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Abstract In this paper, we introduce EVE, a generic

framework for event detection where events can also

include outliers, model changes and drifts. Various meth-

ods for event detection have been proposed for different

types of events. However, many of them make the same or

very similar prior assumptions but use different notations

and formalizations. EVE provides a general framework for

event detection, which allows existing algorithms to be

represented using a common basis. The framework

includes generic types of time slots, streaming progresses,

and measures of similarity between those slots. We dem-

onstrate how existing algorithms fit nicely into this

framework by instantiating appropriate window combina-

tions, progress mechanisms, and similarity functions.

Keywords Event detection � Data mining framework �
Stream mining � Change detection

1 Introduction

Knowledge discovery is usually concerned with identifying

the underlying general theme, i.e. the modeling of the

underlying overall system. However, new knowledge is

often also generated by detecting the ‘‘odd one out’’. There

are many aspects of this type of knowledge discovery, the

most obvious one is known as outlier detection. However

being able to notice when the underlying models slowly (or

abruptly) changes—often referred to as model change or

model drift—is also of importance.

In recent years most of this type of work has been con-

ducted under the umbrella of stream mining (Gama 2010,

2012). Here the focus lies on the processing of data online

where it is usually not possible to analyze all the data or—in a

more extreme case—even access past data points. Aside from

these added difficulties of data access, a very prominent topic

in data stream mining is event detection where an event

denotes the departure from the normal, e.g. some irregular

behavior observed in the data. Irregularity in stream mining

indicates that current observations are not related to concepts

derived from previous observations. As in normal data min-

ing, events in data stream mining can be outliers, misclassi-

fied patterns, or an overall shift or change of the underlying

model. In data stream mining literature the terms novelties

and anomalies are also often used for these types of events.

A detailed overview of various novelty detection

approaches in stream mining can be found in Markou and

Singh (2003). Less isolated events, such as model changes

and drifts, have also increasingly drawn attention in the last

few years (Widmer and Kubat 1996; Hoens et al. 2012;

Zliobaite 2009).

When these different kinds of algorithms are investi-

gated in more detail, it quickly becomes apparent that

many of them follow the same underlying principle. They

all store some type of summary information about the past

behavior of the stream and compare this representation to

the present situation. Of course they use various different

methods of comparison in order to detect different types of

events but the underlying mechanism stays the same.

Based on earlier work (Adä and Berthold 2011), in this

paper we propose EVE, a general framework for event

detection encompassing different approaches but also dif-

ferent types of events. Providing a general framework not
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only allows easy comparison of different approaches, but

EVE also enables different types of event detection

approaches to be categorized.

The most straight forward approach for event detection

would function in a similar manner to lazy machine learning

and simply store all of the past data points. In reality this is

not generally possible. Most existing approaches either store

a certain window of data (either a sliding window or starting

from some fixed data point in the past) or build/update a

model summarizing all the data or a subset of the data seen so

far. Depending on this choice, actual event detection sub-

sequently compares either this past data or the model rep-

resenting past data with the present data point or window.

Depending on the focus of event detection (outlier, drift/

change) the present data to be considered will range from one

single instance to a larger window. The second ingredient of

event detection algorithms is the type of comparison – some

sort of similarity function needs to be used to determine

whether or not the past data (or the model abstracting the past

data) matches the present data. Various alternatives exist,

comparing either two data windows, a model to a data win-

dow or two models.

At this, fairly abstract level, the main ingredients of

every event detection are therefore:

– Window modeling: how does the method keep infor-

mation about the past: as a (sliding) window and/or as

an aggregating model? How much of the most recent

data is used: just one data point for outlier detection or

a larger window for (gradual) model change?

– Dissimilarity: how is past and present information

compared? By matching data (window) against data

(window), by matching a model to data, or by matching

two models?

– Detection: when is an event reported to the analyst?

In the following we will first introduce the window modeling

itself in more detail and then show the importance of the

dissimilarity function and how it can be formalized. After-

wards we discuss related work and show how it can be

embedded into the presented framework. A demonstration of

the framework on exemplary data sets should further

underline the general idea. We conclude by briefly discuss-

ing an implementation of the system, which allows different

variations of this framework to be evaluated flexibly.

2 Terminology

Before detailing the EVE framework we first need to

clarify the terminology we will be using in the remainder of

this paper. As already mentioned the key idea of event

detection is to detect irregular behavior in the data, which

is unexpected or unknown with respect to previous obser-

vations. The term ‘‘event’’ is used here to define everything

that is new and potentially useful. Hence, information

about the event is in some sense (often statistically) dif-

ferent to previous parts of the data. This information is

considered to be important as it differs from already known

or learned underlying models.

A number of problem categorizations exist, particularly

in drift detection. The most common one distinguishes if

a change is either gradual/slow or abrupt/sudden based on

the level or speed of change (e.g. Gama et al. 2004).

Another categorization splits the gradual changes further,

by considering whether the change has occurred in the

attribute space or in the class label, and adds the possi-

bility of a reoccurring change (Zliobaite 2009). Recently

Minku et al. (Minku et al. 2010) proposed a more detailed

categorization, splitting the possible drift into various

categories such as isolated vs. sequenced drift on the top

level, or speed, predictability, frequency, etc. at lower

levels. This detailed categorization helps to clearly iden-

tify differences and similarities in future drifting

methodologies.

For this work we will use the well-known but less

detailed distinction between abrupt versus gradual events

(e.g. discussed in Tsymbal 2004; Gama et al. 2004) to

classify the level of difference and speed of change. In

order to more specifically adjust to various event types

another distinction is made by considering the duration of

the event (short-term vs. long-term, a distinction we have

not found in the literature). Figure 1 shows the resulting

four main event types.

The first type of events are short-term events. These are

mostly detectable by a single data point only. This data

point either does not match the previous data at all or

belongs to a subset of data for which there are no recent

comparisons. This type of event is already well known by

the term outlier or anomaly (Chandola et al. 2009). Short-

term events are always abrupt events.

Data order

D
is

si
m

ila
rit

y

(a)
Data order

D
is

si
m

ila
rit

y

(b)
Data order

D
is

si
m

ila
rit

y

(c)
Data order

D
is

si
m

ila
rit

y

(d)

Fig. 1 A visualization of the

four possible types of events, as

mentioned in the terminology

Sect. 2, is depicted above. The

major distinction is based on the

duration of the event, as short-

term events (a abrupt and

b collective) and long-term

events (c abrupt and d gradual)
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A short-term event can also be caused by more than one

data point. In this case, the collective short-term event

demonstrates high similarity between the data points and

high dissimilarity to data points seen before and also to

subsequent observations. The behavior of the data abruptly

returns to the previous behavior after the event. In current

literature (e.g. Markou and Singh 2003), this event type is

also referred to as novelty.

Events that are induced by multiple data points are

called long-term events. The main difference is that they

are induced by multiple data points and the data configu-

ration does not return to the one seen before. If there is a

clearly identifiable change in the data configuration the

event is referred to as an abrupt event.

Contrary to short term events, long term events can also

be characterized by slow changes of the data. Instead of

single data points not fitting to the previous scheme, sub-

sequent data points slowly slide away from the previously

built model. This change in the data is of considerable

interest as it indicates a slow but continuous event in the

data. Such gradual long-term events also bring a special

demand to the detection process, as their exact start is hard

to detect.

3 EVE: the event detection framework

This section explains the core of the unifying event detection

framework. Detecting events fundamentally relies on com-

paring past to present situations, which are, in our case,

represented by data points from different windows in time.

Events are then characterized by the two windows being

different in some way. Various methods can be used to

measure this dissimilarity between the past (represented by

the data points in the past window) and present (the present

window). We can directly compare the data points in both

windows or compare models abstracting the data points in

the windows. Such models can be simple clusters or more

complex abstractions such as decision trees or rules. (We

can, of course, also compare a data set to an abstract model.)

The dissimilarity measured between the two windows indi-

cates the probability of an event. For example: A model, built

with knowledge from an outlier can never be similar to a

model built on normal behavior only.

We will discuss appropriate dissimilarity methods in

Sect. 3.2, detection methods in 3.3 but start with providing

a more formal discussion of the windows types and

process.

3.1 Window modeling

As described above, the event detection framework

described here is based on two windows. The first window,

which is used for summarizing the known/pre-vious/old

behavior of the data, is referred to as the past. It should

start and end a certain number of steps before the currently

regarded data point. The later window, which possibly

contains/incorporates knowledge about the event, is refer-

red to as the present window. This window is supposed to

contain the most recently considered data points.

3.1.1 Window configuration

The first step in the framework is to formalize the different

window types. This formalization will later help to clearly

identify different types of window configurations.

A window type is defined by two terms. The first term

refers to the behavior of the start position of the window

and can either be fixed(F) or sliding(S). The width of the

window is described by the second term. It can be of

constant(C) or growing(G) size. Although the windows are

described as subparts of the overall stream, only a sum-

marizing model has to be saved, and not the whole infor-

mation. This formalization results in four possible

configurations of a window:

– FC: The fixed constant window does not change during

the progress of the detection mechanism.

– FG: This window type always starts at the same

position(F), but incorporates one new data point in

every step(G). Although the theoretical window size is

constantly increasing, this does not have to be the case

for the model. The model of the previous time step can

only be updated according to the newly achieved data

point.

– SC: The sliding and constant window changes its start

and end position simultaneously. Hence, the size of the

window does not change, only the start position does.

– SG: See comments below.

3.1.2 Comments on sliding growing windows

Using the default idea of data stream mining, i.e. learning

one new data point with each step of the algorithm, a

window cannot change its start position and increase its

size at the very same point in time.

Some approaches in change and drift detection already

use the idea of variable-sized windows. The Drift Detection

Method (Gama et al. 2004) extends the size of the win-

dow(FG) until a drift level is reached and then restarts

learning. In the windowing case, restarting learning means

setting the window size to 0. The FLORA2 algorithm

(Widmer and Kubat 1996) uses a window adjustment

heuristic to decide when the window should be shrunk,

grown or kept at a constant size. The ADWIN(Adaptive

sliding window) methodology (Bifet 2010) increases the
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window size until two subwindows are found that are

‘‘distinct enough’’. In this case the elements from the start

of the window are dropped until the statistics fulfill the null

hypothesis.

Overall one can summarize that using a rule base to define

sliding and growing behavior is the most promising direction

for SG-windows. However, there are multiple possibilities

for defining an overall concept of SG-windows.

3.1.3 Combining windows

Two window types are needed to define the combination

type. For example, the past window is XY and the present

window �X �Y; therefore the combination type is described as

XY ,! �X �Y; where X; �X 2 fF; Sg and Y ; �Y 2 fC;Gg

3.1.4 Window formalization

A data stream D = (d0, d1, d2,…) is defined as an infinite

sequence. The data point di arrives at time point i and the

time lag between two data points di and dj can be calculated

as the distance i� jj j: The set of all i is defined as T. T is a

subset of N; T is a closed interval and 1 [ T. Subsequences

of the stream form the windows used for the learning

process: D[i,j] is defined by data points arriving between

and including time i and j.

A window combination, which refers to two subse-

quences of the data, is configured by a window configu-

ration function a:

a : T 7!T3 : t 7!ða0ðtÞ; a1ðtÞ; a2ðtÞÞ
9t0 2 T : 8t [ t0 2 T : fa0ðtÞ; a1ðtÞ; a2ðtÞg � T

The subsequences used for present and past windows can be

derived from function a~: The past window at time point t is

D½a0ðtÞ;a1ðtÞ�

and the present

D½a2ðtÞ;t�:

3.1.5 Window filtering

We obtain four possible window types, which result in 16

different combinations types. As already mentioned the SG

window type is not covered here, hence only nine combi-

nations remain.

We start by filtering combinations which are either not

usable at all, or are not used in current literature. The

FC,!FC combination, which can be seen in Fig. 2 does not

change at all and hence is not usable for any detection

process.

As determined by the definition of present and past, the

present window should always end after the past window.

However, if the present window is modeled by a Fixed

Constant window, the past will overtake the present. This

can be seen in the two cases shown in Fig. 3.

In the final filtering step, we consider strong overlapping

windows as depicted in Fig. 4. If the second window is

realized by an FG window, it is not feasible for the first

window to change its end position as well. Considering,

e.g. the FG,!FG combination in conjunction with the

progress of the algorithm, the overlap is going to be the

main part of modeling. A dissimilarity function would

therefore naturally decrease over time, as both slices

mainly contain the same information. A similar explana-

tion can be given for the SC,!FG combination. Figure 5

depicts the four remaining combinations.

3.1.6 Window combinations

1. FC,!SC: One of the pioneering works in the area of

change detection (Kifer et al. 2004) presented a

change detection framework based on the first data

points and a second constant window ending at the

most recent data point. This also refers to our first

window combination. The past is modeled as a never

changing model at the start (t0) of the data and the

present is a sliding window of fixed size s1. The

respective window configuration function is therefore

defined by:

a~ðtÞ ¼ ðt0; t0 þ s0; t � s1Þ

When s1 equals 1, this can be used to detect short term

events. A long-term event can be detected with s1� 1.

2. FC,!FG: In the second combination the past window

is a subsequence at the start of the data set of size s0.

With every step the present window incorporates the

new data point.

a~ðtÞ ¼ ðt0; t0 þ s0; t0 þ s0 þ 1Þ

3. SC,!SC: The third approach uses two synchronous

sliding windows. Hence we achieve:

a~ðtÞ ¼ ðt � s0 � s1; t � s1 � 1; t � s1Þ

(s0 is the size of the first window; s1 is the size of the

second window) This approach has been used by Dries and

Rückert (2009) for example.

4. FG,!SC: The probably most typical data stream

algorithm type incorporates all of the previous infor-

mation in the past and uses a single data point for the

present model. This is a special case of the last

modeling possibility. Only a sliding window of a fixed

size s1 is used for the present window and all of the

previous data is used for the past. This can be

formalized by the following window configuration

function:
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a~ðtÞ ¼ ðt0; t � s1 � 1; t � s1Þ

Note that all of the combinations start with the same

base line: two windows following each other directly. It is

quite obvious that a constant gap can be introduced with an

extra input parameter g added to a2(t).

Most of these approaches can be directly achieved via

every data mining algorithm. Therefore the model has to be

created on the window with every step of the algorithm.

Subsequently the main difficulty is to find a dissimilarity

function between two windows or their models. However,

recreating the model for each step from scratch consider-

ably increases the complexity.

3.2 Dissimilarity

The next step in configuring an event detection algorithm is

the definition of the dissimilarity function. The main goal

of the dissimilarity function lies in simplifying the problem

into a one dimensional function. This can be evaluated

much more easily by the detection method afterwards. The

dissimilarity function da : T 7!R first maps the time point

t to the respective window combination. It is configured by

using the window configuration function a~ðtÞ and finally

measures dissimilarity between the two windows.

There are two different ways of handling the previously

described windows. One can work directly on the data and

define a similarity metric in the corresponding space.

Alternatively, one can use a summarizing model. This

consideration creates four possibilities for the dissimilarity

function.

First, data windows can be compared directly. This

setup represents the most general method, of course, and

achieves the best accuracy. However, in many cases the

resulting high complexity makes it infeasible. In this case

we have to select a dissimilarity function which directly

calculates between the two windows. Obviously for

numerical data one can use the Euclidean distance or one

of the other Lp-norms. But, of course, the model-based

abstractions below can also be put under this category.

To reduce the complexity of the dissimilarity calculation

a more compact model can be learned from one of the

windows (mostly the past) and used to test the data of the

second part (mostly the present). The dissimilarity function

then averages or sums up the achieved errors. The advan-

tage of this second and third possibility of comparing

windows is that we can use e.g. classification or regression

algorithms together with their evaluation possibilities.

After building a classifier, such as a decision tree, on one

window, it is applied to the other window and the dis-

similarity is derived from the missclassification rate. With

a regression function as the model the dissimilarity can

similarly be calculated as the mean difference between the

predicted and the true values of the second window.

t0 t1 t2 t3

FCFC

Fig. 2 A visualization of the

FC,!FC combination over four

consecutive time steps

t0 t1 t2 t3

SC FC

FG FC

Fig. 3 Shows how SC,!FC

and FG,!FC evolve over time.

As the present window does not

change, the past window

overtakes it

t0 t1 t2 t3

SC FG

FG FG

Fig. 4 Combinations ending on

a fixed growing window suffer

from a strong overlapping of the

two windows

t0 t1 t2 t3

SC SF

SC GC

SF GC

GC GC

Fig. 5 The four combinations

remaining after filtering are

shown here. The figure

visualizes how they start with

the same initial configuration

and proceed to evolve over time
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As a final possibility, the dissimilarity function can be

calculated directly between two models. By using only this

more abstract information we are able to measure a more

general event in the data. For partition-based clustering (as

produced by k-means) the dissimilarity can be calculated

using the idea behind Ward’s method. The Kullback–Lei-

bler divergence (Kullback 1987) compares two probability

distributions, which are in this case the summarizing

model. Finally it is also possible to compare the learned

coefficients between two models, e.g. the dissimilarity

between the gradients of the regression function.

In the following, Di represents windows that are sub-

sequently analyzed. Hence, Di-1 is positioned before

Di, which again is located before Di?1. We use the fol-

lowing convention for the dissimilarity function to simplify

the definitions dðD; �DÞ ¼ daðtÞ with D :¼ D½a0ðtÞ;a1ðtÞ�: and

�D :¼ D½a2ðtÞ;t�: To achieve a good dissimilarity function, the

function has to fulfill the following requirements.

1. No event: d(D1, D2) & d(D2, D3) If the model does

not change, this has to be the case for the dissimilarity

function as well. We believe that only a change in the

dissimilarity should be directly related to the possibil-

ity of an event.

2. Abrupt event: If D3 is the first slot to incorporate

knowledge about an abrupt event, the dissimilarity

should abruptly increase (d(D1, D2) � d(D2, D3)).

Such an abrupt change of the dissimilarity function

mostly indicates that an outlier or novelty has been

found in the data.

3. Gradual event: d(D1, D2) \ d(D2, D3) \ ���\ d(Di-1,

Di) (respectively[) A gradual event in the data results

in a dissimilarity between the models, which increases

(or decreases) continuously over time. The exact start

of such a gradual event is of particular interest, but is

very difficult to detect.

3.3 Detection

Taking our previous observations, we can create a diagram,

as seen in Fig. 6. The next step is to determine—preferably

automatically—when an actual event is happening. Most

algorithms use a threshold in order to be able to output

whether an event has happened or not. However, we can

find out more information by taking a closer look at the

plot.

Based on the hypothetical dissimilarity function shown

in Fig. 6 the detection process is split into different pos-

sible stages. Stage 1 describes normal behavior. In this

phase all new unseen data points coincide with the previous

ones. An abrupt change was found in stage number 2. Once

this abrupt change has passed, phase 1 with its constant

value is seen in the error plot again. In contrast to the jump

provoked by the abrupt change, the behavior of the func-

tion in Sect. 3 is different. The slow increase indicates that

new data points influence the model causing it to slide

away from the previous model. This rise describes a change

in the data. In the reversal point between stage 3 and 4 a

state is reached in which most of the previous model is

forgotten and the system assimilates to a new changed

underlying model.

One of the most common methods for the detection is,

next to using a simple threshold, a control chart. A control

chart (Shewhart 1980) uses an intelligent threshold by

measuring the mean and standard deviation of the function

over time. In the area of drift detection, many more algo-

rithms are discussed, which can report events from a one

dimensional function. Examples of these are: Drift Detec-

tion Method (Gama et al. 2004), Early Drift Detection

Method (Baena-Garcı́a et al. 2006) and EWMA (Ross

et al. 2012).

3.4 Concluding remarks

We conclude this section with a short recommendation as

to which type of window modeling is appropriate for dif-

ferent scenarios. Overall, it is difficult to give a recom-

mendation based on the type of event, furthermore the

system should be configured based on a detection goal or

on assumptions that can be made.

– FC,!FG : The advantage of this combination is that a

possible complicated but detailed model can be used

for the past. As the present includes the following data

set, it will also include possible events, thus increasing

the dissimilarity for all the following comparisons.

– FC,!SC: For this combination, the data should only

change for a certain time but always return to a base

level. If the underlying model does not return to the

previous one, the value of the dissimilarity function

stays at a high level.

– SC,!SC: If this is not the case, i.e.the model changes

without returning, the two sliding windows in this

combination are advisable, as they accept the changed

Time / Data order
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Fig. 6 A hypothetical dissimilarity function. The higher the peak, the

more dissimilar the data becomes with respect to previous behavior.

An event can be determined when values leave static behavior

(marked by 1)
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model as normality over time and will even forget the

event.

– FG,!SC: The last combination is the most flexible one.

It includes all information about previous events in the

past window. If similar events happen in the future they

are accepted as normal.

4 Modeling existing approaches

The goal of this section is to demonstrate how a few well

known approaches for detecting events, or strongly related

approaches like change detection, anomaly detection, drift

detection—to mention a few—fit into the presented

framework.

First the system is applied to Shewharts 3-sigma control

chart (Shewhart 1980). It is typically only used for one-

dimensional data streams but can easily be extended to a

multi-dimensional data stream by using a single Gaussian

kernel to model the data.

Data: One-dimensional numerical data.

Window: FG ,! SC

Model: Mean l and standard deviation r.

Dissimilarity: d(t) = x - (l ? 3r)

Detection: Threshold: Warning if d(t) [ 0

A recent approach uses Gaussian kernels (Bondu et al.

2010) to model the time windows. In this approach our

framework provides clarity as it already uses a dissimi-

larity measure. The measure only depends on the updates

in the model. Their approach can be formalized as

follows:

Data: Multi-dimensional numerical data.

Window: FC ,! SC

Model: Gaussian Mixture Model (e.g. M1,M2)

Dissimilarity: d(t) = KL(M1,M2) Kullback–Leibler-

Distance (Kullback 1987) is used to measure the

dissimilarity of two Gaussian Mixture Models.

Detection: Threshold: Warning if d(t) [ a

Another early approach (Japkowicz et al. 1995), which

is concerned with the modeling of high-dimensional data,

uses a neural network to model the data stream. The auto-

associative network subsequently minimizes the difference

between the input and the learned output for the training

patterns.

Data: Multi-dimensional numerical data stream.

Window: FC ,! SC

Model: Neural network

Dissimilarity:
P

(xi - yi), where x is the input vector

and y the vector predicted by the neural network.

Detection: Threshold: Warning if dist [ a

5 Practical considerations

The window framework is realized in KNIME (Berthold

et al. 2007). KNIME1 is a workflow based data mining

tool. A process for analyzing data is created by combining

single units (nodes). The main advantage here is that it is

very easy to change individual subroutines in the workflow.

For the framework the type of window configuration,

modeling, parameters or the dissimilarity function can be

exchanged by substituting one of the nodes with a different

one. Hence the modularity of KNIME naturally fits the

EVE framework.

Figure 7 shows an example of a workflow. With this

simple construct it is very easy to test different distance

measures or window combinations.

The first node is called the ‘‘Window Loop Start’’, in

which the type of window combination as well as the

respective parameters for the window sizes and step width

are configured. This node has one input port, into which the

whole data set is entered. The loop start node together with

the loop end node are best described as a ‘‘while’’-loop. All

nodes between the two of them are executed for all con-

sequent window combinations until the end of the data set

is reached. Hereby the past window is always passed to the

first outport and the present to the second outport. In each

iteration the loop node combination moves the windows

with the defined number of data points.

The models which can be created for abstracting the

data are built in a second step before a dissimilarity mea-

sure is applied. In Fig. 7 the model creation and the dis-

similarity measure are visualized by place holder nodes.

The loop end finally collects the measured dissimilarities of

each loop iteration for further analysis, which could, for

example, be done by a control chart or visualization.

6 Experimental demonstration

Having introducing EVE and categorized some of the

existing approaches in this Event Detection Framework,

this chapter illustrates how the events presented in termi-

nology Sect. 2 can be detected by EVE. Or, put differently,

we aim to demonstrate how the framework needs to be

configured in order to detect different kinds of events.

In the following we will use three different data sets

which have all been generated using the Modular Data

Generators discussed in Adä and Berthold (2010).2 Each of

the data sets generated is one dimensional and is generated

1 http://www.knime.org
2 The corresponding data generation workflow can be downloaded

from the KNIME Example Workflows server at http://www.knime.

org/example-workflows
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over 500 consequent time steps. The various base lines are

a Gaussian distribution.

6.1 Long-term event

To start with the most obvious event type, the first data set

contains one abrupt event in the middle of the data. This

can be seen in Fig. 8, where the mean of the value jumps

from 0 to 5 after 250 time steps. A more gradual event can

be seen in the second data set (Fig. 9). The value increases

from time 130 to 185 remain constant for another 130 data

points and finally reaches its original value at 370.

As we do not expect static data behavior, we use a SC

window for the present, which is able to forget. Two

possibilities (the SC and FC) are considered for the past.

We use 5% of the data as the window size. A threshold of 1

is used for the final event detection. Hence we consider the

following setup:

Window: SC ,! SC: a~ðtÞ ¼ ðt � 50; t � 26; t � 25Þ and

FC ,! SC: a~ðtÞ ¼ ð1; 25; t � 25Þ
Model: Mean l
Dissimilarity: dðtÞ ¼ 1

25

P
i¼1:::25 jdaðtÞ1þi � daðtÞ2þij

Detection: Warning if d(t) [ 1

The results of this analysis can be seen in Figs. 8 and 9.

The difference between the result of the two window

configurations is relatively clear. The SC ,! SC adapts to

the changed mean over time and hence for data set 1 an

event is reported when the change happens but in contrast

to the FC ,! SC combination dissimilarity decreases again.

For data set 2 this effect is even more pronounced. The SC

,! SC reports two events: the rising and the fall of the

dissimilarity function. The FC ,! SC only reports one

larger event. Both results are not wrong, rather they pro-

vide a different kind of view on the data.

6.2 Multiple short-term event included in an overall

gradual long-term event

As visualized in Fig. 10a the last data set contains an

overall, long-term gradual event. In this example we are

interested in the short-term events that are included inside

this long-term event. To absorb the long-term event a

linear model is used for the past. Dissimilarity is mea-

sured as the distance between the value predicted by the

linear model and the true value. We tested two window

combinations to detect the short-term event in the long-

term event. The FC ,! SC and the FG ,! SC are both

able to detect 6 out of the 7 introduced short-term events.

The detection is done with a control chart (see Figs. 10b,

c). However, the linear model would not be able to detect

the overall gradual increase of the mean. To detect the

overall change a SC ,! SC could be started parallel to

this detection mechanism.

Window: FG ,! SC: a~ðtÞ ¼ ð0; t � 2; t � 1Þ and FC ,!
SC: a~ðtÞ ¼ ð0; 25; t � 1Þ
Model: Linear Model f(t) : = mt ? b

Dissimilarity: d(t) = |dt - f(dt)|

Detection: Warning if dðtÞ[ lfd0;...;dtg þ 3rfd0;...;dtg

Create Model
of 

Past Window 

Measure
Dissimilarity

Loop End Control Chart

Create Model
of 

Present Window 

Window 
Loop Start

Fig. 7 This shows a KNIME

workflow realizing EVE. The

loop start provides the

consequent window

combinations. The dissimilarity

between the two built models

are finally collected by the loop

end and evaluated by a control

chart

Fig. 8 Data set 1 shows one abrupt event in the middle of the data. The SC ,! SC detects this rather nicely whereas the FC ,! SC would report

one long event starting at the change (blue: data, green: dissimilarity, orange: detection threshold) (colour figure online)
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The goal of this section was to provide a quick insight

how EVE can be used to detect different kind of events.

Combining the three main ingredients in a harmonic way is

important for achieving good results.

7 Relation to related frameworks

Some work has already been conducted on abstracting the

idea of simultaneously finding outliers and changes in a

continuous data flow. Most of it can be categorized using

EVE, others make different data assumptions.

One of the earliest frameworks was presented by

Yamanishi and Takeuchi (2002), in which they use a

FG,!SC windowing combination. In this framework dif-

ferent models can be chosen for the past window, e.g. a

Gaussian Mixture Model or a Time Series Auto regression

model. A window of size 1 is used for the detection of

outliers and of size T for changes. Different scoring func-

tions are named to detect the events.

As already mentioned the change detection framework

by Kifer et al. (2004) uses the FC,!SC combination.

They extend this by recommending starting multiple

instances with different window parameters. The overall

event is reported if one of the combinations reports an

event.

A ‘‘forward time slice density estimate’’ is compared to

a ‘‘reverse time slice density estimate’’ in the change

detection framework of Aggarwal (2003). Hence, an

SC,!SC combination is used, both windows are modeled

using density estimation and compared using velocity

density function.

All of these frameworks fit directly into the EVE

framework. The FLORA family of algorithms (Widmer

and Kubat 1996), on the other hand, uses a model/

description over all of the previous data, an FG window,

and a window of currently trusted examples (SC or SG for

FLORA2). FLORA is more specific than EVE, as it

assumes binary classified data. And finally, the ADWIN

(Bifet 2010) framework uses only one SG-window, but

calculates statistics between any two subwindows, which is

similar to our proposed dissimilarity calculation.

8 Conclusion

We have proposed EVE, a framework for formalizing the

detection of various types of events in an ordered set of

data or data stream. The framework not only enables model

change and shift detection to be represented, but, by

adjusting the level of granularity in the underlying frame-

work, outliers, among others, can also be represented. We

Fig. 9 A reoccurring gradual event has to be found in data set 2.

Based on the desired behavior of the event detection methodology this

can be detected as one big event (FC ,! SC) or two short events at the

beginning and the start of the change (SC ,! SC) (blue: data, green:

dissimilarity, orange: detection threshold) (colour figure online)

Fig. 10 Multiple short-term events included in an overall gradual

long-term event. The FG ,! SC shows better results for this analysis,

as the linear model can be refined with every new data point.

However, the FC ,! SC with its small training size of 25 data points

shows good results as well (blue: data, green: dissimilarity, orange:

detection threshold) (colour figure online)
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believe this generic modeling approach will greatly assist

convergence in the area of stream mining.
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