four

functions were derived from expressions (10–12) as

follows: S1 ¼ f1ðxÞ � f2ðxÞ S2 ¼ f1ðxÞ � f3ðxÞ S3 ¼ f2ðxÞ�
f3ðxÞ S4 ¼ ðf3ðxÞ�S3Þ

10

Figure 8 shows that all of the four time series have non

linear trajectories and exhibit dynamically changing depen-

dencies. Thus for example, in the initial period (from around

time step 2 through to about time step 30), time series 2 and 4

are strongly interrelated, whereas from around time step 30 to

time step 35 in the training phase, it is series 3 and 4 that have

strong dependencies on each other.

Before examining the performances of the 4 different

models on the time series, an understanding of the shifting

dynamics of the three basic models (i.e. the global, local

and transductive) over time is needed. This in turn will help

to understand the role that the Integrated model plays.

Figure 9 shows that the relative weights of the models

change over time for time series 1. At the start and at the

end, the global (eDIN) model tends to dominate over the

two models but at other points either the local (LTM) or

transductive (mTNFI) models have the highest weight, thus

showing that all three models play an important part in the

prediction process. This also demonstrates that the Inte-

grated model does indeed have a positive role to play as it

will shift emphasis from one model to the other as time

goes on, and thus can be expected to result in an improved

prediction accuracy than any of the three basic models

when taken over a given period of time.

Whilst the details of the weight dynamics for the other

three time series are different, the same basic trend of

shifting emphasis of the three models over time is present

and thus we have omitted presentation of these figures due

to space constraints. We are now in a position to examine

the performance of the models on the four time series.

Table 1 gives the root mean square (RMS) error of the

predictions for each of the time series on the testing seg-

ments of the four datasets. Consistent with Fig. 9 the table

shows that no one of the three basic models performed

consistently the best for all time series, although the LTM

and mTNFI performed very well. The integrated model

was consistently the best performer, in line with expecta-

tions given that the distribution of weights between the

models varied widely over time. While it would be

tempting to say that the eDIN (global) model was redun-

dant given that it consistently gave the highest RMS value,

it plays an important part in the overall prediction process

as it contributes strongly to the predictions at certain points

in time as indicated by Fig. 9. Moreover the eDIN model is

able to describe in a graphical manner the interactions
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between the time series, as demonstrated in Fig. 1 and is

thus a valuable tool in time series prediction.

Having established the superiority of multiple time

series methods on different synthetic time series we next

examine their performance on two real world case studies,

starting with the stock market case study.

We were also interested in assessing performance of

established prediction methods such as multiple linear

regression (MLR), multi layer Perceptron and DENFIS

against the IMMF model. These methods, although widely

used in single time series prediction were not designed to

capture interactions between multiple time series methods

and so it would be interesting to see how they cope against

methods such as eDIN, LTM and mTNFI that were

designed to operate in a multiple time series environment.

Table 2 shows clearly that the multiple time series methods

outperform their single time series counterparts. As

expected, MLR was the worst performer. This is for two

reasons, one is the fixed linear trajectory that MLR uses.

Secondly, the trajectory was estimated on the training

segment where the data behaves quite differently from the

testing segment, and since MLR has no adaptive capability

the prediction accuracy is severely affected. MLP, on the

other hand is able to cope better on account of its non linear

capability but it too suffers from the fact that its model

(trajectory) is determined from the training segment and

since it has no adaptive capability its accuracy is also

significantly lower than that of the multiple time series

models. DENFIS is interesting due to the fact that it has

adaptive capability. Thus it uses the training segment to

bootstrap a model which it incrementally updates during

the testing segment. The evolving nature of DENFIS helps

it to perform best amongst the single time series methods.

Despite this it still cannot perform as well as the multiple

time series methods as it does not take into account the

interactions between variables, thus confirming the

importance of capturing inter-dependencies between

variables.

5.1.1 Modeling of stock market indexes in the Asia Pacific

region

The globalised security markets of today are characterized

by interdependencies, and often demonstrate contagious

behavior in periods of crisis. A study by Phylaktis and

Ravazzolo (2005) found that the relationship between

markets is stronger than in the past, due to the relaxation of

foreign ownership restrictions. Other studies also found

that movement in local stock markets are generally influ-

enced by major players in Europe, North America and

Australasia. The existence of known interdependencies

between markets thus makes the stock market environment

an ideal one to study interactions between multiple time

series variables. The ten markets that we have selected are:

Australia AORD, Hong Kong HSI, Indonesia JSX,

Malaysia KLSE, South Korea KOSPI, Japan Nikkei 225,

New Zealand NZ50, Shanghai China SSX, Singapore STI

and Taiwan TSEC, all within the Asia Pacific region.

Figure 10 depicts the trajectories of the ten stock markets

during the period of study. As Fig. 10 shows, markets such

as Japan’s Nikkei and Hong Kong’s HSI showed a greater

degree of volatility than the others in the study period.

Figure 11 shows the prediction accuracies of the models

on the most volatile market, Japan’s Nikkei 225. The plot

shows that IMMF is by far is the most accurate model,

consistent with our results from synthetic data. The same

trends hold true for the other markets as Table 3 shows.

Also consistent with the synthetic time series the mTNFI

model on its own performed very well and outperformed

the eDIN and LTM models on all markets except for the

Hong Kong HSI. Even though the eDIN did not emerge the

winner in any of the markets, weight analysis shows that it

was a significant contributor to the overall prediction for all

markets at various different time points in the study period.

Table 4 shows that IMMF significantly outperformed all

of the single time series prediction methods, consistent

with the experimentation on synthetic data.

An analysis of the network generated by the eDIN

model at a selected time point shows some interesting

interactions between the markets. Figure 12 shows that no

market moves in isolation, every single market influences

or is being influenced by other markets. This result sup-

ports findings from previous studies that analyzed the

existence of interdependencies in global stock markets

(Chowdhury 1994; Lucey and Muckley 2010; Widiputra

et al. 2009). Figure 12 clearly shows how the two leading

markets in the Asia Pacific, the Hong Kong HSI and Japan

Nikkei 225, affect the other markets significantly.

Table 1 Relative error rates of eDIN, LTM, MTNFI and IMMF

models

Variable eDIN LTM mTNFI IMMF

Series 1 11.97 7.87 7.24 4.78

Series 2 5.51 4.19 6.38 2.69

Series 3 7.47 4.86 3.09 2.35

Series 4 7.69 5.48 1.97 1.58

Table 2 Relative error rates of IMMF models versus traditional time

series prediction methods

Variable IMMF MLR MLP DENFIS

Series 1 4.78 62.06 15.14 14.32

Series 2 2.69 43.73 7.57 4.65

Series 3 2.35 37.06 7.66 6.10

Series 4 1.58 10.19 8.77 8.86
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Interestingly, the network also shows that movement of the

Shanghai’s SSX is affected by most of the other markets in

the region (as indicated by the inward arrows pointing into

SSX). Again, this finding is consistent with a previous

study conducted by Widiputra et al. (2009) which spanned

a different time period from the one used in this study.

Thus the structure of the network that is derived from the

eDIN model has the potential to reveal insights into

dependencies between markets which are ultimately reflect

economic policies set by countries and their trading pat-

terns. With respect to the inward flows into China’s SSX,

the following explanations can be offered. Firstly, China

has become one of the largest investors in many Asian

countries. Secondly, by proposing to negotiate a free trade

agreement with the ASEAN (Association of South East

Asia Nations) countries, China has offered to share the

benefits of its economic growth with countries in the region
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Table 3 Relative error rates of eDIN, LTM and mTNFI and IMMF

models for selected stock markets

Stock market eDIN LTM mTNFI IMMF

Australia AORD 68.86 60.59 36.72 25.13

Hong Kong HSI 330.44 254.44 258.99 156.33

Indonesia JSX 47.61 29.31 21.11 19.85

Malaysia KLSE 12.40 9.40 9.02 5.29

South Korea KOSPI 28.03 20.23 15.49 13.56

Japan Nikkei 225 156.06 149.46 105.96 61.81

New Zealand NZ50 38.11 27.16 17.8 8.90

Shanghai China SSX 56.56 48.14 40.43 30.78

Singapore STI 50.81 27.25 24.81 16.10

Taiwan TSEC 112.34 94.77 89.02 57.36

Table 4 Relative error rates of IMMF models versus traditional time

series prediction methods

Stock market IMMF MLR MLP

Australia AORD 25.13 171.80 88.52

Hong Kong HSI 156.34 460.38 428.70

Indonesia JSX 19.85 77.36 41.72

Malaysia KLSE 5.29 36.45 26.65

South Korea KOSPI 13.56 47.62 28.60

Japan Nikkei 225 61.81 311.88 293.48

New Zealand NZ50 8.90 126.17 48.99

Shanghai China SSX 30.78 175.56 105.78

Singapore STI 16.10 75.30 60.75

Taiwan TSEC 57.36 198.68 141.32
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while establishing its influence over the smaller economies

in Asia. All these contribute to the unique position of

China, and to the number of vertexes that it is involved

with in the interaction network.

Furthermore, the network also identifies the existence

of interactions between Australia’s AORD, Hong Kong’s

HSI, South Korea’s KOSPI, Singapore’s STI, and

Taiwan’s TSEC, which is in agreement with previous

findings by Masin and Masih (2001) in their research on

the dynamics of stock market interdependency in 1998

which found that these five stock markets are interde-

pendent on each other.

It is also important to note that the interdependencies

mentioned above are sustained throughout the study period

although the exact degree of dependencies between mar-

kets varies with time. The LTM and mTNFI models also

capture inter-dependencies between markets in the form of

clusters and fuzzy rules respectively, both of which evolve

continuously in time. Details of these are in Widiputra

et al. (2011b) and Widiputra (2011). In conclusion, we note

that each of the globalized (eDIN), localized (LTM) and

transductive (mTNFI) approaches play an important part in

analyzing and accurately predicting the movement of stock

markets, while the integrated model provides an even

greater degree of accuracy by weighing the relative con-

tributions from each of these models over time.

5.1.2 Modeling weather patterns across selected weather

stations in New Zealand

Weather prediction is a complex activity as a number of

factors such as wind direction and intensity, temperature,

air pressure, moisture content, among others are needed to

accurately forecast the weather pattern at any given point

in space and time. In this case study we concentrate

exclusively on one factor, namely the prediction of air

pressure across selected weather stations in New Zealand

which are geographically dispersed from each other.

Findings from a previous study on global weather systems

revealed that small changes to one part of the system led to

a complete change in the weather system as a whole

(Vitousek 1992); as such this was the key motivation

behind experimenting with such data.

Air pressure readings are recorded daily from various

locations in New Zealand by the National Institute of

Weather and Atmosphere, New Zealand. The dataset used

in this study covers a period of almost three years, ranging

from the beginning of April 2008 to the end of December

2010. Spatial coordinates were used to define the multiple

variables, with the air pressure at four different locations in

New Zealand (Auckland, Hamilton, Paeroa and Reefton)

comprising the multiple time series variables. These

weather stations were carefully chosen so as to reflect a

range of proximity, with Auckland and Hamilton being

relatively close being around 125 kilometers apart, whereas

Auckland and Reefton are approximately 988 kilometers

apart. The trajectories of observed air pressure data from

two of these stations, namely Auckland and Reefton are

illustrated in Figs. 13 and 14. The plots show that the air

pressure profiles between the two stations are similar dur-

ing the majority of the study period, however Reefton

experienced more severe low pressure points than Auck-

land at several different points in the study period. The air

pressure profiles for the other two stations had a greater

degree of similarity with that of Auckland and were thus

omitted.

Fig. 12 Interaction between the

stock markets in the Asia Pacific

region
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Table 5 shows that IMMF outperforms the eDIN, LTM

and mTNFI methods on their own, consistent with our

experimentation on synthetic data and the stock market

dataset.

We also tested IMMF against the single time series

methods such as MLR and MLP to verify the significance

of including interactions in the prediction process for this

dataset. Table 6 shows that IMMF is vastly superior to both

MLR and MLP, once again reinforcing the need for incor-

porating interdependencies into the prediction process.

Figure 15 shows that interactions are present between

all weather stations but the interactions between Auckland,

Paeroa and Hamilton are the greatest. Paeroa and Hamilton

affect Auckland pressure whereas the opposite is not true.

This can be explained in terms of the geography of the

locations: Auckland is located on a narrow spit of land

which is around 25 km at its widest from West to East

coast and is therefore vulnerable to weather systems

developing from Paeroa to its East and Hamilton to its

South.
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Fig. 13 Air pressure trajectory in the Auckland weather station during study period
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Fig. 14 Air pressure trajectory in the Reefton weather station during study period

Table 5 Relative error rates of eDIN, LTM, mTNFI and IMMF on

weather data

Station eDIN LTM mTNFI IMMF

Auckland 1.99 1.10 1.01 0.64

Paeroa 1.97 1.10 0.98 0.60

Hamilton 1.96 1.11 1.02 0.65

Reefton 2.46 1.31 1.05 0.65

Table 6 Relative error rates of IMMF models versus tradtional time

series prediction methods on weather data

Station IMMF MLR MLP

Auckland 0.64 3.52 3.04

Paeroa 0.60 3.43 3.16

Hamilton 0.65 3.73 3.50

Reefton 0.65 4.17 3.91
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Profiles of relationships extracted from the Local model

(LTM) shows that in the period of study there is a signif-

icant number of occasions (437) when the trajectories of

Auckland, Hamilton and Paeroa are moving together while

Reefton moves independently the vast majority of the time

(516). This is in agreement with the findings of the Global

(eDIN) model discussed above. In conclusion, the results of

this study are in close agreement with that of the Stock

Market study and the synthetic data on the performance of

the multiple time series models.

6 Conclusion and future work

This research shows that in terms of prediction accuracy,

special purpose models built to capture interactions

between multiple time series perform much better than

established methods for single time series prediction.

Furthermore, the integrated model that was proposed in this

research performed better than any of the multiple time

series methods on their own, suggesting that in multiple

time series data with varying dynamics, the predictions

from each of the methods need to be corrected or adjusted

by predictions from the other two methods. This process

was accomplished by feeding the predictions into an

Adaline neural network that dynamically adjusted the rel-

ative contributions from each of the models over time.

The research also showed that valuable information

could be extracted from the models developed. The global

method produced an interaction network that changed its

structure over time. The vertexes of the network repre-

sented interactions between nodes (e.g. country specific

stock markets) which could be interpreted in terms of

domain specific events such as economic policies set by

countries leading to strong trading patters with other

countries. In the case of the weather case study, the air

pressure at certain weather stations was affected by the

pressure at other stations in their proximity on account of

their geographical position.

In terms of future work there are a number of ways that

this work can be extended. First of all, the global method

(eDIN) currently only captures linear relationships between

variables. Non linear relationships can be captured by

simply incorporating the extended Kalman filter but then

the challenge will be to adapt the prediction process in an

on line manner as we have done in the case of the basic

version of the filter. Along the same lines a correlation ratio

can be used instead of Pearson’s correlation to represent

non linear relationships with the local method. Another

challenge would be to automate the process of parameter

selection. Each of the methods have a number of parame-

ters which are currently set by hand based on performance

with the training dataset. The logical next step would be the

optimization of these parameters using evolutionary com-

putation methods such as quantum inspired particle swarm

optimization (Kasbov and Hamed 2011).

Finally we note that this research has not conducted a

performance study to determine the run time overhead

introduced by the methods used such as the global, local

and transductive methods used in the prediction process.

However, we observe that all of these methods make only

one pass through the data and build their models incre-

mentally thus making them suitable for on line prediction.

However a study that quantifies the computational costs of

each of the models is desirable in order to further optimize

the performance of these methods.
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