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Abstract Harmony search algorithm is a meta-heuristic

optimization method imitating the music improvisation

process, where musicians improvise their instruments’

pitches searching for a perfect state of harmony. First, an

improved harmony search algorithm is presented using the

concept of swarm intelligence. Next, it is employed for

training feedforward neural networks for three benchmark

classification problems. Then, the performance of the

proposed algorithm is compared with that of three methods.

Simulation results demonstrate the effectiveness of the

proposed algorithm.
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1 Introduction

A typical artificial neural network (ANN) has two types of

basic components. They are neurons which are processing

elements and links which are interconnections between

neurons. Each link has a weighting parameter. Each neuron

receives stimulus from other neurons, processes the infor-

mation, and produces an output. Neurons are categorized to

input, output and hidden neurons. The first and the last

layers are called input and output layers, respectively, and

the remaining layers are called hidden layers (Zhang and

Gupta 2003).

Consider Nk as the number of neurons in the kth layer.

Let wij
k, represents the weight of the link between the jth

neuron of the (k - 1)th layer and the ith neuron of the kth

layer. Suppose wi0
k is an additional weighting parameter for

each neuron, representing the bias for the ith neuron of the

kth layer. The weighting parameters are initialized before

training the neural network. During training, they are

updated iteratively in a systematic manner (Wang et al.

1999). Once the neural network training is completed, the

weighting parameters remain fixed throughout the usage of

the neural network as a model.

The process of training an ANN is to adjust weights and

biases. The back-propagation (BP) learning has become the

most popular method to train feedforward ANNs in many

domains (Chronopoulos and Sarangapani 2002). However,

one limitation of this technique, which is a gradient-des-

cent technique, is that it requires a differentiable neuron

transfer function. Also, as neural networks generate com-

plex error surfaces with multiple local minima, the BP

tends to converge into local minima instead of a global

minimum (Gupta and Sexton 1999).

In recent years, many improved learning algorithms

have been proposed to overcome the handicaps of gradient-

based techniques. These algorithms include a direct opti-

mization method using a polytope algorithm (Curry and

Morgan 1997), global search techniques such as evolu-

tionary programming (Salchenberger et al. 1992), genetic

algorithm (GA) (Sexton et al. 1998; Kim et al. 2005), ant

colony optimization (ACO) (Socha and Blum 2007), par-

ticle swarm optimization (PSO) (Yu et al. 2008; Garro

et al. 2009; Zamani and Sadeghian 2010), differential

evolution (DE) (Slowik and Bialko 2008; Garro et al. 2010,

2011), and artificial bee colony algorithm (ABC) (Karaboga

and Ozturk 2009). The standard gradient-descent BP is

not trajectory-driven, but population driven. However, the
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improved learning algorithms have explorative search

features. Consequently, these methods are expected to

avoid local minima frequently by promoting exploration of

the search space.

Harmony search (HS) is a meta-heuristic optimization

method imitating the music improvisation process where

musicians improvise their instruments’ pitches searching

for a perfect state of harmony (Lee and Geem 2004,

2005a; Lee et al. 2005b). HS algorithms have been

successfully applied to a wide range of practical opti-

mization problems, such as structural optimization (Lee

and Geem 2004, 2005a; Lee et al. 2005b), parameter

estimation of the nonlinear Muskingum model (Kim

et al. 2001), design optimization of water distribution

networks (Geem et al. 2002; Geem 2006, 2009a, b),

vehicle routing (Geem et al. 2005), combined heat and

power economic dispatch (Vasebi et al. 2007), design of

steel frames (Degertekin 2008a, b), bandwidth-delay-

constrained least-cost multicast routing (Forsati et al.

2008), transport energy modeling (Ceylan et al. 2008)

and quadratic programming (Fesanghary et al. 2008).

Also, several algorithms, such as novel global harmony

search (NGHS) (Zou et al. 2010), have recently been

developed based on the adoption of search behavior of

the HS. In this paper, the swarm intelligence technique is

employed to enhance the performance of the NGHS.

The paper is organized as follows. In Sect. 2, the pro-

cedure of HS and NGHS algorithms are briefly presented.

The improved NGHS algorithm is presented in Sect. 3. In

Sect. 4, this algorithm is employed to train a feedforward

ANN. We end this paper with some conclusions in Sect. 5.

2 Harmony search and novel global harmony search

algorithms

In this section, harmony search and NGHS algorithms are

reviewed.

2.1 HS algorithm

In basic HS algorithm (Lee and Geem 2005a), each

solution, called a harmony, is represented by an

n-dimension real vector. First, an initial population of

harmony vectors is randomly generated and stored in a

harmony memory (HM). Then, a new candidate harmony

is generated from all of solutions in the HM by per-

forming a memory consideration rule, a pitch adjustment

rule and a random re-initialization. Next, the HM is

updated by comparing the new candidate harmony and

the worst harmony vector in the HM. Finally, the worst

harmony vector is replaced by the new candidate vector

if the latter is better. The above process is repeated until

a certain termination criterion is met. The basic HS

consists of three phases, which are initialization, impro-

visation of a harmony vector and updating the HM.

These phases are described as follows.

2.1.1 Initialization of the algorithm parameters

In general, the global optimization problem can be written

as

min f Xð Þ
s:t: : x jð Þ 2 LB jð Þ;UB jð Þ½ �; j = 1,2, ...n

ð1Þ

where f(X) is the objective function, n is the number of

decision variables, X = x(1),x(2), ...,x(n)½ � is the set of

decision variables, and LB(j) and UB(j) are the lower

and upper bounds for the decision variable x(j),

respectively.

The parameters of the HS algorithm are harmony

memory size (HMS), i.e., the number of solution vectors in

harmony memory, harmony memory consideration rate

(HMCR), pitch adjusting rate (PAR), distance bandwidth

(BW), and number of improvisations (NI), i.e., the total

number of function evaluations. Obviously, a good set of

parameters can enhance the algorithm’s ability to search

for the global optimum or near optimum region with a high

convergence rate.

2.1.2 Initialization of the harmony memory

The number of harmony vectors in the HM is HMS. Let

Xi ¼ xið1Þ; xið2Þ; ...,xiðn)½ �, which has randomly been

generated, represents the ith harmony vector, as follows

xi jð Þ ¼ LB jð Þ þ UB jð Þ � LB jð Þð Þ � r

i ¼ 1; 2; . . .;HMS; j ¼ 1; . . .n
ð2Þ

where r is a uniform random number between 0 and 1.

The HM matrix is then filled with harmony vectors as

follows.

HM ¼ X1;X2; . . .;XHMS½ �T: ð3Þ

2.1.3 Improvise a new harmony

A new decision variable xnew(j) is improvised by applying

three rules, a memory consideration, a pitch adjustment and

a random selection. First, a uniform random number r1 is

generated in the range [0, 1]. If r1 is less than the value of

HMCR, the decision variable xnew(j) is generated by the

memory consideration. Otherwise, xnew(j) is obtained by a

random selection, i.e., random re-initialization between the

search bounds. In the memory consideration, xnew(j) is
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substituted by a random selection of the jth harmony vector

in the HM. Next, if each decision variable xnew(j) is

updated by the memory consideration, it will undergo a

pitch adjustment with a probability of PAR. The pitch

adjustment rule is given by

xnew jð Þ ¼ xnew jð Þ � r� BW ð4Þ

where r is a uniform random number between 0 and 1.

2.1.4 Updating the harmony memory

Once a new harmony vector Xnew is generated, the HM

must be updated by the survival of the fitter competition

between Xnew and the worst harmony vector, Xw. If the

fitness value of Xnew is better than that of XW, the latter will

be replaced by Xnew and become a new member of the HM.

2.1.5 Computational procedure

The computational procedure of the basic HS algorithm for

a minimization problem can be summarized as follows

(Lee and Geem 2005a).

Step 1 Set the parameters HMS, HMCR, PAR, BW, and

NI

Step 2 Initialize the HM and calculate the objective

function values for each harmony vector

Step 3 Improvise a new harmony Xnew as follows

Step 4 Update the HM as Xworst ¼ Xnew if f ðXnewÞ
\f ðXworstÞ

Step 5 If NI is completed, return the best harmony vector

Xbest from the HM; otherwise go back to step 3.

2.2 Novel global harmony search algorithm

A recent proposed approach, called NGHS (Zou et al.

2010), modifies the improvisation step of the HS by

substituting HMCR and PAR by genetic mutation proba-

bility pm. The NGHS improvisation step is as follows.

where xjl and xju refer to the lower and upper bands of

decision variables, respectively. Here, ‘best’ and ‘worst’

are the indexes of the best and worst harmonies in HM,

respectively. Figure 1 illustrates the principle of position

updating. The adaptive step for the jth decision variable is

defined as Stepj ¼ xbest
j � xworst

j

�
�
�

�
�
�. The region between P

and R, which is actually a region near the global-best

harmony, is defined as the trust region for the jth decision

variable.

A balance between the global search and the local

search is kept by dynamically adjusted stepj. To enhance

the proposed algorithm’s capacity of escaping from the

local optimum, a genetic mutation operation with a small

probability is used. The worst harmony Xworst in HM is

always replaced with the new harmony Xnew.

3 Intelligent global harmony search (IGHS) algorithm

To solve continuous optimization problems, this paper

presents a new optimization algorithm, named IGHS. The

main motivation for presenting the IGHS is to enhance the

ability of HS algorithms in dealing with such optimization

problems. In this method, the concept of swarm intelli-

gence, as proposed in PSO technique (Kennedy and

Eberhart 1995), is employed to improve the performance of

the third step. In PSO technique, a swarm of particles could

worst
jx best

jx Rx
P R

Q

regionTrust 

Fig. 1 The schematic diagram of position updating
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fly through the search space. Each particle represents a

candidate solution to the optimization problem. The posi-

tion of a particle can be influenced by the best position

visited by itself, i.e., its own experience, and the position of

the best particle in the swarm, i.e., the experience of

swarm.

To enhance the performance of the NGHS, this idea is

used in IGHS to modify the improvisation step of the

NGHS, as follows. The modification is done in such a way

that the new harmony imitates one dimension of the best

harmony in the HM.

In comparison with HS algorithms, the IGHS has the

following differences.

1. The new harmony is chosen from the range between

the values of worst and best harmonies.

2. To improve the performance of this algorithm, the best

harmony in HM is used in the third step of the IGHS.

3. To have a suitable population diversity and a good

search in the search space, the worst harmony in HM is

always replaced with a new harmony.

The computational procedure of the basic IGHS algo-

rithm for a minimization problem can be summarized as

follows.

Step 1 Set the parameters HMS, HMCR, PAR and NI

Step 2 Initialize the HM and calculate the objective

function values for each harmony vector

Step 3 Improvise a new harmony Xnew as follows

Step 4 Update the HM as Xworst ¼ Xnew

Step 5 If NI is completed, return the best harmony vector

Xbest from the HM; otherwise go back to step 3.

4 Simulation results, analysis and discussion

When ANN training is initiated, the iterative process of

presenting the training patterns of the dataset to the net-

work’s input continues until a given termination condition

is satisfied. This usually happens based on a criterion

indicating that the current achieved solution is presumably

good enough to stop training. For instance, one common

termination criterion in the BP is the difference between

the current value of sum of squared errors (SSE) and that

obtained in the previous iteration (Fausett 1994).

Figure 2 illustrates a small scale sample ANN. A har-

mony vector in the HM represents the decision variables in

the HS. Each vector represents a complete set of ANN

weights including biases. The objective function is to

minimize SSE (Hassoun 1995). The squared difference

between the target output and actual output determines the

amount of error. This is represented by ðt� zÞ2 for each

pattern and each output unit as shown in Fig. 2. Since the

values of ANN weights are usually within the same range

we simplify the HS model by setting xL = -1, xU = 1.

In this study, three benchmark classification problems,

which are classification of Iris, Breast Cancer, and Glass,

are studied. According to four properties of one flower, the

categories of Iris are identified in the Iris problem. This

problem consists of 150 examples; all of them can be

classified into three categories whilst each category

accounts for one-third of the examples. 101 examples are

used for training and the rest are used for testing. In the

Breast Cancer problem, we correctly diagnose breast lumps

as either benign or malignant based on data from exami-

nation of cells. This problem consists of 699 examples.

Each example includes nine inputs and two outputs. 500

examples are used for training and the rest are used for

testing. The Glass dataset predicts the type of glass, either

window glass or non-window glass, based on measure-

ments of the chemical content. This problem consists of

214 examples. Each example includes 9 inputs and 2 out-

puts. 154 examples are used for training and 60 examples

are used for testing. To evaluate the performance of the

proposed algorithm, we compare its computational results

with those provided by the BP, HS, and NGHS.

A benchmark dataset is partitioned into training, vali-

dation and testing sets. To prevent over-fitting and, there-

fore, to improve the classification performance in the test

data, training and validation sets may be used individually

(Hassoun 1995). However, since evolutionary-based
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techniques search globally for a solution the use of vali-

dation set is not required for them (Sexton and Dorsey

2000; Kiranyaz et al. 2009).

In the BP, the learning rate g is 0.7 whilst 5 % of

training data is used for validation check. Table 1 shows

the parameter settings of all HS algorithms including IGHS

algorithm. Here, ‘NI’ represents the number of iterations.

The parameters have been chosen according to the rec-

ommendations given by related references (for example,

see Lee and Geem 2005a; Zou et al. 2010) and also based

on results of simulations.

For all benchmark problems, the number of hidden

neurons for all algorithms is 8. The number of neurons has

been chosen to be less than the number of inputs. This

increases the speeds of the algorithms. Also, the number of

tuning parameters (i.e., neurons and biases) is set to be less

than that of training data. This results in a good general-

ization for the network.

After 20 iterations, the results of classification are

demonstrated in Table 2. In this table, the parameter ‘Std’

represents the standard deviation. The values in bold refer

to the best results. The results show that the NGHS and

IGHS perform better than the BP and HS in terms of

classification accuracy and computational expenses. Fur-

thermore, Table 2 shows that the IGHS has a better overall

performance in comparison with the NGHS. Moreover, the

simulation studies reveal that among all these algorithms

the IGHS has a higher chance to find a good solution for a

given number of iterations.

The lowest SSE values are found by the BP for iris

dataset and by the IGHS for Breast Cancer and Glass

datasets. It can be seen from Table 2 that the proposed

IGHS algorithm finds higher testing accuracies than BP and

other HS algorithms. This means that IGHS algorithm can

classify datasets better than the other algorithms considered

in this paper.

5 Conclusions

Using the concept of swarm intelligence, this paper pre-

sented an intelligent global harmony search algorithm,

called IGHS. It was used for training feedforward neural

networks for three benchmark classification problems,

namely Iris, Breast Cancer, and Glass problems. The per-

formance of the proposed algorithm was compared with

that of the BP, HS and NGHS.

Taking classification accuracy and computational

expenses into account, simulation results revealed that

NGHS and IGHS algorithms performed better than the BP

and HS. In comparison with the NGHS, it was also shown

that the IGHS had a better overall performance. Moreover,

the simulation studies proved that the IGHS had a higher

chance to find a good solution for a given number of

iterations in comparison with other algorithms. The lowest

SSE values were found by the BP for Iris dataset and by the

IGHS for Breast Cancer and Glass datasets. Furthermore,

the IGHS found higher testing accuracies than BP and
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Fig. 2 A small scale sample ANN

Table 1 Parameter settings of HS algorithms

Algorithm HMS HMCR PAR BW pm NI

HS 5 0.9 0.3 0.01 – 5,000

NGHS 5 – – – 0.005 5,000

IGHS 5 0.995 [0.1, 0.2] – – 5,000
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other HS algorithms. Therefore, it was concluded that the

IGHS performed better in classifying datasets in compari-

son with other algorithms considered in this paper.
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