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Abstract Evolving granular modeling is an approach that

considers online granular data stream processing and

structurally adaptive rule-based models. As uncertain data

prevail in stream applications, excessive data granularity

becomes unnecessary and inefficient. This paper introduces

an evolving fuzzy granular framework to learn from and

model time-varying fuzzy input–output data streams. The

fuzzy-set based evolving modeling framework consists of a

one-pass learning algorithm capable to gradually develop

the structure of rule-based models. This framework is

particularly suitable to handle potentially unbounded fuzzy

data streams and render singular and granular approxima-

tions of nonstationary functions. The main objective of this

paper is to shed light into the role of evolving fuzzy

granular computing in providing high-quality approximate

solutions from large volumes of real-world online data

streams. An application example in weather temperature

prediction using actual data is used to evaluate and illus-

trate the usefulness of the modeling approach. The

behavior of nonstationary fuzzy data streams with gradual

and abrupt regime shifts is also verified in the realm of the

weather temperature prediction.

Keywords Fuzzy data stream � Granular computing �
Information granule � Online learning � Time series

prediction

1 Introduction

Theories and methodologies that make use of granules to

solve problems featured by supplying huge amount of data,

information and knowledge label a new area of multi-dis-

ciplinary study called granular computing (Bargiela and

Pedrycz 2002; Pedrycz 2007; Yao 2008; Lin 2002; Zadeh

1979; Yao et al. 2007). Granular computing as a paradigm

of information processing spotlights multiple levels of data

detailing to provide useful abstractions and approximate

solutions to hard real-world problems (Pedrycz et al. 2008;

Bargiela and Pedrycz 2005, 2008; Yao 2010). Particularly,

this paper lays emphasis on online granular modeling of

time-varying fuzzy data streams.

Data streams have become available in increasing

amounts. The ability to analyze them holds the premise that

it is possible to outline a fraction of the data which carries

unprecedented information to understand the very nature of

the underlying system (Angelov and Filev 2004; Beringer

and Hullermeier 2007; Bouchachia 2010; Kasabov 2007;

Lughofer and Angelov 2011). Evolving granular modeling

(Pedrycz 2010; Angelov and Zhou 2008; Leite and Gomide

2012; Leite et al. 2010a, b, 2011, 2012a; Lemos et al. 2011;

Rubio 2010;) comes not only as an approach to capture the

essence of stream data but also as a framework to extrap-

olate spatio-temporal correlations from lower-level raw

data and provide a more abstract human-like representation
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of them. Research effort into granular computing toward

online environment-related tasks is supported by a mani-

fold of relevant applications such as financial, health care,

video and image processing, GPS navigation, click stream

analysis.

Elementary processing units in evolving granular sys-

tems are referred to as information granules. A granule

defines a subset of a universal set which holds an internal

representation. A granular structure is a family of granules

closed by union (Bargiela and Pedrycz 2002; Yao et al.

2008). In online data modeling, arriving data are respon-

sible for creating and expanding granules, guiding param-

eter adaptation, and finding appropriate model granularity.

Algorithms to handle online data streams face odd chal-

lenges concerned to the value of the current knowledge,

which reduces as the concept changes, and the need to

neither store nor retrieve the data once read.

Granular systems have appeared under different names

in related fields such as interval analysis, fuzzy and rough

sets, divide and conquer, quotient space theory, informa-

tion fusion, and others (see Yao et al. 2007). However,

structurally-adaptive granular systems have only been

formally investigated in the early 2000s. Currently, a

number of evolving granular systems have succeeded in

dealing with time-varying numeric data by means of

recursive clustering algorithms and adaptive local models.

Notwithstanding, these systems are often unable to process

granular data, e.g. fuzzy data, and realize granule-stream-

oriented computing. In this paper we address granular

systems modeling with a fuzzy-data-stream-driven recur-

sive algorithm in unknown nonstationary environments.

The fuzzy set based evolving modeling (FBeM) frame-

work employs fuzzy granular models to deal with more

detailed fuzzy granular data and therefore provide a more

intelligible exposition of the data. For each granular model

there exists an associated fuzzy rule base. The antecedent

part of FBeM rules consists of fuzzy hyperboxes, which are

interpretable transparent descriptors of input granular data.

The consequent part of FBeM rules has a linguistic and a

functional component. The linguistic component arises

from fuzzy hyperboxes formed by output data granulation.

It facilitates model interpretation and encloses possible

model outputs. The functional component is derived from

input data and real-valued local functions. This component

produces more accurate approximants. The rationale

behind the FBeM approach is that it looks to input–output

data streams under different resolutions and decide when to

adopt coarser or more detailed granularities. Our experi-

mental goal in this paper is to provide predictions of

monthly mean, minimum, and maximum temperatures in

regions known by their different climatic patterns.

The remainder of this paper is organized as follows.

Section 2 overviews works related with granular data

stream modeling. Section 3 introduces the FBeM frame-

work. Section 4 addresses weather temperature predictions

developed by FBeM and alternative approaches using

actual temperature time series data. Section 5 concludes the

paper and suggests issues for future research.

2 Related works

This section summarizes recent research related to incre-

mental learning methods that are capable to handle gran-

ular data streams. We do not intend to give an exhaustive

literature review. The purpose is to overview works closely

related with the approach suggested in this paper.

Interval based evolving modeling (IBeM) (Leite et al.

2012a) is an interval granular approach whose focus is to

enclose imprecise data streams and produce a rule-based

summary. IBeM emphasizes imprecise data manifesting as

tolerance intervals and recursive learning procedures

grounded in fundamentals of interval mathematics. Ante-

cedent and consequent parts of IBeM rules are interval

hyperboxes, which are linked by an interval granular

mapping—or inclusion function in the interval analysis

terminology. The IBeM approach for function approxi-

mation makes no specific assumption about the properties

of the data. Structural development is fully guided by

interval data streams. Applications in actual meteorological

and financial time series (Leite et al. 2012a) have shown

the usefulness of the approach.

General fuzzy min–max neural network (GFMM)

(Gabrys and Bargiela 2000) is a generalization of the fuzzy

min–max clustering and classification neural networks

(Simpson 1992, 1993). It handles labeled and unlabeled

data simultaneously to develop a single neural network

structure. GFMM combines supervised and unsupervised

learning to perform hybrid clustering and classification.

Learning can be done in one pass over data sets and data

can be intervals. Basically, the GFMM algorithm places

and gradually adjusts fuzzy hyperboxes in the feature space

using the expansion-contraction paradigm.

Granular reflex fuzzy min–max neural networks

(GrRFMN) (Nandedkar and Biswas 2009) learn from and

classify interval granular data in online mode. The struc-

ture of the GrRFMN network simulates the reflex mecha-

nism of the human brain and deals with class overlapping

using compensation neurons. The GrRFMN training algo-

rithm gives a way to calculate datum-model membership

degree which potentially leads better overall network per-

formance. Experiments with real data sets assert the

effectiveness of the approach.

Uncertain micro-clustering algorithm (UMicro)

(Aggarwal et al. 2008) considers that stream data arrive

together with their underlying standard error instead of
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assuming the entire probability distribution function of the

data is known. The algorithm uses uncertainty information

to improve the quality of the underlying results. UMicro

incorporates a time decay method to update the statistics of

micro-clusters. The decaying method is especially useful to

model drifting concepts in evolving data streams. The

efficiency of the UMicro approach has been demonstrated

in a variety of data sets.

Evolving granular neural network (eGNN) (Leite et al.

2010a, 2012b) is an approach derived from a parallel

research we have conducted on fuzzy granular data stream

mining and modeling. eGNN uses fuzzy granules and fuzzy

aggregation neurons for information fusion. Its learning

algorithm is committed to build and incrementally adapt

the network using data to approximate nonstationary

functions. Application examples in pattern recognition and

forecasting in material and biomedical engineering have

shown eGNN can outperform alternative online approaches

in terms of accuracy and compactness.

3 Fuzzy set based evolving modeling

FBeM was first suggested in Leite and Gomide (2012) as a

general framework for function approximation and robust

control. Later, its learning algorithm was modified to

handle time-series prediction (Leite et al. 2011). Both

cases assume numeric (singular) data streams. In this

paper, we supply FBeM with a recursive incremental

algorithm suited to deal with time-varying fuzzy data

stream.

The commitment of FBeM is to deliver simultaneous

singular and granular function approximation and linguistic

description of the behavior of a system. Local FBeM

models are a set of If-Then rules developed incrementally

from input–output data streams. Learning can start from

scratch and, as new information is brought by the data

stream, granules and rules are created and their parameters

adjusted. Therefore, FBeM becomes more flexible to han-

dle data so that redesign and retraining models all along are

needless. The resulting input–output granular mapping may

be eventually refined or coarsed according to inter-granules

relationships and error indices.

3.1 Problem statement

The generic form of the problem addressed in this paper is

as follows:

Given a time-varying unknown function f[h], where h ¼
1; . . . is the time index; and a pair of observations

(x, y)[h], x 2 X and y 2 Y ; find a finite collection of infor-

mation granules c ¼ fc1; . . .; ccg and a time-varying real-

valued map p½h� : X ! Y such that ci � X � Y and p[h]

minimizes (f[h] - p[h])2.

We assume the following: (1) the output y[h] does not

need to be known when the input x[h] is available, but must

be known afterwards; (2) attributes xj of an input vector

x ¼ ðx1; . . .; xnÞ and the output y are considered trapezoidal

fuzzy data. Triangular, interval and numeric types of data

arise as particular arrangements of trapezoids; (3) spatio-

temporal constraints: data streams are not stored (space

constraint); the per-sample latency of algorithms should

not be larger than the time interval between samples (time

constraint).

3.2 Fuzzy data stream

Empirical data may take various forms depending on how

they are modeled formally, e.g., intervals, probability dis-

tributions, fuzzy numbers (Dubois and Prade 2004). Fuzzy

data arise when measurements are inaccurate, variables are

hard to be quantified, pre-processing steps introduce

uncertainty to numeric data or when the data are derived

from expert knowledge. Often, data are purely numerical,

but the process which generated the data can be uncertain.

A fuzzy interval is a fuzzy set on the real line that

satisfies the conditions of normality (G(x) = 1 for at least

one x 2 <) and convexity (G(jx1 ? (1 - j) x2) C min

{G(x1), G(x2)}, x1; x2 2 <; j [ [0,1]).

This paper considers data streams of fuzzy intervals

whose membership function are trapezoidal. A trapezoidal

fuzzy interval can be represented by a quadruple ðx; x; x; xÞ:
It satisfies a series of properties such as normality, un-

imodality, continuity, and boundedness of support (Pedrycz

et al. 2007). Fuzzy granular data streams generalize sin-

gular (numeric) data streams by allowing fuzziness.

3.3 Structure and processing

Rules Ri governing FBeM information granules ci are of

the type: Ri : IF ðx1 is Ai
1ÞAND. . .AND ðxj is Ai

jÞ AND. . .

AND ðxn is Ai
nÞ THEN ðy is BiÞ

|fflfflfflffl{zfflfflfflffl}

linguistic

AND y ¼ piðx1; . . .; xnÞ
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

functional

;

where Ai
j and Bi are membership functions built in light of

input and output data being available; pi is a local

approximation function. The collection of rules

Ri, i = 1, …, c, casts a rule base. Rules in FBeM are

created and adapted on-demand whenever the data asks for

improvement in the current model. Notice that an FBeM

rule combines both, linguistic and functional consequents.

The linguistic part of the consequent favors interpretability

once fuzzy sets may come with a label. The functional part

of the consequent offers accuracy. Thus, FBeM takes

Evolving Systems (2012) 3:65–79 67

123



advantage of both, linguistic and functional consequents,

within a single framework.

Fuzzy sets Aj
i and Bi are generated from scattered

fuzzy granulation. The scattering approach clusters the

data into fuzzy sets when appropriate and takes into

account the coexistence of a manifold of granularities in

the data stream. Sets Aj
i and Bi can be easily extended to

fuzzy hyperboxes ci (granules) in a product space.

Granules are positioned at locations populated by input

and output data in the product space. Figure 1 illustrates

the scatter granulation mechanism of fuzzy data. Note

in the figure that the granularity of models is coarser

than the granularity of data. This is to obtain data

compression and to provide a more effective, human-

intelligible representation.

Fitting data into conveniently placed and sized granules

through scattering leaves substantial flexibility for incre-

mental learning. The FBeM approach grants freedom in

choosing the internal structure of granules.

Yager et al. (2007) and Yager (2009) has demon-

strated that a trapezoidal fuzzy set Ai
j ¼ ðli

j; k
i
j;K

i
j; L

i
j)

allows the modeling of a wide class of granular objects.

A triangular fuzzy set is a trapezoid where ki
j ¼ Ki

j; an

interval is a trapezoid where lj
i = kj

i and Ki
j ¼ Li

j; a sin-

gleton (singular datum) is a trapezoid where lij ¼ ki
j ¼

Ki
j ¼ Li

j: Additional features that make the trapezoidal

representation attractive comprise: (1) ease of acquiring

the necessary parameters. Only four parameters need to

be captured; (2) many operations on trapezoids can be

performed using the endpoints of intervals which are

level sets of trapezoids. Moreover, the piecewise linearity

of the trapezoidal representation allows calculation of

only two level sets, corresponding to the core and sup-

port, respectively, to obtain a complete implementation;

(3) trapezoids are easier to be translated to linguistic

labels.

Fuzzy sets Bi ¼ ðui; ti;!i;UiÞ are used to assemble

granules in the output space. The local function pi is

adapted for samples that rest inside the granule ci: In

general, functions pi can be of different type and are not

required to be linear. Here we assume affine functions:

pi ¼ ai
0 þ

X
n

j¼1

ai
jxj; ð1Þ

for simplicity. If higher order functions are used to

approximate f, then the number of coefficients to be esti-

mated increases, especially when the number of input

variables n is large. The recursive least squares (RLS)

algorithm is used to adjust the coefficients ai
j of pi.

Trapezoidal fuzzy sets and scatter granulation allow

granules to overlap. Therefore, two or more granules can

accommodate the same data sample. FBeM singular output

is found as the weighted mean value

p ¼
Pc

i¼1 minðAi
1ðx1Þ; . . .;Ai

nðxnÞÞpiðx1; . . .; xnÞ
Pc

i¼1 minðAi
1ðx1Þ; . . .;Ai

nðxnÞÞ
: ð2Þ

Granular output is given by the convex hull of output

fuzzy sets Bi� ; where i� are indices of granules that can

accommodate the data sample. The convex hull of

trapezoidal fuzzy sets B1; . . .;Bc is given as follows:

chðB1; . . .;BcÞ ¼ ðminðu1; . . .; ucÞ;minðt1; . . .; tcÞ;
maxð!1; . . .;!cÞ;maxðU1; . . .;UcÞÞ:

ð3Þ

The granular output given by Bi� enriches decision

making and motivates interpretability. While being specific

from p we risk to be incorrect, being unspecific from Bi�

increases our confidence to be correct.

3.4 Setting the granularity

The width of a fuzzy set Aj
i is defined as the length of its

support,

wdtðAi
jÞ ¼ Li

j � li
j: ð4Þ

The maximum width fuzzy sets Aj
i are allowed to expand

is denoted by q, that is, wdt(Aj
i) B q, j ¼ 1; . . .; n; i = 1,

… , c. Values of q ensue different representations of the

same problem in different levels of detail (granularities).

Let the expansion region of a set Aj
i be denoted by

Ei
j ¼ mpðAi

jÞ �
q
2
;mpðAi

jÞ þ
q
2

h i

; ð5Þ

where

mpðAi
jÞ ¼

ki
j þ Ki

j

2
ð6Þ

Fig. 1 Scattering approach for fuzzy data granulation
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is the midpoint of Aj
i. Expansion regions help to derive

criteria for deciding whether or not data samples should be

in the same granule.

For normalized data, q takes values in [0,1]. If q is

equal to 0, then FBeM granules do not enlarge. Learning

creates a new rule for each sample, what may cause

overfitting, that is, excessive complexity and irreproducible

optimistic results. If q equals 1, then a single granule may

cover the entire data domain so that FBeM becomes unable

to handle nonstationarities. Meaningful life-long adapt-

ability is reached choosing intermediate values for q.

In the most general case, FBeM starts learning with an

empty rule base and devoid of knowledge about the data. It

is reasonable in this case to initialize q halfway to yield

structural stability and plasticity equally. We consider

q[0] = 0.5 as the default initial value.

A fast procedure to evolve q over time is as follows. Let

r be the difference between the current number of granules

and the number of granules hr steps earlier, r ¼ c½h� �
c½h�hr �: If the quantity of granules grows faster than a given

rate g, that is, r [ g, then q is increased,

qðnewÞ ¼ 1þ r

hr

� �

qðoldÞ: ð7Þ

The idea here is to reject large rule bases because

they increase model complexity and may not help

generalization. Equation (7) controls q and acts against

outbursts of growth.

If the number of granules grows at a rate smaller than

g, that is, r B g, then q is decreased as follows:

qðnewÞ ¼ 1� ðg� rÞ
hr

� �

qðoldÞ: ð8Þ

With this mechanism we maintain a data-dependent

fluctuating granularity. Alternative heuristic approaches to

evolve the value of q over time take into account

estimation errors and their derivatives as addressed in Leite

et al. (2011).

Reducing the maximum width allowed for granules

requires shrinking larger granules to fit them to the new

value. In this case, the support of a set Aj
i is narrowed as

follows:

If mpðAi
jÞ �

qðnewÞ
2

[ lij then lijðnewÞ ¼ mpðAi
jÞ �

qðnewÞ
2

If mpðAi
jÞ þ

qðnewÞ
2

\Li
j then Li

jðnewÞ ¼ mpðAi
jÞ þ

qðnewÞ
2

:

Cores ½ki
j;K

i
j� are handled similarly. Time-varying

granularity is useful to avoid guesses on how fast and

how often the data stream changes.

3.5 Time granulation

Time granulation aims at both, reducing the sampling rate

of fast data streams, and synchronizing concurrent data

streams that are input at random time intervals. A time

granule describes the data for a certain time period.

Whenever the bounds of a time granule are aligned with

significant shifts in the target function, the underlying

granulation provides a good abstraction of the data. Con-

versely, if the alignment is poor, models may be inade-

quate. Manifold granularities require temporal reasoning

and respective formalizations.

Broadly stated, information evoked from time granules

can be bounds of intervals, probability distributions or

membership functions, and features such as frequency and

correlation between events, patterns, prototypes. The

internal structure of a granule and its associated variables

provide full description and characterization of the granule.

Consider a fuzzy data stream (x, y)[h], h ¼ 1; . . . Time

granulation groups a set of successive instances (x, y)[h],

h ¼ hb; hbþ1; . . .; he; where hb and he denote the lower and

upper bounds of a time interval [hb, he]. The set of

instances input during [hb, he] produces a unique granule

c½H� whose corresponding fuzzy sets are

A
½H�
j ¼ min x½hb�

j
; . . .; x½he�

j

� �

;min x
½hb�
j ; . . .; x

½he�
j

� �

;
�

max x
½hb�
j ; . . .; x

½he�
j

� �

;max x
½hb�
j ; . . .; x

½he�
j

� ��

; ð9Þ

and B[H] which is constructed similarly from the output

stream. Instances falling within Aj
[H], j ¼ 1; . . .; n;and B[H]

are considered indiscernible and the inequalities

wdtðA½H�j Þ� q; j ¼ 1; . . .; n; and wdtðB½H�Þ � q ð10Þ

hold true.

Whenever input data arrive at different rates, for

example, x1 arrives at each 2 s and x2 at each 10 s, or the

amount of data exceeds the affordable computational cost

(e.g. in high-frequency applications), we resort to granu-

lated views of the time domain. Thereafter, rule construc-

tion is based on the resulting fuzzy granules, Aj
[H] and

B[H], rather than on original data (x, y)[h]. FBeM does not

need to be exposed to all original data, which are far more

numerous than time granules.

3.6 Creating granules

No rule does necessarily exist before learning starts. The

incremental procedure to create rules runs whenever at

least one entry of an input ðx1; . . .; xnÞ does not belong to

expansion regions ðEi
1; . . .;Ei

nÞ; i = 1, …, c. Otherwise,

the current rule base is not modified. When the output

y 6	 Ei; it should be enclosed by a new granule.
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A new granule ccþ1 is assembled from fuzzy sets Aj
c?1

and Bc?1 whose parameters match the sample, that is,

Acþ1
j ¼ ðlcþ1

j ; kcþ1
j ;Kcþ1

j ; Lcþ1
j Þ ¼ ðxj

; xj; xj; xjÞ;

Bcþ1 ¼ ðucþ1; tcþ1;!cþ1;Ucþ1Þ ¼ ðy; y; y; yÞ:
ð11Þ

Coefficients of the real-valued local function pc?1 are

set to

acþ1
0 ¼ mpðyÞ; acþ1

j ¼ 0; j 6¼ 0: ð12Þ

3.7 Adapting granules

Adaptation of granules either expands or contracts the

support and the core of fuzzy sets Aj
i and Bi to enclose new

data, and simultaneously refines the coefficients of local

functions pi to increase accuracy. A granule is chosen to be

adapted whenever an instance of the data stream falls

within its expansion region. In situations in which two or

more granules are qualified to enclose the data, adapting

only one of the granules is enough.

Data and granules are fuzzy objects of trapezoidal nat-

ure. A useful similarity measure for trapezoids is:

Sðx;AiÞ ¼ 1� 1

4n

X
n

j¼1

jx
j
� lijj þ jxj � ki

jj þ jxj � Ki
jj

�

þ jxj � Li
jj
�

: ð13Þ

This measure quantifies the degree that input data match

the current knowledge. It returns 1 for identical trapezoids

and decreases linearly when x and Ai move away from each

other. Naturally, among all granules qualified to

accommodate a particular sample, the one with highest

similarity should be chosen. This procedure prevents

conflict and helps to keep the FBeM construction simple.

Adaptation proceeds depending on how far an input

datum xj is from fuzzy set Aj
i, namely,

If x
j
2 ½mpðAi

jÞ �
q
2
; li

j� then li
jðnewÞ ¼ x

j

If xj 2 ½mpðAi
jÞ �

q
2
; ki

j� then ki
jðnewÞ ¼ xj

If xj 2 ½ki
j;mpðAi

jÞ� then ki
jðnewÞ ¼ xj

If xj 2 ½mpðAi
jÞ;mpðAi

jÞ þ
q
2
� then ki

jðnewÞ ¼ mpðAi
jÞ

If xj 2 ½mpðAi
jÞ �

q
2
;mpðAi

jÞ� then Ki
jðnewÞ ¼ mpðAi

jÞ
If xj 2 ½mpðAi

jÞ;K
i
j� then Ki

jðnewÞ ¼ xj

If xj 2 ½Ki
j;mpðAi

jÞ þ
q
2
� then Ki

jðnewÞ ¼ xj

If xj 2 ½Li
j;mpðAi

jÞ þ
q
2
� then Li

jðnewÞ ¼ xj:

The first and the eighth rules suggest support expansion

while the second and seventh recommend core expansion.

The remaining cases advise core contraction.

Operations on core parameters, kj
i and Ki

j; require further

adjustment of the midpoint of the respective granule:

mpðAi
jÞðnewÞ ¼

ki
jðnewÞ þ Ki

jðnewÞ
2

: ð14Þ

As a result, support contraction may happen in two

occasions:

If mpðAi
jÞðnewÞ� q

2
[ lij then lijðnewÞ¼mpðAi

jÞðnewÞ� q
2

If mpðAi
jÞðnewÞþ q

2
\Li

j then Li
jðnewÞ¼mpðAi

jÞðnewÞþ q
2
:

Adaptation of consequent fuzzy sets Bi is done similarly

using output data y. Coefficients aj
i are updated using the

RLS algorithm, as detailed next.

3.8 Recursive least squares

The RLS algorithm is used to adapt consequent function

parameters aj
i as follows.

Let (x, y)[h] be the sample available for training at

instant h. We adjust the coefficients aj
i of pi assuming that

y½h� ¼ ai
0 þ

X
n

j¼1

ai
jx
½h�
j : ð15Þ

Due to the trapezoidal anatomy of xj and y, we rely on

their midpoints to adapt the coefficients aj
i using the

standard form of the RLS algorithm. In the remainder of

this sub-section we assume that (x, y)[h] are real numbers,

the midpoints of the trapezoidal fuzzy input–output data.

In the matrix form, the Eq. (15) becomes

Y ¼ XXi; ð16Þ

where Y = [y], X ¼ ½1 x1 . . . xn�; and Xi ¼ ½ai
0 . . . ai

n�
T

is

the vector of unknown parameters. To estimate the

coefficients aj
i we let

Y ¼ XXi þ E; ð17Þ

where

E ¼ ½�� ¼ y� pðxÞ ð18Þ

is the estimation error. While in batch estimation the rows

in Y, X and E increase with the number of available

instances, in recursive mode only two rows are kept and we

reformulate input and output data, and error as

Y ¼ y½h�1�

y½h�

� �

; X ¼ 1 x
½h�1�
1 . . . x

½h�1�
n

1 x
½h�
1 . . . x

½h�
n

" #

and E ¼ �½h�1�

�½h�

� �

: ð19Þ

Rows in (19) refer to values before and just after

adaptation. The RLS algorithm finds Xi to minimize the

functional

JðAiÞ ¼ ET E: ð20Þ
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Derived from Young et al. (1984), Xi can be estimated

by

Xi ¼ ðXT XÞ�1XT Y : ð21Þ

Assuming P = (XT X)-1 and the matrix inversion

lemma (Young et al. 1984), we avoid inverting XT X using:

PðnewÞ ¼ PðoldÞ I � XXT PðoldÞ
1þ XT PðoldÞX

� �

; ð22Þ

where I is identity matrix. In practice it is usual to choose

large initial values for the entries of the main diagonal of

P. We use P[0] = 103 I as default value.

After simple mathematical transformations, the vector

of parameters is rearranged recursively as follows:

XiðnewÞ ¼ XiðoldÞ þ PðnewÞX Y � XTXiðoldÞ
	 


: ð23Þ

Detailed derivation of the RLS algorithm is found in

Astrom et al. (1994). For a convergence proof see Johnson

(1988).

3.9 Coarsening the granular model

Relationships between granules may be strong enough to

justify assembling a more abstract granule that inherits the

information of lower level granules. The similarity measure

(13) can be used to quantify granule-granule resemblance if

we restate it as

SðAi1 ;Ai2Þ ¼ 1� 1

4n

X
n

j¼1

jli1j � li2j j þ jk
i1
j � ki2

j j
�

þ jKi1
j � Ki2

j j þ jL
i1
j � Li2

j jÞ ð24Þ

This measure has good discrimination capability and its

calculation is fast.

FBeM combines granules in intervals of hr steps con-

sidering the lowest entry of SðAi1 ;Ai2Þ; i1; i2 ¼ 1; . . .; c;

i1 = i2, and a decision criterion. The decision may be

based on whether the new granule obeys the maximum

width allowed q.

A new granule ci; coarsening of ci1 and ci2 ; is formed by

trapezoidal membership functions Aj
i with parameters

derived from Ai1
j and Ai2

j as follows:

li
j ¼ minðli1j ; li2j Þ
ki

j ¼ minðki1
j ; k

i2
j Þ

Ki
j ¼ maxðKi1

j ;K
i2
j Þ

Li
j ¼ maxðLi1

j ; L
i2
j Þ:

ð25Þ

Granule ci encloses all the content of the granules ci1

and ci2 : The same coarsening procedure is used to

determine the parameters of the output membership

function Bi. The coefficients of the local function of

granule ci are

ai
j ¼

1

2
ðai1

j þ ai2
j Þ; j ¼ 0; . . .; n: ð26Þ

Combining granules reduces the size of the rule base and

eliminates redundancy. The importance of complexity

reduction in evolving fuzzy systems is discussed in

Lughofer et al. (2011).

3.10 Removing granules

A granule should be removed from the system model if it

seems to be inconsistent with the current knowledge. A

common approach consists in deleting the most inactive

granules (Leite et al. 2011).

Let

Hi ¼ 2ð�wðh�hi
aÞÞ ð27Þ

be the activity factor associated to the granule ci; w is a

decay rate, h the current time step, and ha
i the last time step

that granule ci was processed. Factor Hi decreases expo-

nentially when h increases. The half-life of a granule is the

time spent to reduce the factor Hi by half, that is, 1/ w.

Half-life 1/ w is a value that suggests deletion of inactive

granules. As a rule, w is domain-dependent. Large values of

w express lower tolerance to inactivity and higher privilege

of more compact structures. Small values of w add robust-

ness in the sense that they prevent catastrophic forgetting. If

the application requires memorization of isolated events or

seasonality is expected, then it may be the case to set w to 0

and let granules and rules exist forever. In general, w should

be set in ]0,1[ to keep model evolution active.

3.11 Learning algorithm

The learning procedure to evolve FBeM can be summa-

rized as follows:
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4 Application: weather temperature prediction

The example addressed in this section consider fuzzy

granular data streams derived from monthly mean, mini-

mum, and maximum temperatures of weather time series of

geographic regions with different climatic patterns. The

aim is to predict monthly temperatures for all regions.

4.1 Weather prediction

Weather predictions at given locations are useful not only

for people to plan activities or protect property, but also to

assist decision making in many different sectors such as

energy, transportation, aviation, agriculture, commodity

markets, inventory planning. Any system that is sensitive

to the state of the atmosphere may benefit from weather

predictions.

Monthly temperature data carry a degree of uncertainty

due to imprecision of atmospheric measurements, instru-

ment malfunction, equivocated transcripts, and different

standards in acquiring and pre-processing the collected

data. Usually temperature data sets are numerical, but it is

known that the processes which originate and supply the

data are imprecise. Temperature estimates in finer time

granularities (days, weeks) are commonly demanded. The

FBeM approach provides guaranteed granular predictions

of the time series in these cases. The satisfaction in relation

to the granular prediction depends on its compactness.

Granular predictions together with singular predictions are

important because they convey a value and a range of

possible temperature values.

In the experiment we translate average minimum, mean

and maximum monthly temperatures into normal triangular

fuzzy numbers. We use data collected by the Death Valley

(Furnace Creek), Ottawa, and Lisbon weather stations to

evaluate FBeM. In Death Valley, super-heated moving air

masses are trapped into the valley by surrounding steep

mountain ranges creating an extremely dry climate with

high temperatures. Refer to Roof and Callagan (2003) for a

complete list of factors that produce high air temperatures

in Death Valley. Conversely, Ottawa is one of the coldest

capitals in the world. During the year, a wide range of

temperatures can be observed, but the winters are very cold

and snowy. Lisbon experiences more usual weather pat-

terns. Summers are warm, sometimes hot, whereas winters

are mild and moist.

The Death Valley, Ottawa and Lisbon data sets consist

of 1,302, 1,374, and 1,194 time indexed instances com-

prising average minimum, mean and maximum tempera-

tures per month recorded from January of 1901, 1895 and

1910, respectively, up to December of 2009. In all exper-

iments described subsequently, FBeM inputs data only

once to build model structure and adjust its parameters.

This aims at simulating online data stream processing.

Testing and training are performed concomitantly on a

per-sample basis. The performance of algorithms is eval-

uated using the root mean square error of singular

predictions,

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

H

X
H

h¼1

ðmpðyÞ½h� � p½h�Þ2
v

u

u

t ; ð28Þ

the number of rules in the model structure, and processing

(CPU) time in seconds. We used a dual-core 2.54 GHz

processor with 4 GB of RAM.

4.2 Comparisons

Representative statistical and computational intelligence

algorithms were chosen for performance assessment. The

methods used for comparison are: moving average (MA)

(Box et al. 2008), square weighted moving average

(SWMA) (Box et al. 2008), multilayer perceptron neural

network (MLP) (Haykin 1999), evolving Takagi–Sugeno

(eTS) (Angelov and Filev 2004), extended Takagi–Sugeno

(xTS) (Angelov and Zhou 2006), dynamic evolving neuro-

fuzzy inference system (DENFIS) (Kasabov and Song

2002), and FBeM.

The task of the different methods is to provide one step

prediction of the monthly temperature y[h?1], using the last

five observations, x½h�4�; . . .; x½h�: Online methods employ

the sample-per-sample testing-before-training approach as

follows. First, an estimation p[h?1] is derived for a given

input ðx½h�4�; . . .; x½h�Þ: One time step after, the actual value

y[h?1] becomes available and model adaptation is per-

formed if necessary. In general, models should be robust to

the trend and seasonal components of the time series, and

not to the random noise component. Because the observed

data contain random noise and irregular patterns, models

that do not over fit them produce better generalizations and

predictions of future values. Table 1 shows the results for

the Death Valley, Ottawa, and Lisbon monthly temperature

data. FBeM uses q = 0.7, hr = 1/ w = 48, and g = 2.

Table 1 summarizes the performance of the different

algorithms in one-step prediction of the monthly mean

temperature. In particular, FBeM gives more accurate pre-

dictions than the remaining methods without necessarily

using larger structures. The trend component of the time

series is taken into account in FBeM by procedures that

gradually adapt granules and rules. The seasonal component

is captured through different granules which represent dif-

ferent seasons and transitions between seasons. Since the

content of a granule carries seasonal information, its cor-

responding rule tends to be activated in the specific months.
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The evolving approaches eTS, xTS and DENFIS use

singular data, the mean temperature. In contrast, FBeM

takes into account the mean and neighbor data to bound

predictions. The xTS has been the fastest method among

the rule-based evolving methods considered here in this

paper.

We can also notice in Table 1 that moving average

methods are fast and that SWMA is particularly competi-

tive. SWMA can operate in online mode, but it does not

provide comprehensible models to support data description

and interpretation. The MLP neural network behaved well

for the Death Valley, Ottawa and Lisbon temperature time

Fig. 2 FBeM prediction of

Death Valley temperatures

Table 1 Temperature prediction performance

Model Death Valley Ottawa Lisbon

Rules RMSE CPU Rules RMSE CPU Rules RMSE CPU

MA – 0.1668 0.003 – 0.1624 0.003 – 0.1405 0.003

SWMA – 0.0826 0.003 – 0.0810 0.003 – 0.0711 0.003

MLP 20 0.0647 13.302 20 0.0839 13.288 20 0.1078 13.432

eTS 5 0.0863 0.895 8 0.0840 1.402 7 0.0935 0.955

xTS 5 0.0856 0.474 11 0.0850 0.410 7 0.0917 0.370

DENFIS 13 0.0681 2.602 23 0.0860 3.670 27 0.0940 3.301

FBeM 9 0.0505 1.362 6 0.0602 1.339 7 0.0673 1.232
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series. Our hypothesis is that the temperature time series

obtained by the weather stations have not changed very

much during the time period considered. In general, offline

methods, such as the MLP, cannot deal with nonstationary

functions, do not support one-pass training, and require

higher CPU time and memory when compared with online

methods.

One-step singular and granular predictions of FBeM for

the Death Valley, Ottawa, and Lisbon time series are

shown in Figs. 2, 3 and 4. In these figures, the bottom plots

enlarge the temperature predictions for the time intervals

[1,040, 1,095], [1,108, 1,178] and [916, 992], as marked by

the zoom signs. The middle plots show the evolution of the

number of rules and RMSE index.

It is worth noting that while prediction p attempts to

match the actual mean temperature value, the correspond-

ing granular information [u, U] formed by the lower and

upper bounds of consequent trapezoidal membership

functions intends to envelop previous data and uncertainty

from the actual, but unknown temperature function

f. Therefore [u, U] is the range of values that bounds

predictions based on past actual temperature values.

Moreover, if required, each granular prediction may come

with a label and a proper linguistic description. FBeM is an

evolving approach to handle fuzzy granular data streams,

and to simultaneously provide singular and granular

predictions.

4.3 Time complexity

In this section we examine how the performance of FBeM

is affected by the number of input variables and fuzzy

rules. Here performance concerns temporal scalability and

RMSE to access processing time and prediction error,

respectively.

For these purposes, we first performed several inde-

pendent experiments varying the number of input variables

(lagged observations of temperature values). Next, the

FBeM parameters were chosen to give a rule base with

about ten fuzzy rules. This means that the size of the rule

base should not interfere in temporal scalability analysis of

FBeM. We evaluate the processing time and prediction

Fig. 3 FBeM prediction of

Ottawa temperatures
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error when the number of input variables increases. Eval-

uation was performed in the context of temperature pre-

diction. Figure 5 shows the processing time and RSME

considering different numbers of input variables from the

Death Valley, Ottawa and Lisbon time series.

The bottom plot of Fig. 5 suggests that FBeM time

complexity is quasi-linear with the number of inputs.

This is important once many computational intelligence

and statistical algorithms behave polynomially or expo-

nentially which prohibits their use in handling massive

data streams and large-scale online modeling. FBeM

runs linearly with respect to the number of samplings

once its learning algorithm is one-pass, of incremental

nature.

It is worth noting at the top of Fig. 5 that weather time

series requires a small number of input variables, while the

remainders tend to confuse FBeM. The RMSE index for

Death Valley, Ottawa, and Lisbon suggest a local optima in

the range between six to twelve input variables.

In the next experiment, we fix the number of input

variables to five (5) and run the FBeM algorithm with

parameters that force it to generate an increasing number of

rules. The aim here is to evaluate temporal scalability and

RMSE when the size of the rule base increases. Figure 6

shows the results obtained for the Death Valley, Ottawa,

and Lisbon time series data.

The bottom plot of Fig. 6 shows that the processing time

of FBeM grows exponentially with the number of rules.

Although the algorithm deals linearly with the number of

samples and input variables, granularity constraints within

the FBeM framework is of utmost importance to keep the

system operating online. Effective procedures to bound the

rule base and protect FBeM from outbursts of growth are:

(1) using the half-life value 1/ w as in Sect. 3.10. The set of

FBeM rules, c, is guaranteed to be less than or equal to 1/ w
anytime. For example, suppose 1/ w = 6 and that the rule

base contains seven rules. The last six samples can only

activate six or less of the existing rules. Thus, at least one

of the rules should be inactive for seven time steps, which

contradicts that 1/ w = 6; (2) adapting the maximum width

allowed for granules, q, as in Sect. 3.4. This procedure

develops only the necessary quantity of granules and rules

[see (7), (8)]. Notice that the points at the right of the plots

of Fig. 6 are obtained setting 1/ w to a large value, e.g.

10,000, and turning the granularity adaptation procedure

off.

The error curves at the top plot of Fig. 6 show that quite

small and large rule bases decrease model accuracy. We

Fig. 4 FBeM prediction of

Lisbon temperatures
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employ piecewise cubic Hermite interpolation polynomials

to fit the error data. Curiously, error values suggest more

appropriate models with about 6 to 12 rules. This reinforces

the hypothesis that seasonal trends are better modeled by a

single FBeM rule for each of them. Excessive granularity is

detrimental because similar information is forcibly split

into different granules and the underlying local models do

not profit from the full information.

The average number of rules in FBeM depends on the

choice of q and 1/w. Reference Leite et al. (2011)

recommends q[0] = 0.5 to balance structural stability and

plasticity whenever we lack detailed knowledge of the

modeling task and data properties. Monthly mean tem-

perature prediction experiments suggest q[0] in the range

from 0.6 to 0.8 to avoid rule overshoot after learning starts.

This helps to attain smoother structural development along

next time steps. Gradual adaptation of the granularity also

alleviates initial guesses and guide the value of q
according to the data stream. For monthly weather pre-

diction, we suggest hr values in the range between 12 and

Fig. 6 FBeM processing time

and RMSE for Death Valley,

Ottawa, and Lisbon time series

Fig. 5 FBeM processing time

and RMSE for Death Valley,

Ottawa, and Lisbon time series
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48. The idea here is: if a trend does not appear again in the

next year/four years, then remove its corresponding rule.

4.4 Handling abrupt regime changes

Long term climate changes cause average monthly tem-

peratures to gradually drift over time yet abrupt shifts are

hardly noticeable. The experiment addressed in this section

show how FBeM reacts when abrupt changes occur in

nonstationary time series.

For this purpose, we consider a hypothetical situation in

which the time series of Death Valley, Ottawa, and Lisbon

occur sequentially, forming a single time series. Two

severe regime shifts are easily identified as the top plot of

Fig. 7 FBeM prediction of the

Death Valley, Ottawa, and

Lisbon temperature time series

combined
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Fig. 7 illustrates. The bottom plot of Fig. 7 shows the fuzzy

temperature predictions during the Ottawa–Lisbon shift

(time interval between 2,661 and 2,740). In this experiment,

FBeM should adapt the model to capture the new tempera-

ture profile and forget what is no longer relevant for the

current environment. The initial parameters of FBeM were:

q = 0.6, hr = 1/ w = 48 and g = 2. Figure 7 shows the

RMSE, the number of rules and the granular and corre-

sponding singular predictions. Notice in Fig. 7 that the

number of rules of the rule base peaks after the Death Valley–

Ottawa and Ottawa–Lisbon transitions and decreases after-

wards. Similarly, the RMSE increases slightly and decreases

in the next steps after time series transitions. Online adapt-

ability improves prediction accuracy after the transitions.

FBeM is stable to abrupt changes in fuzzy data streams, a

challenge to a variety of machine learning algorithms.

5 Conclusion

This work has suggested FBeM, an evolving granular

fuzzy modeling framework based on fuzzy granular data

streams. FBeM carries a series of properties that makes it

suitable to model online nonstationary functions using

fuzzy data. FBeM gives accurate and granular informa-

tion simultaneously. Granular model predictions contain a

range of possible values which turns the predictions more

reliable and truthful. We have addressed short-term

weather temperature prediction as an application exam-

ple. The data consist of triangular fuzzy numbers drawn

from monthly minimum, mean and maximum average

temperatures measured by meteorological stations. FBeM

has been capable to handle fuzzy granular data and out-

perform alternative evolving methods in one step tem-

perature prediction. Future research will explore fuzzy

granular modeling of very large scale fuzzy system and

optimization.
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