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Abstract Data streams have some unique properties

which make them applicable in precise modeling of many

real data mining applications. The most challenging prop-

erty of data streams is the occurrence of ‘‘concept drift’’.

Recurring concepts is a type of concept drift which can be

seen in most of real world problems. Detecting recurring

concepts makes it possible to exploit previous knowledge

obtained in the learning process. This leads to quick

adaptation of the learner whenever a concept reappears. In

this paper, we propose a learning algorithm called Pool and

Accuracy based Stream Classification with some varia-

tions, which takes the advantage of maintaining a pool of

classifiers to track recurring concepts. Each classifier is

used to describe an existing concept. Consecutive batches

of instances are first classified by the pool of classifiers.

Two approaches are presented for this task: active classifier

and weighted classifiers methods. Then the true labels are

revealed and the pool is updated at the end of the batch.

Updating the pool is done using one of the following

methods: exact Bayesian, Bayesian and Heuristic. As the

algorithm may assign multiple classifiers to a single con-

cept, a classifier merging process is used to resolve this

problem. Experimental results on real and artificial datasets

show the effectiveness of weighted classifiers method

while dealing with sudden concept drifting datasets. In

addition, the proposed updating methods outperform the

existing algorithms in datasets with arbitrary attributes.

Finally some performed experiments represent superiority

of using merging process in large datasets.

Keywords Recurring concepts � Concept drift � Stream

mining � Ensemble learning

1 Introduction

In many real problems there are large volumes of data

available and we need to deal with huge amount of data.

The data may change during the time and it may not be

possible to store all the data, so a new field of data mining

called stream mining is presented. Stream mining is pro-

cessing of continuous and unlimited stream of data. It

could be defined more precisely as a stochastic process of

continuous and independent events and has the following

properties (Tsymbal 2004):

• The amount of events is huge and could not be stored

completely, so a forgetting mechanism is needed to

ignore ineffective events (or data).

• Event processing should be online and the processing

algorithm complexity should be low.

• Each event is drawn from a feature space XX ¼ XX1
�ð

� � � � XXn
Þ � R

n; where Xi is the ith feature and XXi
is

the space corresponding with feature Xi and an output

space XCð Þ, each drawn from a distribution which may

change over the time. This change is called concept

drift and it is the change in the joint probability of

feature space (X) and/or output space (C), which could

be written as:

P X;Cð Þ ¼ P C Xjð Þ � P Xð Þ: ð1Þ
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The change in the feature or input space P Xð Þð Þ is called

virtual concept drift and it may occur when the training

instances are skewed. When the change takes place in the

target function P C Xjð Þð Þ, it is named real concept drift

(Tsymbal 2004).

Data streams have many real applications such as fraud

detection, spam filtering, intrusion detection, text classifi-

cation, economical prediction and user interest forecasting;

to mention a few. For example, in spam filtering problem,

it is more realistic to assume that in the training phase, all

emails are not available. So in stream mining approach, we

assume that emails arrive through the time and are not

available at first. Each email is treated first as a test

example and after some time when its label (spam or ham)

is revealed by an expert, it is treated as a training example

and used to update the classifier. In fact the training and the

test phases are mixed. Instances could be thought to arrive

in batch (or window) or single.

One of the main challenges in data stream learning is the

detection of drift from noise. As data is not stationary and

drift may occur, noise may be recognized as drift. It should

be mentioned that because of non-stationary nature of data

stream, Independent Identically Distribution (I.I.D) condi-

tion is not valid, but it is rational to assume that I.I.D

condition holds in small size windows of data.

We can categorize the concept drift according to the

way changes happen in time into the following four groups

(Zliobaite 2010):

• Sudden: the simplest way of drift where the distribution

of events are changed at a specific time.

• Gradual: in gradual drift, before completing the distri-

bution change, there is a non-deterministic stage where

the data drawn from both of distributions and the

probability of old distribution decreases and the prob-

ability of new distribution increases during the time.

• Incremental: a generalized form of gradual drift in

which during the non-deterministic period of distribu-

tion change, there are more than two distributions to

draw data from and the difference between the

distributions are small.

• Recurring: if the distribution of data reoccurs after

some time it is said recurring concepts.

Usually gradual and incremental drifts are assorted into

one category and are called gradual drift. There have been

extensive studies on the detection and learning of sudden

and gradual concept drift in recent decades (Minku 2012;

Elwell and Polikar 2011; Baena-Garcı́a et al. 2006; Bifet

2009; Bifet et al. 2010; Gama and Castillo 2006; Gao et al.

2008; Garnett 2010; Ikonomovska 2011; Kolter and Mal-

oof 2007; Kuncheva and Žliobait _e 2009; Nishida 2008;

Zliobaite 2010). Though recurring concepts were not

considered much until recent years (Gama and Kosina

2009; Gomes et al. 2011; Katakis et al. 2009; Lazarescu

2005; Morshedlou and Barforoush 2009) and now are

assumed as a challenging problem in data streams. As the

learning process is continuous in data streams, the old

unused concepts (distributions where data is drawn) which

were learned by learner can be forgotten and new concepts

are learned. After some sufficient time when the old con-

cept reappears, the learner may label its instances incor-

rectly and the learning process should be repeated. If we

could use the previously learned knowledge in the classi-

fication algorithm, this issue can be resolved appropriately.

This is done by using a pool of classifiers, which is an idea

presented in the previous researches (Gama and Kosina

2009; Gomes et al. 2011; Katakis et al. 2009).

In this paper, a new ensemble learning algorithm called

Pool and Accuracy based Stream Classification (PASC) is

presented. This algorithm tries to exploit recurring con-

cepts and is based on a pool of classifiers in which one

classifier is used for each concept. The pool of classifiers is

updated iteratively while receiving consecutive batches of

data. A group of classifiers is maintained in the pool and

each of them describes one of the existing concepts. In our

previous algorithm (Hosseini et al. 2011), a maximum

number of classifiers in the pool was defined as a param-

eter. After receiving a batch of instances, a new classifier

could be added to the pool. However, if the similarity of the

recent batch and one of the classifiers of the pool was high

enough, the batch was used to update the most similar

classifier. After reaching the limit of classifiers, the batch

was used to update the most similar classifier without

checking that the batch was similar enough to that classifier

or not. In this paper, we present a merging procedure to

manage the pool and not to update an existing classifier

with a batch of data which is not similar enough to it. In

this case, the possibility of merging a pair of existing

classifiers should be checked. The benefit of merging

procedure is apparent as one concept may appear in many

batches of instances and so there may be many classifiers in

the pool representing that concept. Due to space limitation,

we could merge the knowledge of these classifiers and

release a free space for a new classifier and also make the

concept and corresponding classifier, more informative. If

the merging procedure cannot be done, the most similar

classifier to the current batch will be updated.

When a window of data arrives, it is first assumed as a

test data and is classified by the learner. The classification

is done by the classifiers available in the pool in an

effective way. The base of classification algorithm is

similar to (Katakis et al. 2009) but there are major differ-

ences. One of the contributions of this paper is the methods

of classification which are active and weighted classifiers

methods. After revealing true labels of instances, they are
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used to update one of the existing classifiers of the pool or

there may be the need to add a new classifier to the pool.

Decision on adding a new classifier or updating one of the

existing ones is done by some examinations on the recent

window and the pool. Other contribution of paper is new

methods to update the pool which are exact Bayesian,

Bayesian and Heuristic methods. In exact Bayesian there

are more relax assumptions and I.I.D condition is not

assumed to be held. This case is more general than the

other Bayesian method in which this assumption is

exploited to reduce complexity.

The proposed methods are compared with the promising

and state of the art methods presented in the recurring

concepts. The experimental results show the effectiveness

of proposed algorithm in terms of accuracy, especially in

stream of data with sudden drifts, arbitrary attributes or

large size. In addition, the parameter tuning of the proposed

methods are more straightforward in comparison with

previous methods.

The rest of this paper is organized as follows: in the

Sect. 2, the related work and previous researches in the

context of data stream are discussed. In Sect. 3, the pro-

posed algorithm is presented. Section 4 contains the

experimental evaluations of the proposed algorithm and

makes comparisons to some previous methods. Section 5

concludes the paper and discusses some of future

developments.

2 Related works

Stream mining and handling concept drift have received

much attention in recent decades. First algorithms which

were capable of controlling concept drift, were STAGGER

(Schlimmer et al. 1986), FLORA (Widmer and Kubat

1996) and IB3 (Aha et al. 1991) which used simple rule

based or k-nearest neighbor learning algorithms. Passing

through time, more researches have been done on data

streams and wider range of problems has been considered.

An ideal concept drift learning algorithm should support

sudden, gradual and recurring drifts and should be robust to

noise. It also should not have many parameters to be tuned

for a specific dataset.

As discussed previously, there are different types of

concept drifts. Many algorithms have been presented to

detect sudden drift (Nishida 2008; Widmer and Kubat

1996; Bifet and Gavaldà 2007; Castillo 2006; Gama et al.

2004, 2006). They usually track the performance of the

algorithm in the recent window and when there is a sig-

nificant degradation on the performance, the occurrence of

drift is alarmed. Gradual drifts are usually learned

implicitly by updating the learner (Widmer and Kubat

1996; Klinkenberg 2004). The learner itself could be single

(Kolter and Maloof 2007; Lazarescu et al. 2005; Klin-

kenberg 2004; Hulten et al. 2001; Domingos et al. 2000) or

ensemble (Lazarescu 2005; Littlestone 1988; Street et al.

2001; Stanley 2003; Wang et al. 2003; Gao et al. 2007;

Kolter et al. 2005; Scholz and Klinkenberg 2005; Widmer

and Kubat 1998; Freund and Schapire 1997; Littlestone

and Warmuth 1994; Woolam et al. 2009). Each time the

learner may receive an instance or a window of instances.

Window based algorithms could be of fixed or variable size

(Widmer and Kubat 1996). Most of algorithms use win-

dows of data because of their more robustness to noise. In

window based algorithms, variable window size approa-

ches (Kuncheva and Žliobait _e 2009; Bifet and Gavaldà

2007) will change and adapt the window size in stationary

or non-stationary environments. When data are drawn from

one concept (which means stationary environments) the

window size is increased and after a concept drift, the

window size is set to a minimum size. However, most of

the approaches use a fixed size of window.

However, recurring concepts detection is a new and

challenging problem which is considered recently (Gama

and Kosina 2009; Gomes et al. 2011; Katakis et al. 2009;

Lazarescu 2005; Morshedlou and Barforoush 2009). Due to

forgetting mechanism in the learning of data streams, if a

concept reappears after some long time, the learner may

classify it incorrectly. This makes the system impractical in

real world problems. The algorithms supporting recurring

concepts, try to extract concepts from received instances.

Then they maintain a pool of classifiers. When a new

instance is received, its similarity to the concepts of the

pool is measured and an available model is selected or a

new one is created. We will explain stream classification

algorithms which support recurring concepts, in the

following:

The first algorithm (Ramamurthy and Bhatnagar 2007),

consists of an ensemble classifier where each classifier is

built on a window. To select classifiers for the ensemble,

the algorithm chooses relevant ones. As no classifier is

deleted, the algorithm supports recurring concepts.

The other algorithm (Morshedlou and Barforoush 2009),

uses the information of mean and standard deviation used

in the conceptual features of numeric attributes (Hulten

et al. 2001). The approach uses a pro-active behavior which

means that next concept probability is calculated condi-

tional to the current concept. If the concept is probable (its

probability is more than a threshold), it will be added to a

buffer. If a drift is detected and the algorithm decides to

behave proactively, the first concept from the buffer is

selected. If it matches the recent batch, it is updated by

batch instances. Else it could select the next concept in the

buffer or if it decides to behave reactively, a new classifier

will be created on the recent batch. To decide on reactive

or proactive behavior, a heuristic method is pursued.
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Selecting suitable probability threshold and proactive or

reactive behavior are very time consuming. Meanwhile,

this algorithm supports only the datasets with numeric

features not nominal.

One other research (Padovitz et al. 2004) inspires context

space model to extract concepts for each classifier (Gomes

et al. 2011). N-tuple of form R ¼ aR
1 ; a

R
2 ; . . . ; aR

N

� �
is a

context space, where aR
i is the acceptable regions of feature ai.

The classifier and its corresponding context space are main-

tained in the pool. This approach is similar to our approach, as

it extracts the context of a batch of data and trains a classifier

on it; however, the representation of context is different from

our concept representation. It also, uses an explicit drift

detection method to detect stable concepts.

One meta-learning approach is presented recently (Gama

and Kosina 2009). If a drift is alarmed, performance is

determined by meta-learners. If it is more than a predefined

threshold, the base learner will be used to label the instance.

Here also a pool is used to keep all base and meta learners.

One of the most promising frameworks presented in the

context of recurring concepts, extracts a conceptual vector

from each window (Katakis et al. 2009). Assume that

instances of a labeled batch are presented by:

BL ¼ xL kð Þ; xL Kþ1ð Þ; . . . ; xL kþb�1ð Þ
� �

; ð2Þ

where xL Kþið Þ is the (i ? 1)th instance of the kth batch. The

conceptual vector Z ¼ Z1; Z2; . . . ; Znð Þ of each batch is

constructed using a transformation function. In the

conceptual vector, each of features (Zi) is calculated from:

zi ¼
P fi ¼ v cj j

� �
: i ¼ 1. . .n; j ¼ 1::m; v;2 Vi

n o
if fi is nominal

li;j; ri;j : j ¼ 1::m
� �

if fi is numeric

8
<

:

ð3Þ

where fi is the ith feature, Vi is the set of possible values for

the nominal feature i, li;j and ri;j are the mean and standard

deviation of jth class for feature i. Each concept in the pool

has a corresponding classifier which is updated by time.

Then a clustering algorithm is used to detect recurring

concepts. To do clustering, conceptual vectors are

compared via Euclidean distance measure:

ConDis BL wð Þ;BL xð Þ
� �

¼ Euclidean Z wð Þ; Z xð Þ
� �

¼ dis z1 wð Þ; z1 xð Þ
� �

þ � � � þ dis zn wð Þ; zn xð Þ
� �� �1

2 ð4Þ

and distance function is calculated as:

dis zi wð Þ; zi wð Þ
� �

¼ f1
i wð Þ � f1

i wð Þ

� �2

þ � � � þ f1
i wð Þ � fl

i xð Þ

� �2

;

ð5Þ

where f j
i wð Þ is the jth element of ith conceptual feature set in

vector w and l is the length of feature set. If the distance of

recent conceptual vector to a concept available in the pool

is less than a predefined threshold, its corresponding clas-

sifier will be updated by instances of the recent window.

Otherwise a new classifier and concept is added. As the

threshold parameter is problem specific, one major short-

coming of this framework (CCP framework) is how to

determine the threshold. Our algorithm improves CCP

framework in several ways: first, it modifies the distance

function in order to normalize the distance values when the

range of features are not similar. Second, in the classifying

phase of a batch, we use a weighted majority approach and

compare it with the active classifier which was used in CCP.

Third, we propose three new batch assignment methods and

also a merging process to manage the pool. The detailed

comparison of algorithms is discussed in Sect. 4.

3 Proposed learning algorithm

In this section we propose a novel algorithm for data

stream classification. The algorithm is named Pool and

Accuracy based Stream Classification (PASC). The meth-

odology used in this algorithm is similar to the one pro-

posed in (Katakis et al. 2009) in general, but it differs

significantly in the content. The algorithm maintains a pool

of classifiers to deal with recurring concepts. Each classi-

fier describes a concept of the environment. When a batch

of instances is received, the algorithm first predicts the

corresponding labels of the instances. Then, the true label

of each instance is revealed. After receiving the true labels

of the whole instances of the batch, the algorithm either

chooses the most appropriate classifier and updates it, or

creates a new classifier that suits the received data and their

labels. If a new classifier is created, it will be added to the

pool. To avoid getting redundant classifiers, there is a

constraint on the maximum number of classifiers. It makes

sense in the real world too, because there are usually a

finite number of concepts in many applications.

The general framework of PASC is shown in Procedure

1. The inputs of this algorithm are unlabeled batches of

instances Bt = (xt,1,xt,2,…, xt,k), where xt,i is the ith data of

the tth batch and k is the batch size; true labels of Bt which

are received as Lt = (lt,1,lt,2,…,lt,k) where lt,i is the label of

xt,i; and an updating parameter h.

Lines 9–13 constitute the main part of the algorithm. In

this loop, classifying a batch and updating the pool is done

iteratively. The algorithm has three main phases shown in

lines 10–12 and will be discussed in the following sub-

sections. The first 8 lines are the initialization parts of the

method that will be described in details later in this sec-

tion. But in general, C is the classifier created by the first

batch of instances as its input. RDC or Raw Data Clas-

sifier is used for predicting the concept which Bt is drawn

from. RDC do not mention the labels, Lt, and is used in

46 Evolving Systems (2013) 4:43–60

123



Bayesian or exact Bayesian methods to update the pool.

W1, the weight of the first classifier, is set to 1 and the

classifier C is added to the pool. X1 is a summarization of

the first batch that is used to classify the concept of

the input batch. In line 8 the raw data classifier is updated

by X1.

3.1 Phase 1: classifying the batch

One possible approach to classify the input batch is based

on choosing the active classifier (Katakis et al. 2009).

Another approach is to assign a weight to each classifier.

These weighted classifiers can be used for classification.

Both of these methods will be described in the next two

subsections.

3.1.1 Active classifier

In this method the batch is classified using the active

classifier. The active classifier is a classifier which was

updated by the previous batch of instances. This classifier

can exist in the pool before the last iteration or it can be a

new added one. The reason for choosing the active clas-

sifier is that if there is no concept drift between the two last

batches of instances, the same concept is appropriate for

both of them.

The method is shown in Procedure 2. The variable pl

stores the predicted labels and ac is the active classifier.

3.1.2 Weighted classifiers

The active classifier method works well as long as there is

no concept drift between two consecutive batches of

instances. However, when a drift occurs the active classi-

fier will no longer be adequate and the performance

decreases significantly. To avoid this, our approach uses an

adaptive method for choosing the suitable classifier from

the pool. At the beginning of the iteration, we assign each

classifier an initial weight. These weights are computed

according to current state of the pool and the last batch of

instances. Here it is assumed that, we will be given the true

label of xt,i or lt,i right after its classification. So after

predicting label of xt,i, we update the weights of classifiers

using lt,i. Updating the weights is done using:

w
0

j ¼ wj � bM j;ið Þ; ð6Þ

where wj is the current weight of the jth classifier and w
0
j is

the new weight and b is a parameter in (0,1). M(j,i) would

be 0 if the jth classifier predicts the label correctly and 1

otherwise.

Equation (6) is inspired from (Freund and Schapire

1996) which models the online prediction problem with a

two-player repeated game. The first player, here the pool of

classifiers, is the learner. The actions of the first player

include choosing a classifier among the ensemble (pool) of

classifiers to classify an instance. A mixed strategy P is

used by the first player to choose its actions. P is a prob-

ability distribution function and according to it, each action

will have a probability to be selected. The learner computes

mixed strategy P by normalizing the weights wj which are

assigned to the classifiers. This is equivalent to use a

majority vote among the classifiers of the pool according to

their weights. The second player, here the source of pro-

ducing the batches, is the environment. The actions of the

second player include choosing the instances which are

given to the learner for classification. The second player

uses the mixed strategy Q to choose its actions. The

strategies P and Q change themselves as the game pro-

ceeds. P is updated according to the loss of the last iteration

by updating the classifiers’ weights and Q can be updated

by the environment arbitrarily. In (Freund and Schapire

1996) it’s shown that if the number of instances is suffi-

ciently large, and the learner uses (6) to update the weights

of its classifiers, the prediction error converges to the best

classifier’s error on the last batch. Considering this, if the

size of the input batch is large enough, the accuracy of our

ensemble classifier on the last batch of instances is as good

as using the best classifier in the pool. However, in the

context of concept drift, the size of the batch should not be

very large, because the I.I.D assumption holds only when

the size of the batch is small enough.
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For the sake of efficiency our classification algorithm is

slightly different from (Freund and Schapire 1996). First,

instead of getting a majority vote, we classify the instance

with the classifier which has the highest weight. Second,

we do not update our classifiers for every instance. Instead,

we use a subsample of the batch. In this method, we chose

the square root of the batch size as the number of elements

for updating the classifiers.

Weighted classifiers method is shown in Procedure 3. In

line 1, we get a subsample and in line 5 we make sure to

update the classifiers’ weights just for the members of the

subsample St.

3.2 Phase 2: updating the classifier pool

As mentioned earlier, after receiving the batch and classi-

fying it, true labels reveal. Using the true labels, the

algorithm may create a new classifier or update one of

the existing classifiers. It’s notable that because the size of

the batch is small enough, it’s assumed that all the

instances of Bt are originated from an identical concept. So,

all their labels can be predicted by only one of the classi-

fiers. In this phase (Procedure 4), the algorithm should

choose which classifier to update. Concretely, given Bt and

Lt we want to find the concept which describes them with

the highest probability (line 1). For this purpose, we pro-

pose three different approaches which are named batch

assignment methods. The first one is to use the Bayes’

theorem to find the probabilities, the second is similar to

the first except that it makes some assumptions to decrease

the time complexity of the method, and the third one is

Heuristic method which is more efficient than the other two

methods. These methods output the most similar concept to

the labeled batch (bestC or the best classifier of the pool) and

a similarity measure between them (maxS). If the similarity

measure is more than a predefined threshold parameter

(h1, h2 or h3 for exact Bayesian, Bayesian and Heuristic

methods, respectively), the batch and its labels should be

given to the best classifier to be updated (lines 2 and 3).

Otherwise, if there is a free space in the pool or a free space

can be created, a new classifier will be created with the

newly arrived batch and its labels as its initial input (lines 4–

7). To create a free space, it is checked to see whether a

merging process can be done to merge two classifiers of the

pool. This space is then given to a new classifier trained on

the newly arrived labeled batch. The mergeProcess function

in line 4, checks whether the merge can be done. In the case

of positive result of this function, two classifiers of the pool

will merge. If a new classifier cannot be added to the pool,

the labeled batch will be given to the best classifier to be

updated (line 9). Finally, RDC is updated according to Bt

and bestC (line 11) which will be described in the next

subsection. In the following subsections, merging process

and various batch assignment methods will be described.

3.2.1 Merging process

If a newly arrived batch is not similar enough to any of the

classifiers in the pool and the pool is full, then it should be

checked whether the merging process can be done or not.

To do so, assume the variable nC refers to the nearest

concept to bestC. If the distance between nC and bestC is

shorter than the distance between bestC and the labeled

batch, a merging process will be done and bestC and nC are

merged together. Merging of bestC and nC should be

needless to the instances which made the two corre-

sponding classifiers. We used Naı̈ve Bayes as the base

classifier and implemented a simple method to merge two

Naı̈ve Bayes classifiers by combining the probability den-

sity functions (pdf) maintained for each attribute. For each

nominal attribute fi and class cj, a probability P fi ¼ v cj j

� �

is maintained for each possible value, v, of fi. The corre-

sponding probability of the merged classifier is the

weighted average of the two probabilities of the two clas-

sifiers with respect to the number of instances. For each

numeric attribute fi and class cj, a normal distribution

P fi cj j

� �
is maintained. The mean value of one of the two

normal distributions is used to update the mean value and

the standard deviation of the other normal distribution

according to its number of instances. The result distribution
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is then used as the corresponding distribution of the merged

classifier. The pdfs maintained for the class distributions

are merged similarly. Moreover, in Bayesian or exact

Bayesian batch assignment methods, RDC classifier must

be updated and it will be discussed later.

The similarity measure used here is a modified version

of ConDis used in CCP framework method (Katakis et al.

2009) and we refer to it as normalized ConDis or simply

NConDis. It also uses the conceptual vectors of the

instance batches (or the average of the conceptual vectors

of the batches constituting a classifier) as its base vectors.

ConDis is a distance function between the conceptual

features of two conceptual vectors. NConDis is similar to

ConDis, except that it makes some normalization on the

values of the distance between different conceptual fea-

tures to improve the functionality of the similarity measure

even if the ranges of different attributes are not similar.

NConDis between two conceptual vectors ZA and ZB is

defined as:

NConDis ZA; ZBð Þ

¼ dis z1 Að Þ;z1 Bð Þ
� �

þ � � � þ dis zn Að Þ;zn Bð Þ
� �� �1=2 ð7Þ

If fi is nominal, dis zi Að Þ;zi Bð Þ
� �

is defined as:

dis zi Að Þ;zi Bð Þ
� �

¼
Xsize zið Þ

k¼1

dis zik Að Þ; zik Bð Þ
� �2

; ð8Þ

where zik Xð Þ is the kth element of zi Xð Þ and dis zik Að Þ; zik Bð Þ
� �

is simply the difference of these values. But if fi is numeric,

this distance is defined as:

dis zi Að Þ; zi Bð Þ
� �

¼
Xm

j¼1

min
lij Að Þ � lij Bð Þ
rij Að Þ þ rij Bð Þ

� 	2

; 1

 !

ð9Þ

where m is the number of different classes.

3.2.2 Exact Bayesian batch assignment method

A way to find the most related concept, i.e. the most related

classifier of the pool is to compute the probability that Bt

and Lt correspond to the concept described by hi:

P hi Bj t; Lt

� �
¼

P Bt; Lt hj i

� �
� P hið Þ

P Bt; Ltð Þ ; ð10Þ

where the right hand side follows from the Bayes’ theorem.

To derive the best concept, using (10), we should find:

argmaxiP hi Bj t; Lt

� �
¼ argmaxiP Bt; Lt hj i

� �
� P hið Þ: ð11Þ

The above equation is on the assumption that the best hi

is independent of the probability of Bt and Lt. As the

environment is non-stationary, we cannot have any

assumptions about the concepts. In fact, P(hi) can depend

on the previously seen concepts and the underlying

environment. The former can vary in the context of

concept drift and cannot be modeled appropriately without

any assumptions. In addition, assuming different values for

P(hi) considering the first kind of dependencies will lead to

late detection of concept drifts, because the concepts which

have appeared in the last batches of instances can get

higher probabilities. The second kind of dependencies is

not known to the algorithm. If these dependencies are

known for some dataset, it can be used to evaluate (11)

more accurately. So we consider P(hi) to be identical for all

concepts. Thus it has no effect on our calculations and (11)

becomes:

argmaxiP hi Bj t; Lt

� �
¼ argmaxiP Bt;Lt hj i

� �
ð12Þ

If we refer to the elements of Bt and Lt, we obtain:

¼ argmaxiP xt;1; lt;1

� �
; xt;2; lt;2
� �

; . . .; xt;k; lt;k

� �
hj i

� �
; ð13Þ

which in turn equals to:

¼ argmaxiP xt;1; lt;1

� �
hj i

� �
� P xt;2; lt;2

� �
hj i; xt;1; lt;1

� �� �

� � � � � P xt;k; lt;k
� �

hj i; xt;1; lt;1
� �

; . . .; xt;k�1; lt;k�1

� �� �
:

ð14Þ

Suppose we define hij as the hypothesis hi which is

supported by the first j labeled instances of the batch:

hi;j ¼ hi; xt;1; lt;1

� �
; . . .; xt;j; lt;j

� �
: ð15Þ

P xt;jþ1;lt;jþ1 hj i;j

� �
; 0� j� k � 1: ð16Þ

Now the task turns out to estimate some probabilities of

the form:

Equation (16) in turn equals to:

P xt;jþ1;lt;jþ1 hj i;j

� �
¼ P lt;jþ1 hj i;j; xt;jþ1

� �

� P xt;jþ1 hj i;j

� �
;where 1� j� k:

ð17Þ

The term P(lt,j?1|hij,xt,j?1) can be estimated using the

classifier describing hi. Note that this term equals to the

probability that the label of xt,j?1 be lt,j?1, given that

the true concept is hi and the j labeled instances of (18) are

produced in the environment of hi. So it is sufficient to

update the ith classifier with the j labeled instances

mentioned above and then output the posterior

probability for the instance xt,j?1. By updating the

classifier in the right order, it is sufficient to update it k-1

times to estimate all these terms. Note that after updating

the ith classifier, it should be converted to its last state. This

can be done easily by making a copy of the classifiers

before the updating process and then use them as the

original classifiers with no change.
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We estimate the second term of the right hand side of

(17) by making an assumption. Assume that:

P xt;jþ1 hj i;j

� �
P ¼ xt;jþ1 hj i;xt;1; . . .; xt;j

� �
: 0� j� k � 1:

ð18Þ

The reason behind this assumption is that the probability

of producing an unlabeled instance given that the

environment is described by hi and we know that j

labeled instances have been produced in this environment,

can be estimated independent of the labels of the instances.

In this case, these probabilities can be estimated as follows:

We create a classifier named raw data classifier (RDC).

The input of RDC is an instance and the output prediction

is the most related concept. To train this classifier, after

receiving the true labels of each batch Bt and determining

the concept of the labeled instances of this batch, we give

these the instances (and not their labels) and their

corresponding concept ids as their class labels to RDC to

update itself. To determine P(xt,j?1|hi), the posterior

probability of RDC on xt,j?1 or P(hi|xt,j?1) can be used,

because prior probabilities of the concept or P(hi) are

assumed to be identical for all concepts. In addition, to

estimate P(xt,j?1|hi,xt,1,…, xt,j), it is convenient to update

RDC with j instances xt,1,…, xt,j and the concept id i as the

class label and then output the posterior probability.

Note that by updating RDC, k-1 updates are sufficient to

estimate these probabilities for each concept in the pool.

However, after estimating the probabilities for each con-

cept, RDC has been changed. This is similar to the case of

updating the classifiers of the pool for estimating the first

term of (17) and the same solution can be applied in this

case.

The following equation determines the most relevant

concept to the newly arrived labeled batch Bt:

argmaxiP lt;1 hj i; xt;1

� �
� P lt;2 hj i;1; xt;2

� �

� � � � � P lt;k hj i;k�1; xt;k

� �
� P xt;1 hj i

� �
� P xt;2 hj i; xt;1

� �

� � � � � P xt;k hj i; xt;1; . . .; xt;k�1

� �
: ð19Þ

To prevent underflow of these probabilities, the sum of

log of the terms in (19) is used:

arg maxiðlog P lt;1 hj i; xt;1

� �
þ log P lt;2 hj i;1; xt;2

� �
þ � � � þ

log P lt;k hj i;k�1; xt;k

� �
Þ þ ðlog P xt;1 hj i

� �
þ log P xt;2 hj i; xt;1

� �

þ � � � þ log P xt;k hj i; xt;1; . . .; xt;k�1

� �
Þ: ð20Þ

Calculating (20) for all instances is a very time

consuming action, so calculation is done on a subsample

of the square root size of the batch (Procedure 5). Lines 1

and 2 of Procedure 5 select a subsample of size m (square

root size of the batch) and its labels from Bt and Lt. In lines

4 and 5, Eq. (20) is calculated for all concept in the pool

and the selected subsamples from Bt and Lt. Then the best

concept, bestC, and its estimated similarity, maxS, to Bt and

Lt are determined.

3.2.3 Bayesian batch assignment method

This method is similar to exact Bayesian method. In both

methods, it is tried to find the value of right hand side of

(12) for the concepts described by the classifiers pool. In

fact the difference between these two methods is how to

deal with the expression. In Bayesian method, (12) is

estimated as:

argmaxiP hi Bj t; Lt

� �
¼ argmaxiP Bt; Lt hj i

� �

¼ argmaxiP Bt hj i

� �
� P Lt Bj t; hi

� �
:

ð21Þ

So we have to calculate the terms P(Lt|Bt,hi) and

P(Bt|hi). P(Lt|Bt,hi) is the conditional probability that the

predicted labels of (xt,1,xt,2,…,xt,k) are (lt,1,lt,2,…,lt,k) using

classifier h–i. P(Bt|hi) is the conditional probability that the

batch, B-t, be produced in an environment described by the

ith concept. As mentioned earlier, if there is a concept drift,

the I.I.D condition will not hold anymore. To assure I.I.D

condition holds between the instances of a batch, its size

should be small enough. So we assume all elements of each

batch are I.I.D and so (22) holds:

P Lt Bj t; hi

� �
¼
Yj¼k

j¼1

P lt;j xj t;j; hi

� �
: ð22Þ

The P(lt,j|xt,j,hi) terms on the right hand side is

calculated directly from the ith classifier. Again as we

assumed the I.I.D condition holds within the batch, Bt,we

obtain:

PðBt hj iÞ ¼
Yj¼k

j¼1

Pðxt;j hj iÞ: ð23Þ

We propose the following method for calculating

P(xt,j|hi), i.e. the probability that jth instance of tth batch

comes from the ith concept. We create a classifier RDC

similar to the one used in exact Bayesian method. Thus the

input to this classifier is one of the instances and it predicts

the related concept as output. To train this classifier, after

receiving the true labels of Bt, we predict the concept of

elements of the batch. Thus to update the RDC we give it
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the batch instances and their corresponding concept ids. To

determine the relative concept of the batch, one way is to

calculate P(xt,j|hi) for all the elements (similar to exact

Bayesian method and assuming equal prior probabilities

for all concepts); however, this is time consuming and

inefficient. Instead we use a statistic of batch elements Xt to

train the RDC. We simply define Xt ¼
P

xt;j i.e. sum of all

elements of the tth batch.

After receiving Bt, Xt is built and given to RDC to calculate

the probability for all concepts. Assume that RDC gives with

probability p that the tth batch elements belongs to the ith

concept. Then we obtain:

P Btjhið Þ / pk
i : ð24Þ

Therefore, to determine the best classifier, (21) turns into:

arg maxiP hi Bj t; Lt

� �
¼ arg maxip

k
i �
Yj¼k

j¼1

P lt;j xt;j; hi



� �

ð25Þ

To prevent underflow of the products, we use (26)

Instead of (25) to find the best concept:

argmaxiP hi Bt; Ltjð Þ ¼ argmaxik � log pi

þ
Xj¼k

j¼1

log P lt;j xt;j; hi



� �
: ð26Þ

Still this equation leads to inefficient algorithm because

calculating the posterior for all xt,j is time consuming.

Considering that I.I.D condition holds within a batch, we

can resolve this problem by using a batch subset of smaller

size. A subsample of the square root of the pool size is used

to estimate (26). The pseudocode of this method is shown

in Procedure 6. Lines 5 and 6 find the best describing

classifier of the batch according to Bayesian method.

3.2.4 Heuristic batch assignment method

In this method, to find the best concept that describes Bt

and Lt, the accuracy of all classifiers are calculated on Bt

and the most accurate one is updated. Therefore, the sim-

ilarity measure is the accuracy of the classifiers on Bt. The

intuition behind this approach is that when a classifier is

more accurate on the current batch, it’s probably more

relevant to it. The pseudocode of this method is shown in

Procedure 7. Lines 4 and 5 find the best classifier

describing the batch according to Heuristic method.

3.3 Phase 3: determining the active classifier

or classifiers’ weights

After these two phases, some settings should be done to get

ready for the next iteration. If the active method for clas-

sifying the batches is used, the next active classifier should

be determined. Active classifier is the one that is updated in

the current iteration (i.e. bestC in Procedure 1).

If the weighted classifier method is used, the weights of

the classifiers should be set for the next iteration. It is worth

noticing that if we use the weights computed in this iter-

ation for the next step, this method would work similar to

the active classifier method or even worse, because one of

the classifiers weights may get too high, as a result of not

having concept drift for a long time. Then it will take so

long that this weight decreases and the performance

decreases significantly. We use:

w0 ið Þ ¼ b 2err ið Þð Þ; ð27Þ

where err(i) is the error of the ith classifier on a subsample

of the square root size of the batch. So, the more inaccurate

classifier, the less initial weight it will have for the next

iteration. Some kind of locality assumption is used in (27)

for setting the initial weights which does not work properly

when sudden concept drift occurs. As mentioned in phase

one, such concept drift is handled by updating the weights

during batch processing (Procedure 8).

4 Experimental results

In order to evaluate performance of the proposed algo-

rithm, computer experiments on some standard datasets are

conducted. In this section, we first introduce the datasets
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which contain recurring concepts in 4.1. These datasets are

used in the experiments. Then in 4.2 we discuss the parameter

tuning of the proposed methods and compare it with the

parameter tuning of CCP framework, one of the most

promising frameworks developed in the tracking of recurring

concepts. Finally, the proposed methods are compared with

each other and CCP framework method in 4.3. The experi-

ments show the effectiveness of the proposed method. It can

be seen that weighted classification method outperforms

active classification method in datasets containing sudden

concept drift. The proposed batch assignment methods out-

perform CCP batch assignment method in datasets with

arbitrary attributes. Finally, the effectiveness of the merging

process is shown for large datasets and sensitivity of the

algorithm to its parameters is studied.

4.1 Datasets

Three real datasets and one artificial dataset are chosen for

the experiments given in this section. The artificial dataset

is moving hyperplanes and contains sudden concept drift.

Real datasets are emailing list (Katakis et al. 2009), spam

filtering and sensor data. Emailing list and spam filtering

are high dimensional datasets and sensor data is a very

large real dataset. Emailing list and hyperplane datasets

contain sudden concept drift and spam filtering and sensor

data contain gradual drift.

4.1.1 Emailing list dataset

In this dataset, a stream of email from different topics are

collected and labeled as interesting or junk with respect to

the user’s interest (Katakis et al. 2009). Usenet posts data

(Frank 2010) which contains 20 newsgroups collection is

used to construct this dataset and three of its topics are

selected. In each time interval (concept), the user is inter-

ested in one or two topics and labels the emails according

to his/her interest. User interests may vary time to time, so

the dataset contains recurring concepts and sudden drifts

(Table 1). The labels and the existing drifts of this dataset

are artificial. So elist is not a pure real dataset, but its

instances are real. The dataset has 1,500 instances and 913

attributes and is divided into 5 time intervals of equal

length of data (Elwell and Polikar 2011).

4.1.2 Spam filtering dataset

Spam filtering dataset is extracted from Spam Assassin1

collection. It contains 9,324 email messages with 500

attributes and two possible labels. This dataset consists of

gradual concept drift (Elwell and Polikar 2011).

4.1.3 Hyperplane dataset

The aim of this dataset is to predict the class of a rotating

hyperplane. A hyperplane decision surface is represented

by equation gðX!Þ¼W
!
:X
!¼ 0; where W

!
is an n-dimen-

sional vector showing the orientation of the surface and X
!

is the instance. If for an instance we have g X
!� �

[ 0
� �

;

we classify it as 1, otherwise it is classified as 0. The

hyperplane is moving through the time and simulates

sudden concept drift. We generated 8,000 instances with 30

numeric attributes. After receiving 2,000 instances concept

drift occurs suddenly. To simulate recurring concept

problem there is a reappearance of concepts after the first

4,000 instances.

4.1.4 Sensor dataset

Sensor dataset is a real dataset which consists of the

information collected from 54 sensors deployed in Intel

Berkeley Research laboratory in a two-month period (Zhu

and 2010). The class label is the sensor ID, so there are 54

classes, 5 attributes and 2,219,803 instances. The type and

place of concept drift is not specified in the dataset but it is

obvious that there are some drifts. For example, lighting or

the temperature of some specific sensors during the

working hours is much stronger than nights or weekends.

4.2 Parameter tuning

The proposed learning algorithm is designed in such a way

that most of its parameters can be set simply. In fact, they

can be set according to general properties of the datasets as

it will be discussed later or they can be chosen from a

specified range of values. This is not the case in CCP

framework method and so it is an advantage of our algo-

rithm. CCP framework method has a parameter h with

similar effect to our parameters h1, h2 and h3. If this

parameter is set wrongly in CCP framework method, the

accuracy of the classification will decrease significantly.

For example, h should be set to 4 for elist and 2 for

hyperplane datasets. However, if we set h to 4 instead of 2

for hyperplane dataset, its accuracy will decrease 10 %

(from 78 % to 68 %). Besides, there is no knowledge for

Table 1 Emailing list dataset (Elist) (Katakis et al. 2009)

1–300 300–600 600–900 900–1,200 1,200–1,500

Medicine ? – ? – ?

Space – ? – ? –

Baseball – ? – ? –

1 The Apache SpamAssasin Project-http://spamassassin.apache.org/.
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the proper range of this parameter in CCP framework

method and low or high values of this parameter will lead

to low performances, but we explain how to set the

threshold parameters of our methods. On the other hand,

parameters hi of the proposed methods are equally set for

all four datasets and acceptable results are obtained.

The parameters of the performed experiments are set as

what follows, except specified otherwise:

If weighted classifiers method is used for phase 1, a

parameter b will be required in the updating process of the

classifiers’ weights. This parameter is by definition in

the interval (0,1). The smaller the parameter b is, the faster

the updating of the weights of the classifiers is done in

response to the potential concept drift. So if the dataset

contains sudden concept drift, this parameter should be

low. Otherwise, the higher values lead to more robustness

to noise. This parameter is set to 0.1 to obtain fast

responses to concept drift. Another parameter is the max-

imum classifier number (maxC) which determines the

maximum expected number of possible concepts. To set

this parameter, it should be considered that how many

classifiers will be enough to describe the different concepts

of the datasets. This knowledge may be apparent for some

datasets. Otherwise, it can be tuned by trial and error

technique. maxC is set to 10 for all datasets meaning that

10 different concepts are enough to describe each of the

four datasets. The parameter h3 used in Heuristic batch

assignment method is a threshold on the accuracy of a

classifier on a newly arrived batch. If the accuracy is more

than h3, it is assumed that the classifier describes the

concept of the batch correctly. This parameter is set to 0.95

for the first three datasets and to 0.8 for sensor dataset. This

means that the method expects a classifier of the pool to

have accuracy higher than these values to be appropriate to

describe the last batch of instances. The values are chosen

by trial and error so that the overall accuracy of the method

will almost be the highest. The parameters h1 and h2 used

as the described thresholds of Bayesian and exact Bayesian

methods are set to 2 � log 0:65ð Þ � m2 � log 0:75ð Þ � m and,

respectively, where m is the number of instances used to

determine the relevancy of a concept to a new batch. This

is because we believe that if none of the probabilities in the

relevancy equations is less than 0.75 for Bayesian and 0.65

for exact Bayesian method, the concept with this property

is relevant to the newly arrived batch and its labels.

Besides, these parameters can be set by changing the val-

ues in the logarithms (0.75 and 0.65) between 0 and 1 and

noting that very high or low values will not lead to good

results. The batch size parameters are set to 500 for

hyperplane dataset and 50 for the other datasets. These

batch sizes have the required properties of the batch size

parameter: They are not very large for the datasets so that

the probability of drift inside a batch is low and not very

small so that the batch would have enough instances to

describe a concept appropriately.

The CCP framework method has two parameters,

namely maxC and h. In order to provide a fair comparison

between the proposed method and CCP framework

method, maxC is set to 10 for all datasets, i.e. the same

value as the proposed method and the parameter h is

chosen by trial and error so that the highest accuracy will

be obtained. h is set to 4, 2.5, 0.1 and 2 for the elist, spam

filtering, hyperplane and sensor datasets, respectively.

As a result, the parameter tuning process of our method

is more straightforward than CCP framework method;

because they can be set according to the general properties

of the datasets or they can be chosen from a range of values

by trial and error. Moreover, almost the same parameters

are shown to work well on the various datasets we have

chosen. These datasets have different attributes and nat-

ures, but the applied methods only care about the correct-

ness of the classification of the classifiers of the pool and

do not depend on the different natures of the datasets. So

the lower dependency of the parameters to the datasets is

expected. The only parameter that differs in different

methods is the batch size parameter. This is a concern of

CCP framework method, too.

4.3 Results and discussion

We have performed three experiments in order to evaluate

PASC method. The first experiment which is presented in

the next subsection compares the performance of the dif-

ferent variations of PASC with each other and with CCP

framework method. The second experiment is designed to

evaluate the effect of the merging process and sensitivity to

the threshold parameters. The third experiment is designed

to evaluate the effect of the parameter b of PASC. The two

following subsections discuss the results obtained from the

first experiment and the two last subsections discuss the

second and third experiments.

In the first experiment, we compared the different

variations of PASC with CCP framework method in terms

of accuracy, precision, recall, f-measure running time. The

parameters used in these experiments are discussed in 4.2.

The average accuracy values of the methods on the con-

secutive batches of instances (except the first batch which

is ignored in all methods) of elist, spam filtering, hyper-

plane and sensor datasets are shown in Figs. 1 and 2. The

figures consist of four parts each showing the plot of the

accuracies of using the four batch assignment methods and

active classifier or weighted classifiers methods on a given

dataset. So for each dataset, two plots are shown for the

two classification methods. In addition, the accuracies,

precisions, recalls and running times of the different

methods are shown in Tables 2 through 5.
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Fig. 2 Results of weighted

classifiers method on all

datasets
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Fig. 1 Results of active

classifier method on all datasets
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4.3.1 Comparison of methods’ accuracies, precisions

and recalls

Parts (a) through (c) of Figs. 1 and 2 show that the four

batch assignment methods are almost similar in the per-

formance on the first three datasets. But the last parts of

these figures which contain the results on sensor dataset

show that CCP and Bayesian batch assignment methods has

lower performances (between 9 % and 15 % of accuracy)

than Heuristic and exact Bayesian methods. This means that

CCP framework and Bayesian methods have some prob-

lems in determining the true concept of a batch in sensor

dataset. One problem with CCP framework method is that it

uses the Euclidean distance as the measure of similarity of a

batch to a concept. ConDis, the distance measure used in

CCP, is dependent on the magnitude of the attribute values

and an attribute with large values can reduce the effects of

the other attributes in the distance calculation. The problem

of Bayesian method could be possibly the I.I.D assumptions

made in it, as it can be seen that exact Bayesian method does

not suffer from this problem. However, Bayesian method

still outperforms CCP framework method (about 3 %).

Considering the plots of Figs. 1 and 2, it is deduced that

although there are some differences in the accuracies of the

different batch assignment methods, the variations in the

accuracy of all of these methods are similar. This means

that all batch assignment methods are affected by the drifts

of the datasets in the same way.

The other important note that can be interpreted from

Figs. 1 and 2 is that weighted classifiers method outper-

forms (5 % to 8 %) active classifier method when the

concept drift of the dataset is sudden. This can be seen in

the part (a) of Figs. 1 and 2 for elist dataset and in the part

(c) of hyperplane dataset. However, when the concept drift

is gradual, the two classification methods work almost the

same. This is reasonable because when a sudden concept

drift occurs while processing a batch (especially in the

beginning of a batch), weighted classifiers method quickly

adapts the weights according to the drift and so the per-

formance does not decrease significantly. This can be seen

by comparing part (a) (or part (c)) of Figs. 1 and 2. In part

(a) of Fig. 1, the classification accuracy decreases in some

points (when a sudden concept drift occurs) and it takes

some reasonable time for this method to regain its past

accuracy. But in the same points in part (a) of Fig. 2, the

accuracy will not decrease as much as in the last case and

the time taken to regain the past accuracy is much less.

However, the advantage of weighted classifiers method

over active classifier method cannot be seen in datasets

containing gradual concept drift. In this case, the both

Table 2 Results of all methods on elist dataset

Batch

assign

Classification

method

Acc. P R F-

measure

Time

CCP Active 0.77 0.73 0.81 0.77 1,004

Weighted 0.82 0.79 0.83 0.81 1,274

Heuristic Active 0.75 0.71 0.77 0.74 1,816

Weighted 0.82 0.8 0.83 0.81 1,843

Bayes Active 0.75 0.71 0.8 0.75 2,089

Weighted 0.82 0.8 0.84 0.82 2,462

Exact

Bayes

Active 0.74 0.73 0.71 0.72 32,039

Weighted 0.78 0.78 0.76 0.77 32,339

Table 3 Results of all methods on spam dataset

Batch

assign

Classification

method

Acc. P R F-

measure

Time

CCP Active 0.91 0.91 0.84 0.94 2,217

Weighted 0.89 0.92 0.87 0.93 2,820

Heuristic Active 0.89 0.91 0.84 0.93 3,942

Weighted 0.89 0.92 0.89 0.93 4,112

Bayes Active 0.89 0.9 0.86 0.93 4,537

Weighted 0.88 0.91 0.91 0.92 5,405

Exact

Bayes

Active 0.91 0.92 0.86 0.94 109,857

Weighted 0.89 0.91 0.91 0.92 112,266

Table 4 Results of all methods on hyperplane dataset

Batch

assign

Classification

method

Acc. P R F-

measure

Time

CCP Active 0.76 0.72 0.81 0.78 868

Weighted 0.83 0.81 0.83 0.84 947

Heuristic Active 0.76 0.73 0.77 0.78 974

Weighted 0.84 0.81 0.83 0.85 970

Bayes Active 0.78 0.75 0.8 0.8 876

Weighted 0.86 0.83 0.84 0.87 899

Exact

Bayes

Active 0.78 0.75 0.71 0.8 1,135

Weighted 0.86 0.83 0.76 0.87 1,178

Table 5 Results of all methods on sensor dataset

Batch assignment Classification method Accuracy Time

CCP Active 0.71 370,560

Weighted 0.71 813,398

Heuristic Active 0.87 929,289

Weighted 0.86 846,226

Bayes Active 0.74 883,682

Weighted 0.74 1,299,652

Exact

Bayes

Active 0.84 1,596,031

Weighted 0.83 2,184,393
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methods work almost the same as each other. Besides,

weighted classifiers method needs that after classification

of each instance (in the selected subsample), the true label

becomes revealed and this condition is not needed for

active classification method.

Tables 2, 3, 4 and 5 show the average accuracies, pre-

cisions, recalls and overall running times of the different

methods on the four datasets (For sensor dataset, preci-

sions, recalls and f-measures are not computed since it has

more than two classes). The minor differences in the

accuracies can be seen in these tables. The running times of

the different methods are listed in the tables which will be

discussed in the next subsection. The other point that can

be seen in these tables is that the precisions and recalls of

the different methods are proportional to their accuracies in

most of the cases. So instead of comparing the f-measures

of the different methods, their accuracies can be compared.

4.3.2 Comparison of run times of different methods

We could see the run time of each method in the last

columns of Tables 2 through 5. In this comparison, first we

compare the four batch assignment methods. Then active

and weighted classifiers methods are compared.

Training and testing of classifiers are the most time

consuming parts of the algorithms. One other time con-

suming part in CCP framework is constructing conceptual

vectors and clustering them. Time complexity for updating

the most similar classifier by the current batch is linear in

the number of instances and it is the same for all methods.

In addition, in the classification task of all batch assign-

ment methods, each data is classified once. However, the

number of classifications and measurements of the pos-

terior probabilities distributions and updates done for an

instance is different for batch assignment methods. The

running time of the methods can be expressed by four

terms: T0, T1, T2, and TRDC, where T0 is the time expended

to classify an instance, T1 is the time taken to find the

posterior probabilities for it, T2 is the time taken to update a

classifier and TRDC is the time taken while using and

updating raw data classifier (RDC) in Bayesian method. To

find the most similar classifier to the current batch, a

subsample of size m from data in the recent window is used

in our three batch assignment methods. Using all of the

classifiers in the pool, each of m instances is classified once

in Heuristic method, and its posterior probabilities esti-

mation is measured in Bayesian method. TRDC, another

term in Bayesian method’s run time and the computation

time in updating and using RDC in Bayesian method is a

constant time for each batch. This time includes the time

taken to construct Xt for the batch Bt, and finding the

posterior probabilities for Xt using RDC and also updating

RDC with Xt and the corresponding classifier number.

Exact Bayesian method needs an update between each two

posterior probabilities distribution computations in addition

to the computation of the posterior probabilities in

Bayesian method. Besides, the same computation time for

updating and posterior probabilities distribution computa-

tions is needed for RDC. So the most required time for

Heuristic method is m � maxC � T0; for Bayesian method is

m � maxC � T1 þ TRDC and for exact Bayesian method

is 2*(m � maxC � T1 þ m� 1ð Þ � maxC � T2Þ, where maxC

is the maximum number of classifiers of the pool.

As it is expected, exact Bayesian method takes the most

time among all. It is obvious from definition that T1 and T0

are almost the same for Naı̈ve Bayes classifier used in our

experiments. Consequently, Bayesian method is expected

to take more time than Heuristic method. Results in

Tables 2 through 5 uphold this fact; however, there are

some minor inconsistencies for this rule in some of the

methods and datasets. The reason for these inconsistencies

could be the differences because of parameter settings and

the number of classifiers in the pool for different methods.

In addition, it is important to note that the above expres-

sions are written using the maximum number of classifiers

and in fact they only determine the upper bounds. It is

notable that CCP framework method takes the least time

among all while using each of the classification methods

for classification, but the time taken in Heuristic and

weighted classifiers methods is not far more than the run-

ning time of CCP framework and weighted classifiers

methods.

As weighted classifiers method needs updating the

classifiers’ weights which in turn requires classification of

some instances, it is expected to take more time than active

method. This can be seen for all batch assignment methods,

except for Heuristic method, because to obtain time saving

in Heuristic and weighted classifiers methods, we used the

same subsample for both tasks of updating the classifiers

and determining their weights. By this optimization task,

the running time of Heuristic method is not far more than

CCP framework method for weighted classifiers method.

Finally, in weighted classifiers method, exact Bayesian

and Bayesian methods take the most time. Heuristic and

CCP framework method are almost the same for some

datasets, but Heuristic takes more time for the others.

However, the overall accuracies of Heuristic method are

higher than CCP framework method.

4.3.3 Impact of the merging process and sensitivity

of the methods to the threshold parameters

In this section, the impact of the merging process and the

sensitivity of the batch assignment methods to the thresh-

old parameters are studied. Sensor dataset is used to

evaluate the merging process because it is large enough to
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make the impact of the different parameters clear. In

addition, the effect of the merging process becomes clearer

for large datasets, because this process resolves the prob-

lem of assigning more than one classifier to one concept

and this possibility can be more expected for higher

number of batches of instances. Parts (a) through (d) of

Fig. 3 show the accuracies of the four batch assignment

methods for different values of the threshold parameters. In

each part, the accuracies of the corresponding method in

conjunction with the merging process are compared with

the accuracies obtained when the merging process is not

used. The parameters used in these experiments are the

same as those used in the previous sections for the senor

stream dataset, except that the parameter maxC is set to 40

instead of 10. This change is made so that when the

methods are used without the merging process and as a

result the probability of assigning more than one classifier

to a concept is high, the number of available classifiers

would be higher to reduce the impact of this problem.

Using a wide range of values for the threshold param-

eters, it can be seen that the dependency of the methods to

the threshold parameter is low. This is the case both when

the merging process is used or not, but this does not mean

that the true setting for these parameters is not crucial.

Indeed, using very high or low values for the threshold

parameters is not recommended. For example, part (a) of

Fig. 3 which shows the accuracies for CCP framework

batch assignment method, determines that the method does

not work well when the threshold parameter h is very high.

It is obviously expected because all the batches of instances

will be assigned to one classifier in this case and no use of

recurring concepts is made. In fact, only an incremental

learning will be done which is not expected to work well on

the concept drifting datasets. Besides, note that although

low dependency to the threshold parameter can be seen for

CCP batch assignment, this method will have very low

accuracy without using the merging process.

The other important result that can be extracted from

these figures is that the merging process increases the

accuracy substantially for the sensor dataset. Therefore, we

suggest that the merging process can be important for other

large datasets, too. This result can be obtained by com-

paring the two curves of the parts (a) through (d) of Fig. 3.

The accuracies of the methods with merging process is

more than about 60 % * 70 % better in comparison with

the methods without merging process. In addition, for

reasonable threshold parameters (not very low or high) no

value of the threshold parameters leads to an accuracy

which is even competitive to the accuracies of the methods

with the merging process. This means that using the
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merging process is crucial even if the parameters are tuned

very well.

The sensitivity of the threshold parameters for the other

datasets can be seen in Fig. 4. Parts (a) through (d) of

Fig. 4 shows the accuracies of the different batch assign-

ment methods in conjunction with the merging process and

weighted classifiers method for classification. For exact

Bayesian and Bayesian methods, h’1 and h’2 are included

instead of h1 and h2, where hi = 2*log(h’i)*m and m is the

batch size. The sensitivity is more than that of the sensor

dataset. The parameters should not be set to very high or

low values. However, the parameters of the proposed

method can be chosen from a specified range of values.

4.3.4 Sensitivity of weighted classifiers method

to parameter b

Parts (a) and (b) of Fig. 5 show the accuracies of weighted

classifiers method for different values of the parameter

b and on the elist and spam filtering datasets. The
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sensitivities of the other two datasets are similar and so

they are not discussed. The results are shown for the four

batch assignment methods. As it can be seen, the sensitivity

of weighted classifiers method to b is very low for both

datasets. In fact, only when this parameter is set to 1, the

accuracy will be different, but the interval consists of the

values in (0,1). The results of weighted classifiers method

for the elist dataset which contains sudden concept drift

outperform active classifier method, for all values of b.

When b is less than 1, the results are even better. For spam

filtering dataset which contains gradual concept drift, the

results of weighted classifiers method for all values of b
and active classifier method are almost the same.

5 Conclusion and future works

We have proposed a method with some variations for data

stream classification in the presence of recurring concepts.

A pool of classifiers was used in the method which was

updated according to the consecutive batches of instances.

Each classifier in the pool was representative of a concept.

This pool was also used for the classification task. To

update the pool, one of its classifiers was selected and

updated with each newly arrived batch in a batch assign-

ment method or a new classifier was added to the pool. One

new classification method and three batch assignment

methods was introduced and compared with the existing

methods. In addition, a merging process to merge the

classifiers of the pool was introduced. The most similar

method to ours is CCP framework method. In order to

evaluate our method, we compared it with this method on

four datasets with different natures. The experiments

showed that our batch assignment, classification and

merging methods improve the result on datasets with

challenging properties of having arbitrary attributes, con-

taining sudden concept drift and being of large size. In

addition, the parameter setting of our method was shown to

be simple according to the general properties of the data-

sets or a specified range of values and almost the same

parameters (especially for threshold and b parameters) can

be set for different datasets.

Some future research directions related to this work

might include the followings: First, more management

activities rather than the merging process can be done on

the classifiers of the pool to obtain better results even in

more dynamic environments and under the constraints of

the problem. Second, the batch size parameter can be tuned

during the execution of the algorithm according to the

tradeoff between larger batch size and the locality

assumption for a batch. In addition, it is not necessary to

have the same batch size for both classification and

updating the pool. This can help us to handle the drift in the

current window more carefully. Third, other similarity

measures with lower time complexities or higher perfor-

mances can be used for the batch assignment task or the

merging process.
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