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Abstract In this paper, variable structure control is uti-

lized for stabilization of a particular class of nonlinear

polytopic differential inclusion systems with fractional-

order-0 \ q \ 1. By defining a sliding surface with frac-

tional integral formula and obtaining sufficient conditions

for stability of the sliding surface, a special feedback law is

presented which enables the system states to reach the

sliding surface and consequently creates a sliding mode

control. Finally, the performance of the proposed method is

illustrated with examples and related numerical simulations

results.

Keywords Fractional order system � Sliding mode

control

1 Introduction

Differential inclusion (DI) is an effective tool for analysis

of uncertain, nonlinear and hybrid as well as switching and

time-variant systems. DI has been developed based on the

absolute stability theory (Aizerman and Gantmacher 1964).

Many practical systems contain uncertainties which may

lead to a suddenly change of a trajectory of a differential

equation that can be described more properly by differen-

tial inclusions. Numerous practical systems have been

reported in the literature which employ equations described

by differential inclusion (Boyd et al. 1994; Leine and van

de Wouw 2008). On the other hand, fractional calculus,

which dates back to 1695, has been the focus of much

attention in recent years. This is due to the applicability of

equations based on fractional derivatives in modeling

various practical and engineering systems (Arena et al.

2000; Baleanu et al. 2010; Ferreira et al. 2004; Sabatier

et al. 2007; Valerio and Sa da Costa 2004; Ortigueira

2008). Some of these systems include electromagnetic

waves, fractal electrical networks, electrical machines,

visco-elastic materials and systems, quantum evolution of

complex systems, heat conduction, and robotics.

Consequently, the study of fractional-order polytopic

differential inclusion (FOPDI) instead of PDI seems

indispensable. In general, FOPDI systems are a more

generalized form of fractional differential equations and

systems, and have been studied in various research arti-

cles, including (Chang et al. 2009; Ouahab 2008;

Benchohra et al. 2008; Ahn and Chen 2008). This paper

deals with the sliding mode control of FOPDI systems.

Variable structure controllers (VSCs) with sliding mode

proposed by Utkin (1977) are used to achieve an effective

closed loop control of these systems. The main advantage

of the VSC approach is that the variable structure can

potentially be exploited to improve the control perfor-

mance criterions such as the robustness and fast time

response. The VSC strategy is based on the concept of an

attractive manifold, upon which the underlying state of

vector space and the desired dynamic is assured. During

sliding motion, the system has invariance properties and

is independent of parameter uncertainty and disturbance.

Therefore, design of the sliding manifold determines the

performance of the system. It is well known that sliding

mode control is capable of tracking various trajectories

for nonlinear systems with modeling uncertainty, when

the upper bound of the inaccuracies is known. Sliding

mode controller design for system of fractional orders was

also developed and discussed in research papers. Variable

structure control that defined the sliding surface for linear
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time invariant fractional order systems (LTI-FOS) was

introduced in (El-Khazali et al. 2004a) and further

developed in (El-Khazali et al. 2006). Variable structure

control systems for LTI-FOS with time delay using

specification of sliding surface without any limitations on

input controls is considered in (El-Khezali and Ahmad

2006c). Authors in (Si-Ammour et al. 2009) have con-

sidered the design of sliding control for LTI-FOS with

time delay in control input. The linear matrix inequality

(LMI) approach is used in (Rubio et al. 2011; Cao and

Frank 2000). In (Balochian et al. 2011) definition of the

sliding sector based on the LMI approach in fractional

order system has been presented. Then, design of a VSC

for the LTI-FOS using a finite number of control gains

with the aim of obtaining a decreasing Lyapunov function

was introduced. Also, in (Tavazoei and Haeri 2008) has

proposed a controller based on active sliding mode theory

to synchronize chaotic fractional order systems in a

master–slave structure.

First, we will review the advancements made in control

and stabilization of integer order PDI systems. In (Cai et al.

2009), a saturated control design for LDIs subject to dis-

turbance has been presented. (Liu et al. 2010) has focused on

robust stabilization of delayed linear differential inclusion

systems with nonlinear feedback law. In (Hu et al. 2007), a

nonlinear control design method for LDIs has been pre-

sented by using quadratic Lyapunov functions of their

convex hull. In (Sun 2009), a frequency domain approach

has been proposed to analyze the globally asymptotic sta-

bility of DI systems with discrete and distributed time-

delays. (Gao et al. 2007) has focused on delay-dependent

and parameter-dependent robust stability criterion for linear

continuous-time systems with polytopic parameter uncer-

tainties and time-varying delay in the state. In (Chen 2001),

the problem of tracking control of nonlinear uncertain

dynamical systems described by DIs has been studied. In

(Wu 2006), the control Lyapunov function method has been

used to solve the stabilizing problem for single-input poly-

topic DI systems. In (Chen et al. 2006), the viable control

problem for a class of uncertain nonlinear dynamical sys-

tems described by DI has been presented.

The main objective of this paper is to extend PDI stabil-

ization concepts to FOPDI systems using sliding mode

control and to extend the method used in (Salarieh and Alasty

2009) for FOPDI systems with fractional order of 0 \ q \ 1.

The proposed sliding mode control in this paper is the first

attempt in the control of nonlinear FOPDI systems with input

disturbance. The paper is organized as follows. In Sect. 2, a

review of fractional calculus and FOPDI systems is pre-

sented. Section 3, presents the problem formulation and the

main results of this paper which includes a definition of the

sliding surface for FOPDI systems and the design of a new

state feedback law for convergence of the state of the FOPDI

systems to stabilize the sliding surface in finite time. Finally,

simulation results are provided in Sect. 4 to illustrate the

main results of the paper.

2 Preliminaries

Fractional order derivative and integral:

Let f: [0, ??) ? (-?, ??) be a real-valued function.

The Riemann–Liouville fractional integral and derivative

operators of order q are defined as

0Dq
t f ðtÞ ¼ 1

Cðn� qÞ
d

dt

� �nZ t

0

f ðsÞ
ðt � sÞq�nþ1

ds

ðn� 1Þ� q\n ð1Þ

where n is an integer and q is a real number. C(.) is the

Gamma function generalizing factorial for non-integer

arguments.

CðqÞ ¼
Z1

0

e�ttq�1dt

If 0 \ q \ 1, the Riemann–Liouville fractional deriva-

tive and integral operators of order q are defined as

0Dq
t f ðtÞ ¼ 1

Cð1� qÞ
d

dt

Z t

0

ðt � sÞ�q
f ðsÞds

and

0Iq
t f ðtÞ ¼ 1

CðqÞ

Z t

0

ðt � sÞq�1
f ðsÞds

respectively. From the above definition, note that

(Si-Ammour et al. 2009)

0Dq
t ¼

d

dt
ð0I1�q

t Þ

Another definition for the fractional derivative is the

Grünwald–Letnikov definition:

0Dq
t f ðtÞ ¼ lim

N!1

t

N

h i�qXN�1

j¼0

ð�1Þ j q

j

 !
f ðt � j

t

N

h i
Þ

This paper adopts the Grünwald–Letnikov definition and

Riemann–Liouville definition of the fractional differ-

integration operators (Podlubny 1999).

A Fractional Order Differential Inclusion (FODI) system

is described by 0D
q
t xðtÞ 2 F xðtÞ; tð Þ; xð0Þ ¼ x0 where

F is a set-valued function on Rn 9 R?. Any x: R? ? Rn

that satisfies the above FODI is called a solution or tra-

jectory of the FODI.
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A fractional order linear differential inclusion (FOLDI)

is given by:

0Dq
t xðtÞ 2 XxðtÞ; xð0Þ ¼ x0

where X is a subset of Rn9n.

Some specific classes of the FOLDI systems are the

fractional order linear time invariant systems and the

polytopic FOLDI systems.

In the case that X is a singleton, the FOLDI system

reduces to a fractional order linear time invariant (FOLTI)

system. FOLTI systems can be represented in the following

state space form:

0Dq
t XðtÞ ¼ AXðtÞ þ BUðtÞ þ BwWðtÞ; xð0Þ ¼ x0

yðtÞ ¼ CXðtÞ þ DUðtÞ þ DwWðtÞ

(

where

X ¼ A B Bw

C D Dw

� �� �
;

and XðtÞ 2 Rn; UðtÞ 2 Rnu ; WðtÞ 2 Rnw ; yðtÞ 2 Rp

are the state, the control input, the exogenous input,

and the output vectors of the system, respectively and

A2Rn�n; B2Rn�nu ; Bw 2Rn�nw ; C 2Rp�n; Dw 2Rp�nw ;

D2Rp�nu , and q is the fractional commensurate order. It

has been shown that the system DqX(t) = AX(t) is

asymptotically stable if the following condition is satisfied

(Matignon 1998)

argðeigðAÞÞj j[ qp
2

where 0 \ q \ 2, and eig(A) are eigenvalues of the matrix A.

In the case that X is a polytope, the FOLDI is called

polytoic FOLDI or FOPLDI. Most of our results require

that X be described by a list of its vertices, i.e., in the form

Conv
A1 B1 Bw;1

C1 D1 Dw;1

� �
; . . .;

AL BL Bw;L

CL DL Dw;L

� �� �
:

or,

X 2 Conv Ai;Bi;Bw;i;Ci;Di;Dw;i

� 	
; i ¼ 1; . . .; L

where the above matrices are given.

In the case that F is a polytope, the FODI is called

polytoic FODI or FOPDI. Most of our results require that

F be described by a list of its vertices, i.e., in the form

conv{f1,…, fL}or,

F 2 conv fif g; i ¼ 1; . . .; L

where fi are given.

3 Main results

Consider the following fractional order polytopic nonlinear

differential inclusion (FO-PNDI):

0Dq
t x tð Þ 2 Conv fi xð Þ þ hi xð Þ u tð Þ þ w tð Þð Þf g;

i ¼ 1; 2; . . .;N
ð2Þ

where 0 \ q \ 1, x(t), and u(t) [ Rn are, respectively, the

state and input of the system, w(t) is a bounded disturbance,

i.e., kw(t)k\ c, with a positive constant c. Conv{.} denotes

the convex hull of a set, fi(x) [ Rn is smooth vector-valued

function. hi(x) [ Rn9n, are vector-valued functions that

can be decomposed as hi(x) = gi(x)B where gi(x) [ 0 are

smooth function and B [ Rn9n is a full rank matrix. The

main objective of this paper is stabilization of the FOPDI

systems Eq. 2 using sliding mode control.

Using the results of convex analysis, a differential inclu-

sion system can be described using convex combination as an

uncertainty system (Smironov 2002). Accordingly, system

(2) can be equivalently written as an uncertainty system:

0Dq
t x tð Þ ¼

XN

i¼1

ai fi xð Þ þ gi xð ÞB u tð Þ þ w tð Þð Þð Þ ð3Þ

where ai are indeterminate parameters which satisfy ai C 0

and
PN

i¼1 ai ¼1.

Let us assume the following definition of the sliding

surface and use it to stabilize the system (2)

Sðx; tÞ ¼ I1�qXðtÞ; ð4Þ

After calculating the derivative of the sliding surface

and substituting (3) in it, we have:

_S ¼ d

dt
I1�qxðtÞ ¼ 0Dq

t xðtÞ

¼
XN

i¼1

aifiðxÞ þ
XN

i¼1

aigiðxÞBuðtÞ þ
XN

i¼1

aigiðxÞBwðtÞ:

ð5Þ

Lemma 1 The nonlinear fractional order differential

inclusion system (2) with control input u(t) as

uðtÞ ¼ �B�1

aðxÞ k
SðtÞ
SðtÞk k

� �
ð6Þ

converges to the sliding surface in (4) in finite time and

remains on it, where

aðxÞ ¼ Min g1ðxÞj j; g2ðxÞj j; . . .; gNðxÞj jf g
bðxÞ ¼ Max g1ðxÞj j; g2ðxÞj j; . . .; gNðxÞj jf g

dðxÞ ¼ Max f1ðxÞk k; f2ðxÞk k; . . . fNðxÞk kf g
k ¼ dðxÞ þ bðxÞ Bk kcþ ge�kt SðtÞk k1�d

and g[ 0, k[ 0, 0 \ d B 1.

Proof In order to show that u(t) in (6) leads to stabilization

of system (2), we determine a Lyapunov candidate function

and show that the Lyapunov candidate function variation is

negative in the direction of the given system. If we con-

sider the Lyapunov candidate function as
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VðtÞ ¼ 1

2
STðtÞSðtÞ: ð7Þ

Using (5), its derivative satisfies

_VðtÞ ¼ STðtÞ _SðtÞ ¼ STðtÞ
XN

i¼1

aifiðxÞ þ
XN

i¼1

aigiðxÞBuðtÞ
 

þ
XN

i¼1

aigiðxÞBwðtÞð8Þ
!

ð8Þ

Substituting (6) in (8), we have

_V tð Þ¼ST tð Þ _S tð Þ¼ST tð Þ
XN

i¼1

aifi xð Þ� S tð Þ
S tð Þk k kð Þ

PN
i¼1aigi xð Þ

a xð Þ

"

þ
XN

i¼1

aigi xð ÞBw tð Þ
#

ð9Þ

which results in,

_VðtÞ\� ge�kt SðtÞk k2�d: ð10Þ

Consequently, the fractional differential inclusion

system (2) will be stable with the controller given by

Eq. 6. On the other hand,

_VðtÞ ¼ STðtÞ _SðtÞ ¼ 1

2

d

dt
SðtÞk k2¼ SðtÞk k d SðtÞk k

dt
ð11Þ

According to (10) and (11), we have

d SðtÞk k
dt

� � ge�kt SðtÞk k1�d ð12Þ

Setting the time of reaching to the sliding surface as

S(T) = 0 and integrating Eq. 12 from 0 to T gives

(a) State X(t) 

(b) Control input )(1 tu (c) Control input )(2 tu
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Fig. 1 Sliding mode control a1 = 1, a2 = 0 (sampling interval, h = 0.001 s)
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ZT

t¼0

d SðtÞk k
dt

SðtÞk kd�1
dt�

ZT

t¼0

�ge�ktdt ð13Þ

therefore according to integral formulas

SðtÞk kd

d







t¼T

t¼0

�ge�kt

k






t¼T

t¼0

) SðTÞk kd� Sð0Þk kd� dg
k

e�kT�1
� �

ð14Þ

substituting S(T) = 0

1� k
dg

Sð0Þk kd� e�kT ð15Þ

calculating T from Eq. 15, we have

T � �1

k
ln 1� k

dg
Sð0Þk kd

� �
ð16Þ

Since T is the time of reaching to the sliding surface and

is positive, it is enough that the selected constants g, d, and

k satisfy this condition:

T � �1

k
ln 1� k

dg
Sð0Þk kd

� �
: ð17Þ

Therefore, it is required to choose the constants g, d, and

k such that the following condition be satisfied:

0� k
dg

Sð0Þk kd\1 ð18Þ

Consequently, with the controller given by (6), system

(2) converges to the sliding surface and remains on it.

(a) State X(t) 

(b) Control input )(1 tu (c) Control input )(2 tu
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-1

-0.5

0

0.5

1

1.5

2

X
(t

)

Time(Sec)

x1(t)
x2(t)

0 0.1 0.2 0.3 0.4 0.5
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Fig. 2 Sliding mode control a1 = 0.5, a2 = 0.5 (sampling interval, h = 0.001 s)

Evolving Systems (2013) 4:145–152 149

123



Remarka(x), b(x), and d(x) are functions of the states

and the states change respect to time (t), therefore

a(x(t)), b(x(t)), and d(x(t)) in each time can be calculated

from Min{|g1(x(t))|, |g2(x(t))|,…, |gN(x(t))|}, Max{|g1(x(t))|,

|g2(x(t))|,…, |gN(x(t))|}, and Max{kf1(x(t))k, kf2(x(t))k,…
kfN(x(t))k} respectively. At the result u(t) can be calculated

in each time from (6).

4 Simulation results

Example 1Consider the system in (2)

where i = 1, 2 and f1ðxÞ ¼
sinðx1Þ

x2
2

� �
; f2ðxÞ ¼

x2j j
x2

1

� �
;

B ¼ 1 0

0 1

� �
; g1ðxÞ¼1þx2

2; g2ðxÞ¼1; q¼0:5; h¼0:001,

and the disturbance is in the form of, and the parameters

g = 2, d = 0.4, c = 1, k = 2. The simulation results with

the proposed sliding mode controller, the above parameters

and the initial condition ½x1ð0Þx2ð0Þ�T ¼½2 �1 �T are

shown in Figs. 1 and 2 for the different parameters a1, a2.

Figures 1a and 2a are the time responses where the con-

tinuous state x(t) converges to the origin. Figures 1b and 2b

give the control input u1(t) and Figs. 1c and 2c are the

control input u2(t).

Example 2Consider the system in (2)

where i = 1, 2, 3 and f1ðxÞ ¼
ex1

x2
2

� �
; f2ðxÞ ¼

x2j j
x2

1

� �
; f3ðxÞ

¼ x1

x2
1 þ x2

� �
; B ¼ 1 0

0 1

� �
; g1ðxÞ ¼ 1þ x2

2 ; g2ðxÞ ¼ 2;

(a) State X(t) 

(b) Control input )(1 tu (c) Control input )(2 tu
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Fig. 3 Sliding mode control a1 = 1, a2 = 0, a3 = 0 (sampling interval, h = 0.002 s)
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g3ðxÞ ¼ 1þ x2
1; q ¼ 0:7; h ¼ 0:002, and the disturbance is

in the form of wðtÞ ¼ 0

sinðtÞ

� �
, and the parameters g = 2,

d = 0.4, c = 1, k = 2. The simulation results with the

proposed sliding mode controller, the above parameters

and the initial condition ½x1ð0Þ x2ð0Þ�T ¼ ½� 1 2 �T are

shown in Figs. 3 and 4 for the different parameters

a1, a2, a3. Figures 3a and 4a are the time responses where

the continuous state x(t) converges to the origin. Figures 3b

and 4b give the control input u1(t) and Figs. 3c and 4c are

the control input u2(t).

5 Conclusion

As it was mentioned, DI is one of the methods for modeling

uncertainty and on the other hand, many practical and

physical systems with exact coefficients cannot be modeled

using fractional derivatives. As a result, this paper studies a

special class of nonlinear FOPDI systems, and considers an

important class of variable structure controls, i.e. sliding

mode controls for stabilization of these systems. In fact, the

concepts of sliding mode control are extended to these

systems and simulation results are provided for illustrate

the effectiveness of the proposed methodology.

(a) State X(t) 

(b) Control input )(1 tu                        (c) Control input )(2 tu
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Fig. 4 Sliding mode control a1 = 0.3, a2 = 0.5, a3 = 0.2 (sampling interval, h = 0.002 s)
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rentiels Fractionnaires—Modèles, Méthodes et applications, vol 5

Ortigueira MD (2008) An introduction to the fractional continuous-

time linear systems: the 21st century systems. IEEE Circuits Syst

Mag 8(3):19–26

Ouahab A (2008) Some results for fractional boundary value problem

of differential inclusions. Nonlinear Anal Theory Methods Appl

69:3877–3896

Podlubny I (1999) Fractional differential equations. Academic Press,

San Diego

Sabatier J, Agrawal OP, Machado JAT (2007) Advances in fractional

calculus, theoretical developments and applications in physics

and engineering. Springer, London

Salarieh H, Alasty A (2009) Chaos control in uncertain dynamical

systems using nonlinear delayed feedback. Chaos, Solitons

Fractals 41(1):67–71

Si-Ammour A, Djennoune S, Bettayeb M (2009) A sliding mode

control for linear fractional systems with input and state delays.

Commun Nonlinear Sci Numer Simulat 14:2310–2318

Smironov GV (2002) Introduction to the theory of differential

inclusions. American Mathematical Society, USA

Sun YJ (2009) Stability criteria for a class of differential inclusion

systems with discrete and distributed time delays. Chaos,

Solitons Fractals 39(5):2386–2391

Tavazoei MS, Haeri M (2008) Synchronization of chaotic fractional-

order systems via active sliding mode controller. Phys A

387(1):57–70

Utkin V (1977) Variable structure systems with sliding modes. IEEE

Trans Autom Control 22:212–222

Valerio D, Sa da Costa J (2004) Non integer order control of a flexible

robot. In: Proceedings of the IFAC workshop on fractional

differentiation and its applications, Bordeaux, France, 19–21

July 2004

Wu JL (2006) Robust stabilization for single-input polytopic nonlin-

ear systems. IEEE Trans Autom Control 51:1492–1496

152 Evolving Systems (2013) 4:145–152

123


	Sliding mode control of fractional order nonlinear differential inclusion systems
	Abstract
	Introduction
	Preliminaries
	Main results
	Simulation results
	Conclusion
	References


