
ORIGINAL PAPER

A dynamic split-and-merge approach for evolving cluster models

Edwin Lughofer

Received: 20 September 2011 / Accepted: 12 January 2012 / Published online: 5 February 2012

� Springer-Verlag 2012

Abstract This paper describes new dynamic split-and-

merge operations for evolving cluster models, which are

learned incrementally and expanded on-the-fly from data

streams. These operations are necessary to resolve the

effects of cluster fusion and cluster delamination, which

may appear over time in data stream learning. We propose

two new criteria for cluster merging: a touching and a

homogeneity criterion for two ellipsoidal clusters. The

splitting criterion for an updated cluster applies a 2-means

algorithm to its sub-samples and compares the quality of

the split cluster with that of the original cluster by using a

penalized Bayesian information criterion; the cluster par-

tition of higher quality is retained for the next incremental

update cycle. This new approach is evaluated using two-

dimensional and high-dimensional streaming clustering

data sets, where feature ranges are extended and clusters

evolve over time—and on two large streams of classifica-

tion data, each containing around 500K samples. The

results show that the new split-and-merge approach

(a) produces more reliable cluster partitions than conven-

tional evolving clustering techniques and (b) reduces

impurity and entropy of cluster partitions evolved on the

classification data sets.

Keywords Evolving cluster models � Cluster fusion and

delamination � Dynamic split-and-merge � Touching and

homogeneity criteria � Penalized Bayesian information

criterion

1 Introduction

1.1 Motivation and state of the art

In current real world-applications, there is an increasing

demand for models that can automatically to changing

process dynamics in systems with high complexity, fine

granularity, and time-varying characteristics. In order to

address such dynamics, the methodology of evolving

(intelligent) systems (EIS) (Angelov et al. 2010) has been

developed over the last decade and plays an important role,

as it employs approaches and mechanisms that update

model parameters incrementally and evolve new model

components as required on the basis of on-line recorded

data streams that reflect process changes over time.

Evolving cluster models (ECM), an important sub-field of

evolving intelligent systems, are designed to mine the huge

amount of on-line data streams (Bifet et al. 2010) or very large

data bases (VLDBs)1 in an unsupervised learning context by

clustering, grouping, and compressing data in a fast incre-

mental manner. VLDBs usually contain tera bytes of data,

which may even be stored over different spatial locations, for

instance, consider the storage of data describing customers

buying habits in a supermarket, long-term meteorological

data,2 or spectral data in a dynamic chemical production pro-

cess (Varmuza and Filzmoser 2009). On-line data streams are

characterized by data blocks which are usually not bounded in

size and arriving continuously and in a specific order, over

which the systems has no control (Gam 2010). Sometimes,

ECMs are also referred to incremental or evolving clustering

methods (Bouchachia 2011), because they can process data

step-wise and update and evolve cluster partitions in
E. Lughofer (&)

Department of Knowledge-based Mathematical Systems,

Johannes Kepler University of Linz, Linz, Austria

e-mail: edwin.lughofer@jku.at

1 http://en.wikipedia.org/wiki/VLDB.
2 http://en.wikipedia.org/wiki/Meteorology.

123

Evolving Systems (2012) 3:135–151

DOI 10.1007/s12530-012-9046-5

http://en.wikipedia.org/wiki/VLDB
http://en.wikipedia.org/wiki/Meteorology

incremental learning steps. Deciding between parameter

updating and evolution of new clusters is usually done on the

basis on the current dynamics of the process. Several incre-

mental clustering techniques have been proposed in the past,

for example, objective-function-based approaches such as

single-pass k-means (Farnstrom et al. 2000), a recursive Gus-

tafson–Kessel approach (Dovzan and Skrjanc 2011), evolving

neural-type models based on neural gas (Vachko 2010) and

vector quantization (eVQ; Lughofer 2008) and the approach in

Tabata and Kudo (2010), and approaches based on density

criteria such as on-line Gaussian mixture models (Bouchachia

and Vanaret 2011) and a recursive variant of subtractive clus-

tering called eClustering (Angelo 2004).

A specific problem in ECMs arises whenever two or more

local data clouds (each one modeled by a cluster) are moving

together or are delaminate within one cluster (refer to Sect. 2 for

a detailed problem description). This may results from changes

in the characteristics of the underlying data distributions or as a

result of refining and intensifying existing clusters which were

roughly estimated/evolved at a preliminary stage based on a

small snapshot of data samples. In such cases, clusters should be

dynamically merged or split in order to maintain cluster parti-

tions of high quality that follow the natural distribution of the

data clouds. In Beringer and Hüllermeier (2006, 2007), an

approach was presented which tackles this issue by integrating a

block-wise split-and-merge concept into a k-means algorithm,

where merged and split partitions are compared with the ori-

ginal partitions based on an extended version of the Xie and

Beni (1991) validation index; however, for each complete data

block only one cluster is merged or split, i.e., the number of

clusters k is increased or decreased by 1. In Song and Wang

(2005), clusters in the form of Gaussian mixture models

(GMMs) are trained on-line by incremental learning mecha-

nisms, integrating merging concepts that (1) are only applicable

in chunk mode (new Gaussians are generated from each arriving

data block) and (2) require significant computation time, as each

new Gaussian is evaluated for merging with any of the existing

Gaussians. Splitting was not considered in Song and Wang

(2005). The on-line incremental GMMs in Hall and Hicks

(2005) apply both, a merge and a split concept in incremental

mode; however, this method is too slow for fast on-line learning

because of a grouping of Gaussians using the Chernoff bound. A

speed up is achieved in Declercq and Piater (2008), where

suitability for merging is assessed based on the fidelity of a

Gaussian using the Kolmogorov–Smirnoff test. However, this

method causes an unnecessary increase in complexity because

each new sample creates a new Gaussian, which often requires

back-merging with existing Gaussians that are more significant.

1.2 Our approach

In this paper, we want to go a step further and bring in

more dynamics in the evolving clustering process by

integrating a joint incremental on-line split-and-merge

scenario. This helps to overcome under- and over-clustered

partitions which may arise due to specific changes in a data

stream over time that affect data cloud shapes and distri-

bution within regions of the feature space. This problem is

considered in Sect. 2. The novel split-and-merge technique

is characterized by the following aspects:

• Two merging criteria—a touching and a homogeneity

condition—decide whether two clusters should be

merged or not: clusters which touch each other or

slightly overlap can be merged, if they fulfill the

homogeneity criterion, i.e. if they form a homogeneous

data region when joined together. This is in contrast to

the approach in Lughofer et al. (2011), which merges

only clusters that overlap significantly (according to

fuzzy rules) and requires no homogeneity criterion.

Thus, our approach can also be employed as a further

complexity reduction step in fuzzy rule bases, using a

touching criterion in place of a significant overlap.

• Upon fulfillment of the criteria, clusters are merged by

weighted averaging of their centers (weights deter-

mined according to their support) and updating their

spreads (ranges of influence) based on a recursive

variance concept and including a coverage term.

• A split criterion based on a penalized Bayesian information

criterion (BIC), evaluated for the actual clusters and

hypothetically split clusters, updated in the previous

incremental learning step. The lower the criterion gets, the

higher the quality of the cluster partition becomes. Updated

clusters are applying 2-means to cluster sub-samples.

• The whole split-and-merge algorithm can be connected

with any incremental and evolving prototype-based

clustering, extracting ellipsoidal clusters in main position

and providing centers, spreads and support of the clusters:

these three components will be used in the split and

merging conditions and operations—thus they technically

work and can be tried with any approach, to improve,

refine the evolved cluster partitions, such as: eClustering

(Angelov 2004) (using the fixed radius of clusters as

spread) and its extended version in Angelov and Zhou

(2006) (using the permanently component-wise updated

radii of the clusters), ECM (Kasabov and Song 2002)

(using the range of influence as spread), eVQ (evolving

vector quantization) (Lughofer 2008), its extension in

Tabata and Kudo (2010), ePL (Lima et al. 2010) (evolving

Participatory Learning) (using the fixed radius r as

spread), single pass k-means (Farnstrom et al. 2000)

(when using the sufficient statistics over the discard sets to

compute the cluster variances as spreads) and others.

The paper is structured as follows: the subsequent sec-

tion described the need for a dynamic split-and-merge

strategy, illustrated by examples favoring cluster merges

136 Evolving Systems (2012) 3:135–151

123

and splits; Sect. 3.1 defines the basic generic algorithm for

dynamic cluster split-and-merge, and Sects. 3.2 and 3.3 intro-

duce the merging criteria and the split criterion, respectively,

including their implementation/realization. Section 4 discusses

the additional computational costs caused by the split-and-

merge techniques. Section 5 evaluates the whole approach and

compares it with conventional ECMs using (a) two-dimen-

sional streaming data sets (for which the clusters are visualized),

(b) high-dimensional streaming clustering data sets (inspecting

the number of found versus extracted clusters and the quality of

the cluster partitions) and (c) high-dimensional classification

data sets comprising 500K samples and multiple classes (for

which entropy and purity of cluster partitions are evaluated with

respect to the supervised class label information).

2 Problem statement

In ECMs, two types of problems may manifest, both of which

point to dynamic changes in the characteristics of local data

clouds in feature space over time (as the data stream progresses).

The first one arises whenever two clusters seem to be

distinct at the beginning of the data stream, however may

move together due to data samples that fill the intervening

gap. This effect is called cluster fusion. Figure 1 shows

such an occurrence, (a) demonstrating the partition (three

distinct clusters) after loading the initial data block,

(b) demonstrating the partition (two clusters moved toge-

ther) due to the new data block.

Obviously, the two clusters can be merged into one joint

data cloud in feature space. Preventing such cases is hardly

possible, because an ECM always receives a snapshot of

the data and tries to find the most suitable clustering. Note

that the situation shown in Fig. 1 differs from a drift case

(Klinkenber 2004), in which usually a complete local data

cloud (cluster) moves from one position in feature space to

another and the vacated position becomes obsolete, hence

should be outdated, forgotten.

In extreme cases, the clusters may overlap significantly,

causing a redundancy in a part of the feature space that can be

handled by similarity measures (see Lughofer et al. 2011, where

overlapping clusters were considered to be redundant rules in an

evolving fuzzy system). In this paper, we go a step further by

resolving occurrences as visualized in Fig. 1 within an unsu-

pervised learning context. Therefore, we propose two criteria for

cluster merging, a touching and a homogeneity condition:

clusters which are touching or slightly overlapping can be

merged, if they fulfill the homogeneity criterion, i.e., if they form

a homogeneous data region when joined together. From a

mathematical point of view, we can define such a situation by

9Ci;Cj;i 6¼j Ci \ Cj 6¼ ; ^ homðCi;CjÞ� thresh
� �

ð1Þ

with Ci representing cluster i.
The second case arises whenever one cluster (rule) in a

local region of the data space seems appropriate at the

beginning, but subsequently turns out to contain two dis-

tinct data clouds. This effect is called cluster delamination.

An example is shown in Fig. 2b.

Fig. 1 a Three distinct clusters

after loading the initial data

block, b two distinct clusters

moved together due to new data

samples filling up the gap ?
cluster fusion effect (merge

preferred as indicated by the

dotted ellipsis)

Fig. 2 a One data cloud, one

cluster at the beginning, b two

distinct data clouds in close

proximity contained in one

cluster ? cluster delamination

effect (split preferred as

indicated by dotted ellipses)

Evolving Systems (2012) 3:135–151 137

123

Clearly, in such a case it would be preferable if the large

cluster could be split in two to represent the disjoint regions

more appropriately. From the mathematical point of view,

we can define such a situation by:

9Ci
ðCi1 � Ci ^ Ci2 � Ci ^ QualðCnCi [fCi1 ;Ci2gÞ

�QualðCÞÞ ð2Þ

where C denotes the whole cluster partition (set of clusters),

Ci_1 and Ci_2 are two sub-clusters within cluster Ci, and Qual

stands for an arbitrary quality measure to calculate the quality

of a cluster partition (we use a penalized version of the BIC, see

Sect. 3.3). Note that such a case may also occur whenever a

learning parameter (e.g., a threshold) is not chosen appropri-

ately for the actual data stream or when it does not adapt to the

actual data characteristics automatically. For instance, consider

a distance parameter that decides whether a new cluster should

be evolved or older clusters updated. If an excessively high

value is chosen, distinct local data clouds may be joined

together into one cluster. This tendency can be ameliorated

within incremental learning steps by integrating a dynamic split

mechanism.

Split and merge criteria need to be evaluated only for the

updated clusters after each incremental learning step. We keep

them independent from the selected/chosen cluster update

algorithm, because the criteria evaluate only the nature and

quality of the current (updated) cluster partition, independently

of how clusters were moved, reset, evolved, expanded, etc.

3 On-line split-and-merge in ECMs

First, we define the basic split-and-merge algorithm, to

bring more dynamics in the clustering process and to

resolve cluster fusion and delamination. We consider only

a prototype-based clustering nature in which cluster centers

= prototypes and their ranges of influence (spread in each

dimension) are extracted from the data. Then, we describe

the merging and splitting criteria (when to merge or split

clusters) and operations (how to merge and split clusters).

3.1 Basic algorithm

The basic steps for split-and-merge operations during

incremental training after updating the cluster partition with

each new incoming sample are summarized in Algorithm 1.

138 Evolving Systems (2012) 3:135–151

123

The algorithm is optimal in the sense that it operates on

a sample per sample basis rather than performing block-

wise split-and-merge and decreasing or increasing the

number of clusters by only 1 for a complete new batch

(with a high likelihood of being trapped in local optima

according to a cluster validation criterion). Thus, after each

sample-wise incremental learning step, a homogeneity

criterion drives the decision whether the updated cluster

should be merged with an existing one in order to achieve a

more homogenous partition (see Sect. 3.2). Further checks

using a quality criterion determine whether splitting this

cluster will increase partition quality (see Sect. 3.3). Thus,

it is checked whether the updated cluster fulfills the con-

ditions (1) and (2), and if so, merge and split operations are

performed, respectively, to resolve these situations. Split-

ting introduces an additional cluster evolution step (in

addition to the cluster evolution steps of the incremental

clustering method used), whereas merging constitutes a

cluster pruning and complexity reduction step (reduction of

unnecessary complexity, in fact).

For classification problems, Algorithm 1 can be applied

in the same manner, but with the difference that only

clusters with a majority vote for the same class can be

merged. For instance, if 80% of the samples in one cluster

belong to class #1 and 80% of the samples in another

cluster belong to class #2, then merging of the two clusters

is not recommended, because important parts of the deci-

sion boundaries between the overlapping classes may be

lost. Merging would result in one larger cluster that rep-

resents both classes to a similar extent, increasing both the

uncertainty of decisions and the degree of conflict for query

points falling into or near this cluster (Hühn 2009; Lughofe

2011).

In the subsequent subsections, we explain the core

components of Algorithm 1 in detail. Thereby, for all split

and merge operations, we assume normalized data in order

to achieve unbiased calculations and conditions when

being applied to features with very different ranges.

3.2 Merging clusters

The merge condition between an updated cluster Cwin and

any other cluster Cnear in the partition can be deduced from

the consideration that the two clusters are sufficiently close

to each other, so that their joint contour forms a homoge-

neous uni-modal structure. Whenever the two clusters are

spherical, the condition whether two clusters overlap or

touch is obviously given by

dðcwin; cnearÞ� rwin þ rnear ð3Þ

with d(x, y) denoting the Euclidean distance between x and

y, and rwin denoting the radius of the sphere described by

the updated cluster. Touching is the case when equality

holds. In the case of ellipsoids in main position, the above

condition can be extended to account for the different axis

lengths along different dimensions, approximated by the

spread r of the clusters in a data-driven context:

dðcwin; cnearÞ

�
Pp

k¼1 jcwin;k � cnear;kjðfac� rwin;k þ fac� rnear;kÞPp
k¼1 jcwin;k � cnear;kj

þ �:

ð4Þ

Usually, the spreads along each dimension are estimated by

the standard deviations in the corresponding dimension

contained in the data samples, and can be updated through

Eq. 19 and applying the square root function. This means

that the condition on the right-hand side is not simply the

sum of the spreads along all dimensions in both clusters,

but a weighted average according to the degree of center

shift along each direction. Consider two ellipsoids with

identical center coordinates x1; . . .; xp�1; then obviously the

overlap/touching condition should be reduced to the sum of

the axes along coordinate xp (due to which the ellipsoids

deviate). This is accomplished by Eq. 4, because all sum-

mands are 0 and therefore reduced to (rwin;p ? rnear;p) due

to the normalization term (denominator). If one of these

clusters is displaced in some direction i 2 f1; . . .; p� 1g;
then accordingly the other summands contribute a bit to the

final weighted average. The symbol � denotes a near-zero

constant (either positive or negative) and accounts for the

degree of overlap that is required to allow merging (when

�\0), resp., the degree of deviation between the two

clusters that is allowed to to trigger merging (when �[0).

If � is set to 0, the two ellipsoids need only touch to fulfill

the condition, and the clusters overlap in accordance with

Eq. 1. Thus, we use 0 as default value. The factor fac

denotes the spread of the cluster, which is used for the

touching/overlapping criterion. The default setting is 2,

giving a convenient representation of the contours of a

Gaussian type-like data cloud which is a represented by

a high-dimensional ellipsoid; and in case of a lower

dimensionality (2, 3, 4), a 2r range covers approximately

90–95% of the data.

For rwin;1 ¼ rwin;2 ¼ � � � ¼ rwin;p ¼ rwin=2; we then

obtain the formula in Eq. 3.

Merging the clusters does not only require two ellipsoids

to overlap, touch, or be in close proximity, but also that the

two clusters form a joint homogeneous region. Examples of

merged clusters with different homogeneity levels are

shown in Fig. 3.

Basically, we can say, that the larger the increase of the

merged cluster compared to the sum of the single clusters,

the lower the homogeneity which has to be handled with

care. In fact, although they have the same degree of overlap

(i.e., they touch each other), it is desirable to merge the

Evolving Systems (2012) 3:135–151 139

123

clusters shown in Fig. 3a, but not those shown in Fig. 3b.

The reason for this is that in (a) the clusters have the same

tendency and orientation, whereas in (b) the two clusters

represent data clouds with different orientation and shape

characteristics. We thus define an additional condition for

cluster merging:

Vmerged � pðVwin þ VnearÞ ð5Þ

with p denoting the dimensionality of the feature space and

V the volume of an ellipsoid in main position, which is

defined by Jimenez and Landgrebe (1998):

V ¼
2�

Qp
j¼1 rj � pp=2

p� Cðp=2Þ ð6Þ

with C denoting the gamma function:

GammaðxÞ ¼
Z1

0

tx�1e�tdt: ð7Þ

Multiplication by p is introduced because of the curse of

dimensionality effect in volume calculation (the volume

increases exponentially with the number of features).

Criterion (5) can be rewritten as

pðVwin þ VnearÞ
Vmerged

� 1 ð8Þ

which means that homðCi;CjÞ ¼ pðVwinþVnearÞ
Vmerged

and thresh = 1,

according to the definition in Eq. 1.

We expect the cluster center of the merged cluster to be

somewhere in-between the two original clusters, but not

necessarily exactly in the middle, as the center should be

closer to the more significant cluster. Therefore, it is rea-

sonable to merge two clusters centers by taking their

weighted average, the weight for each cluster being defined

by its significance, i.e. the number of samples (kwin and

knear, respectively) that form it and on the basis of which

the clusters were updated significantly. Merging the ranges

of influence (spreads) of the two clusters is based on the

idea that the less significant cluster can be represented by a

compressed information about a mass of data, which is used

to update the more significant cluster. Thus, the spreads of

the two clusters can be merged by using recursive variance

formula, including rank-one modification for better stability

and convergence (Qin et al. 2000); also see Eq. 19. There,

the last term includes the distance of the current sample x

from the center of the cluster to be updated; in our case, the

current sample is replaced with the center of the less sig-

nificant cluster (as standing for the most informative rep-

resentative of the data cloud the cluster models). In order to

guarantee good coverage of the original data cloud by the

merged cluster, a number of samples from the less signifi-

cant cluster equal to a fraction of the variance is added; the

fraction is determined by the ratio of samples belonging to

the less significant cluster to the samples belonging to both

clusters. Hence, two clusters, win and near, are merged in

the following way (8j ¼ 1; . . .; p separately, and obtaining a

new cluster indicated by the index new):

cnew;j ¼
cwin;jkwin þ cnear;jknear

kwin þ knear

rnew;j ¼

ffi
kcl1rcl1;j

kcl1 þ kcl2

þ ðccl1;j � cnew;jÞ2 þ
ðcnew;j � ccl2;jÞ

2

kcl1 þ kcl2

s

þ kcl2

kcl1 þ kcl2

rcl2;j

knew ¼ kwin þ knear ð9Þ

where cl1 = argmax(kwin,knear) denotes the (index of the)

more significant cluster, and cl2 = argmin(kwin,knear)

denotes the (index of the) less significant cluster.

Figure 4 shows cluster merging examples without

(a) and with integration (b) of the last term in Eq. 9 for

merging the spreads. Integration of the term yields better

coverage of the data distribution over both overlapping

clusters.

Figure 5 illustrates the effect of merging nearby lying

clusters generated from a sequence of data blocks, each

containing 1,000 samples: upper and lower rows show the

update progress of the incremental clustering procedure

Fig. 3 a Two clusters (solid
ellipsoids) which touch each

other and are homogeneous in

the sense that the (volume,

orientation of the) merged

cluster (dashed ellipsoid)

conforms with the original two

clusters ? merge

recommended, b two clusters

(solid ellipsoids) which touch

each other and are not

homogeneous ? merge not

recommended

140 Evolving Systems (2012) 3:135–151

123

without and with integrated merging, respectively. Clearly,

superfluous clusters are merged back: for instance, the two

smaller clusters extracted from the first 1,000 samples are

erased by merging with nearby clusters which become

touching to this two smaller ones over the next batch of

1,000 samples [compare (d) with (e)], and the resulting

cluster partition appears more feasible [clusters are

representing the natural data clouds more perfectly com-

pared to (b)].

Interesting to see in (f) that two cluster pairs in the upper

left corner that touch or overlap are (correctly) not merged,

due to violation of the homogeneity condition: the volume

would increase too much if these were merged, because the

orientations of the local distributions are too different,

Fig. 4 a Merged cluster visualized as a solid ellipsoid without

integration of the ‘coverage’ term (last term in Eq. 9), b integration of

the coverage term achieves better coverage of the joint data

distribution of the two original clusters; the ranges of influence of

the two clusters are indicated by a 2r area

Fig. 5 Upper row Incremental cluster learning and evolution

progress using two-dimensional streaming clustering data (loaded in

blocks of 1,000 samples) without integrated merging. Note the over-

clustering in many cluster partitions; lower row the same example

with the merging concept incorporated (criteria ? merging formulas);

grey dots older data samples, dark crosses the samples contained in

the current data block

Evolving Systems (2012) 3:135–151 141

123

which also means that, intuitively, the clusters should not

be merged.

In classification problems using a clustering-based

technique and labeled data, two clusters fulfilling above

conditions are merged only when they have the same

majority class in both clusters (which can be updated over

time by counting). Otherwise, some important parts of the

decision boundaries between classes might be erased:

consider two overlapping clusters where one cluster con-

tains only samples from class ‘0’ and the other only

samples from class ‘1’. Despite the possible overlap of the

two classes, a large proportion of the samples could still

be well discriminated; if the clusters were merged, this

discrimination would be lost and the classification rate on

new samples would decrease in this part of the feature

space.

3.3 Splitting clusters

In order to determine whether a cluster contains two dis-

joint data clouds (due to a delamination effect, cf. Fig. 2),

samples, which characterize the inner distribution of a

cluster, are required. As we are aim for an algorithm, both

with minimal memory usage and computational complex-

ity, we use sub-samples of clusters, obtained by the res-

ervoir sampling technique (Vitte 1985). The whole cluster

splitting strategy is performed using a trial-and-error pro-

cedure [refer to Algorithm 1, Steps 6 (a)–(d)], where an

updated cluster is split hypothetically performed and the

quality of the cluster partition (containing C ? 1 clusters)

assessed.

3.3.1 Cluster split technique

An obvious way to split a cluster would be to halve it, i.e.

to halve the spreads in the original cluster along each

dimension (as, for instance done in the LOLIMOT algo-

rithm for splitting fuzzy rules; Nelle 2001). However, this

does not necessarily represent the real data distribution in

the two parts and would always result in the same type of

split. It is thus necessary to track the inner structure of each

cluster over time in an incremental manner. We do this

with a sub-sampling approach as part of Step 6b in Algo-

rithm 1, in which we keep each other sample belonging to a

cluster (for which the cluster was the nearest one) and

never more than Nsub samples in total. Let therefore Swin

denote a representative sub-sample of the updated cluster

win with |Swin| B Nsub (in all our experiments we used

Nsub = 300). Then, we divide this further into two sets

according to the inner structure of the winning cluster. To

this end, we apply a 2-means clustering algorithm (Jain and

Dubes 1988) to Swin and split the samples into two subsets

according to

S1;win ¼ fxjx 2 Swin ^ kx� cwin1k�kx� cwin2kg
S2;win ¼ fxjx 2 Swin ^ kx� cwin1k[kx� cwin2kg

ð10Þ

where cwin1 and cwin2 correspond to the two cluster centers

obtained by 2-means clustering. Then, we calculate the

spreads rwin1; rwin2 based on the samples falling into the

sets in Eq. 10 and use these to evaluate the quality criterion

(see subsequent paragraph).

3.3.2 Cluster quality criterion

The counterpart of the merging process would be to invert

the geometric criteria in Eqs. 4 and 5:

dðcwin1; cwin2Þ

[
Pp

k¼1 jcwin1;k � cwin2;kjðfac� rwin1;k þ fac� rwin2;kÞPp
k¼1 jcwin1;k � cwin2;kj

þ �

ð11Þ

and

Vmerged [pðVwin1 þ Vwin2Þ ð12Þ

and use a significantly higher � in Eq. 11 than in Eq. 4 to

avoid alternating merge and split operations in consecutive

incremental learning steps. However, since sub-samples

and a 2-means clustering are used, the contours of the

resulting clusters are usually not the exact contours of the

real data clouds. Furthermore, a split may also be useful

whenever two clusters overlap partially: for instance,

consider two overlapping components in a Gaussian

mixture model, which is often the data model used of

choice in prototype-based clustering algorithms (Sun et al.

2004). Therefore, we replace the strict geometric criteria

with a quality comparison of split and un-split cluster

models based on the BIC (Schwar 1978), which relies on a

log-likelihood estimation, penalizes more complex models,

and—most importantly—is easily applicable in an

incremental learning context, because it does not rely on

criteria that use all the (past) training samples (such as the

famous Xie and Beni (1991) validation index or its

enhanced version presented in Beringer and Hüllermeier

(2006). The BIC in its original form is defined by:

BICðCÞ ¼ �2� loglik þ k logðpÞ ð13Þ

with loglik denoting the log-likelihood of the data

according to the model C (the model with lower value

BIC value is to be preferred) and k the complexity of the

model, measured in terms of the number of independent

parameters. Our cluster models deal with ellipsoidal

clusters, which can be associated with components of a

GMM (Hastie et al. 2009). The support of each cluster is

given by the number of samples that form it. Thus, we can

model the likelihood that a data sample x belongs to a

142 Evolving Systems (2012) 3:135–151

123

certain cluster Cj as the product of the likelihood of observing

Cj (defined by its relative support among all samples seen so

far) with the multivariate (Gaussian) density function

(=component of a Gaussian mixture model):

PjðxÞ ¼
nj

N

1
ffi
2p� detðRjÞ

p exp � 1

2
ðx� cjÞTR�1

j ðx� cjÞ
� �

ð14Þ

with nj denoting the number of samples forming cluster

Cj, N the total number of data samples seen so far, and Rj

the covariance matrix spanned by the cluster. For axis

parallel ellipsoids, the covariance matrix is a p-dimensional

diagonal matrix, in which each entry represents the

variance in each dimension. We yield:

Rj ¼ diagðr2
j Þ ¼ diag

1

nj � 1

Xnj

i¼1

ðx� cjÞ2
 !

: ð15Þ

Thus, the maximum likelihood of the data samples in

cluster cj can be calculated as:

loglikj ¼ log
Y

xi2cj

PjðxiÞ

¼
X

xi2cj

log
nj

N

� �
þ log

1
ffi
2p�

Qp
k¼1 r2

j;p

q

0

B@

1

CA

0

B@

� 1

2
ðxi � cjÞT diagð1=r2

j Þðxi � cjÞ

1

CA

¼ nj logðnjÞ � nj logðNÞ � nj

2
logð2pÞ

� nj

2

Xp

k¼1

logðr2
j;pÞ �

nj � 1

2
ð16Þ

The overall BIC representing the current cluster partition

containing K clusters is obtained by:

BICðCÞ ¼ �2� loglik þ k logðpÞ

¼ �2�
XK

j¼1

loglikj þ d logðNÞ ð17Þ

with d denoting the number of parameters to be learned. In

our case, this is equal to the number of clusters K times 2,

as each cluster contains two degrees of freedom: center and

spread. At first glance, it seems that the BIC increases with

the number of clusters (more negative summands multi-

plied by -2 and a higher k), and thus always favors a lower

number of clusters. On the other hand, the spreads r of the

clusters also decrease when more clusters are extracted,

which increases the fourth term in Eq. 16 and decreases the

first term in Eq. 17.

In order to ensure that the BIC is able to distinguish

between two truly disjoint clusters and two clusters which are

very close to each other or which even overlap within one

cluster, we integrate a penalty term, which penalizes over-

lapping clusters more than clearly disjoint ones. The extended

BIC for cluster model j with splits j1 and j2 thus becomes:

BICextðCj1;Cj2Þ ¼ �2ðloglikj1 þ loglikj2Þ þ dðlogðNj1Þ

þ logðNj2ÞÞ þ
Nj

2

XNj

i¼1

log
Y2

k¼1

lijk

 !

ð18Þ

with d equal to 4 (two parameters for each cluster in the

split), Nj denoting the number of data samples belonging to

cluster j, and lijk
the membership degree of sample i (from

the subset) in cluster jk (note that we store a subset of

samples). Obviously, the more disjoint the clusters, the

closer to 0 the product and therefore the lower the value of

the logarithm, penalizing more disjoint clusters less (note

that the lowest BIC value corresponds to the best model).

Figure 6 shows two cluster splits according and the inner

distribution of the original cluster. Both splits result in

clusters of the same size and would therefore lead to the

same value of the original BIC according to Eq. 17. The

BIC defined in Eq. 18 yields a much lower value for the

more disjoint option.

In an incremental learning context, the BIC criterion is

updated simply by counting the number of data samples nj

belonging to each cluster, counting the total number of data

samples N, and updating the variance in each direction

(used in the fourth term). The latter is also necessary for a

fully updated representation of the ECMs (centers plus

spread) and can be achieved by using the recursive vari-

ance formula, in the most stable form including rank-one

modification (for better convergence to batch variance)

according to Qin et al. (2000):

ðni þ 1Þr2
i;j nir

2
i;j þ ðni þ 1ÞDc2

i;j þ ðci;j � xjÞ2

8j ¼ 1; . . .; p
ð19Þ

with Dc denoting the difference between the updated and

the original position of the cluster center. In each incre-

mental learning cycle, only those parts of the loglik func-

tion in the BIC criterion (Eq. 17) need to be updated which

belong to the updated clusters, as the components of the

other clusters remained unchanged. If L new clusters were

evolved, the sum in (Eq. 17) is extended by the terms

loglikKþ1; :::; loglikKþL and d incremented by 2�L
Figure 7 a cluster splitting example using a two-

dimensional streaming data set (called S2) and the eVQ

incremental clustering technique without (Fig. 7a, b) and

with integration of the dynamic splitting method described

in this section (Fig. 7c, d). Both approaches perform

equally well and at learning from the initial 1,000 samples

provide the same cluster partition (Fig. 7a, c), hence

(correctly) none of the compact clusters are split by our

Evolving Systems (2012) 3:135–151 143

123

technique. Updating the cluster partitions with another

1,000 samples, which appear within the original feature

range (marked as crosses) leads to excessively large clus-

ters in the first case (the middle and upper right clusters in

Fig. 7b are significantly enlarged). The dynamic splitting

technique, however, yields a better partition by splitting

these two clusters dynamically into two. Note that reason

for the cluster enlargement in the first case is that the

Fig. 6 a Splitting along the

second feature leads to two

extensively overlapping

clusters, b splitting results in

clearly disjoint clusters, but the

conventional BIC is the same as

in a; the extended BIC yields a

significantly lower value due to

the last term in Eq. 18,

indicating a cluster partition of

high quality

Fig. 7 Upper row The learning (left) and update (right) when not

integrating any automatic splitting technique (see the enlarged cluster

covering three data clouds), lower row the better performance as the

two bigger clusters are split, finally achieving seven clusters which

are more appropriate according to the data cloud positions in the

actual data stream snapshot

144 Evolving Systems (2012) 3:135–151

123

distance between existing clusters and new samples is not

sufficiently large for new clusters to evolve. Enlargement

of the upper left cluster is prevented by the integrated

technique, since early in processing the large cluster in the

middle is split; thus no sample from the small dense cloud

influences this cluster.

For classification problems using labeled data, a split

suggested by the quality criterion is executed only if the

majority class in both split clusters is different.

4 Comments on computational costs

In this section, we examine the additional costs caused by

the split-and-merge operations for one incremental learning

step, assuming that one cluster is updated in each step.

4.1 Merging

First, Eq. 4 is used to determine whether any of the existing

clusters touch the updated cluster. Assuming that C clusters

are available, this requires (C - 1)(5p ? 3) floating point

operations for the right hand side: a sum over the dimen-

sionality of p, where for each summand 5 floating point

operations are conducted, plus additional 3 operations for

the division, the addition of �; and the comparison; and

(C - 1)(2p ? 1) operations for the distance calculation on

the left hand side, resulting in a total quadratic complexity

of O(Cp). The additional homogeneity criterion is only

evaluated for clusters fulfilling Eq. 4. In sample-wise

incremental learning, where the cluster shifts are small and

in one specific direction, we can assume that only one other

clusters fulfills (4), thus yielding three volume calculations:

for the updated cluster, for the nearest cluster and for the

hypothetically merged cluster. Taking into account that the

gamma function interpolates the factorial function

(Andrews et al. 2001), thus the complex calculation of the

denominator in Eq. 6 requires p
2
þ 1 operations; hence, the

volume calculation has a complexity of O(p). Merging two

clusters fulfilling both criteria requires 18p floating point

operations. The complete merging step has thus a com-

plexity of O(Cp ? p)& O(Cp).

4.2 For splitting

The k-means clustering algorithm has a complexity of

O(CnpI) (Jain and Dubes 1988), so it is linear in all of its

factors: the number of clusters C, the number of samples

n, the dimensionality of the learning problem p, and the

number of iterations I. In our case, n denotes the buffer-size

for the sub-sample, which is small, usually n 	 N with N

the number of samples seen so far. The number of

iterations is usually low, as k-means usually converges

quickly (Gan et al. 2007). The index list that describes

which sample belongs to which cluster according to its

distance from the center is an additional result of k-means,

adding complexity to the calculation of S1;win and S2;win.

Calculating the new means for the two split cluster requires

O(n), calculating the new spreads along all dimensions

requires O(np) floating point operations. To evaluate the

BIC, only loglikwin for the updated cluster must be re-cal-

culated in each incremental learning step (assuming that

the log-likelihood of the other cluster has already been

calculated). This requires p ? 14 operations according to

the last line in Eq. 16; the BIC of the (hypothetically) split

clusters must also be calculated, increasing the complexity

to 3p ? 42. The penalty criterion for overlaps in Eq. 18

requires 3n ? 5 operations. Therefore, the overall com-

plexity of calculating the penalized BIC for split and un-

split clusters is O(p ? n). Summing all contributions, we

yield a complexity of O(Cnp ? np ? (n ? p))&
O(Cnp), i.e. still linear in all of its factors. The most crucial

factor is n, the size of the sub-sample buffer used, as

usually C 	 n and p 	 n.

5 Experimental setup

To evaluate the proposed split-and-merge operations, we

used the evolving vector quantization (eVQ) approach as

learning engine. Its basic algorithmic steps can be sum-

marized as follows (refer to Lughofer 2008 for the details):

• Load a new sample, normalize it to [0, 1], and deter-

mine whether it fits into the current cluster partition—

the decision is driven by vigilance, the only sensitive

learning parameter: this is pre-parameterized to a

default value of 0:3�
ffiffiffiffiffiffi
dim
p
ffiffi
2
p with dim denoting the

dimensionality of the feature space, to avoid a tuning

phase, which is usually not possible in on-line learning

from data streams.

• If the sample fits into the current cluster, update the

center by moving it a small distance towards the current

data sample; the distance is determined by a decreasing

learning gain along the support of the cluster (ensuring

convergence); update the spread of the cluster in each

dimension using a stable recursive variance approach

including rank-one modification (Qin et al. 2000).

• If the sample does not fit into the current cluster, create

a new cluster by setting its center to the coordinates of

the current sample and its spread to 0.

The default parameter setting may lead to over- or

under-clustered situations (depending on the characteristics

of the data), which, with the exception of natural cluster

Evolving Systems (2012) 3:135–151 145

123

fusion and delamination problems, can be resolved with the

dynamic split-and-merge approach apart from the natural

cluster fusion and delamination problems. As alternative

clustering engine for the classification streaming data sets

we applied the EC (evolving clustering method) as inte-

grated in DENFIS (Kasabov and Song 2002). This provides

us an impression how much dependent our split-and-merge

algorithm is on the underlying clustering engine.

We used the following three streaming data sets to

evaluate our approach:

• Two data sets from the Internet3—S1 and S2: these are

two-dimensional streaming data sets for clustering,

containing a few thousand samples and Gaussian

clusters with different degrees of cluster overlaps (in

S2 the clusters overlap more than in S1).

• Synthetic clustering data with clusters in multi-dimen-

sional space: from 2-dimensional to 15-dimensional,

we used all those with an even number of dimensions.

• Cover-type data set (UCI machine learning repository):

contains the forest cover type from cartographic

variables only (no remotely sensed data), including 7

classes: Lodge-pole Pine, Ponderosa Pine, Cottonwood/

Willow, Aspen, Douglas-fir, Krummholz and over

580000 samples. The forest cover type for a given

observation (30 9 30 meter cell) was determined from

US Forest Service (USFS) Region 2 Resource Infor-

mation System (RIS) data.

• Animals data set: a set of synthetic data with 72

dimensions and 500,000 samples; produced by the

‘‘animals.c‘‘ program obtained from the UCI ML

Repository, containing 4 classes of animals. We

removed all constant features (all values equal to 0 or

equal to 1), yielding 46 dimensions.

The data sets and their characteristics are summarized in

Table 1.

The evaluation scheme is based on an incremental

learning procedure, which loads a single data sample and

sends it to the update algorithms for the cluster partitions.

In order to see the effect of merge and split-and-merge on

conventional incremental clustering (eVQ), three variants

of incremental are compared, denoted as ECM, ECM with

merge and ECM-SAM (ECM with split-and-merge). In

case of ECM and ECM with merge single-pass incremental

learning is achieved, where after the update of the cluster

partition each single sample is immediately discarded (so

no prior data is used). In case of ECM-SAM, a (small)

reservoir of samples is required for representing the inner

structure of a cluster and updated in incremental manner.

The cluster partitions of conventional ECM and ECM-

SAM were visualized for the two-dimensional clustering

data sets and compared with the true number of clusters in

the high-dimensional streaming clustering sets. For the

latter, a comparison using the well-known Xie and Beni

(1991) index is conducted, which measures the quality of

cluster partitions. For the classification data (cover-type

and animals), we used the measures entropy and purity of

the final cluster partitions of the whole data set. In addition,

we compared our method with the two batch clustering

methods CLUTOR and GARDEN. These show how

‘clean’ the clusters are, i.e. to what degree the classes are

mixed up in each cluster. Ideally, clusters are clean, i.e.,

they contain only one class; this ensures a minimal ’con-

flict’ when classifying new samples with the extracted

clusters.

6 Results

6.1 Two-dimensional streaming clustering data sets

For the first 2,000 (1, 000 ? 1, 000) samples of the S2

streaming data sets, the split-and-merge-technique exhib-

ited similar performance (yielded the same cluster parti-

tioning) as the split option alone (as shown in Fig. 7c, d).

Further updating of the cluster partition with streaming

samples leads to the results shown in Fig. 8, (again upper

row corresponding to conventional incremental evolving

clustering, the lower row includes the new split-and-merge

techniques). Figure 8b, d (the final results over all batches

of the streaming data set) show that dynamic split-and-

merge operations improve the performance remarkably: the

final cluster partition obtained by our method reflects the

real data distribution (represented by local data clouds)

much better than that obtained by conventional clustering,

where the default setting of the vigilance parameter (which3 http://cs.joensuu.fi/sipu/datasets/.

Table 1 Characteristics of the clustering data sets used

No. of samples No. of feat. No. of Cl.

S1 2,000 2 6

S2 4,000 2 13

Synth 2-dim 1,350 2 9

Synth 4-dim 2,701 4 9

Synth 6-dim 4,051 6 9

Synth 8-dim 5,401 8 9

Synth 10-dim 6,750 10 9

Synth 12-dim 8,100 12 9

Synth 14-dim 9,450 14 9

Cov-type 581,012 54 7

Animals 500K 46 4

No. of Cl. denotes the number of clusters for unsupervised data and

the number of classes for classification data (cov-type and animals)

146 Evolving Systems (2012) 3:135–151

123

http://cs.joensuu.fi/sipu/datasets/

performed well for the initial data block) leads to too few,

large clusters due to compression of the data cloud spreads

over time. Thus, dynamic split operations also compensate

for inappropriately chosen fixed learning parameters,

improving automatization in an on-line data streaming

context, where manual parameter tuning is hardly possible.

In order to gain a more detailed insight into the dynamic

split technique, Fig. 9c shows the values of the quality

information criterion over time for the cluster partition

shown in (a) (using the S1 data set) with the number of

clusters marked as such—note that no split is actually

performed in this period, just the criterion indicated.

Whenever the solid line (=normalized cluster partition

quality criterion with one cluster split in two) is below the

dashed line (=normalized cluster partition quality criterion

without any split), a split is suggested. According to

Fig. 9b showing which clusters are updated when [x-axis

represents the data sample number, y-axis the cluster

number according to (a)], this is the case for clusters #6,

#4, #5 and also #1, the last one being updated by just three

samples At the beginning of the data stream (samples

1–200), cluster #6 is updated, which appears as compact

joint data cloud and for which no split is correctly sug-

gested (dashed line clearly below the solid line). When the

update switches to Cluster #4 (samples 200–approx. 600),

our indicator suggests a split, but not uniquely (solid line

very slightly below the dashed line): because this cluster

also contains a few samples from the lower region of the

nearby long diagonal cluster. The large cluster #5, which

contains two clearly distinct clouds, is updated with sample

600–1,000 and a split is correctly suggested (solid line

significantly below the dashed one). The only exception is

when the update switches to the compact cluster #1, for

which correctly no split is suggested in three cases.

Fig. 8 Upper row Conventional incremental clustering updated with

1,000 (left) plus another 1,000 (right) samples without integration of

an automatic splitting technique; the final cluster partition does not

reflect the natural distribution of the data cloud (too few and too large

clusters); the lower row illustrates the superior performance of the

dynamic split-and-merge concept, which automatically splits exces-

sively large clusters and merges touching and over-lapping ones on

demand; in both cases, the learning parameter is set to a fixed value

Evolving Systems (2012) 3:135–151 147

123

6.2 Gaussian streaming data sets (2-dim to 14-dim)

Table 2 shows the resulting numbers of clusters for seven

data sets, ranging from 2-dimensional (low) to 8-dimen-

sional (medium) and 14-dimensional (high) feature spaces;

in all data sets, the true number of clusters is 9. Clearly,

ECM-SAM comes closer to the true numbers of clusters in

the various data sets than conventional ECM, and with

increasing dimensionality the difference becomes greater.

A fundamental reason why conventional ECM performs so

weak for six-dimensional and ten-dimensional data sets is

that in these sets the first feature increases its range con-

tinuously. Thus, at the beginning of the data stream, its

range is small, producing a zoom effect on the data set, in

which the samples seem to be more spread out than they

truly are, making the likelihood of over-clustering high.

After a while, when the range is extended, the real data

clouds turn out to be more compact, and the originally

extracted clusters are compressed. The over-clustered sit-

uation (several clusters for one data cloud) can be resolved

(in large parts) by the merge operation in ECM-SAM, as

can be seen in Table 2. The right part of the table shows the

quality values obtained by the Xie and Beni (1991) index,

which measures the ratio between separation quality and

compactness of the obtained cluster partitions:

cl qual ¼
PC

i¼1

PN
j¼1 l2

ijkci � xik
N mini;j¼1;...;C;i 6¼jðkci � cjkÞ

ð20Þ

with C denoting the final clusters obtained, N the number

of samples used throughout the whole incremental learning

procedure, and lij the membership degree of sample j in

cluster i. For hard clustering, lij is either always 0 (sample

does not fall within cluster i) or 1 (sample falls within

cluster i). The lower the value obtained for Eq. 20, the

Fig. 9 Upper left Final cluster partition when no split is conducted,

the numbers of the clusters indicated; upper right carries the

information when which cluster according to the cluster number is

updated (x-axis, sample number; y-axis, cluster number); lower

cluster partition quality criteria over the number of samples. Solid
lines the criterion for split clusters, dotted lines one without any splits

(the lower criterion denotes the better quality); note that for each

sample only a split of the updated cluster is considered

148 Evolving Systems (2012) 3:135–151

123

better the cluster partition represents compact and separa-

ble clusters. From Table 2, it can be seen that ECM-SAM

performs better than ECM with merge (average deviation

from the true number of clusters in the complete stream is

lower), and also achieves slightly higher average quality in

terms of the Xie–Beni validation index (Table 2).

Figure 10 compares the computation times required for

clustering tasks with various dimensionalities. Note, that the

number of data samples differs across tasks as indicated in the

figure. While ECM with merge require computation times

comparable to those of conventional ECM, ECM-SAM

requires significant additional time. However, its speed is still

in the range of milliseconds for updating single samples

6.3 High-dimensional classification data

(purity, entropy)

Table 3 shows the results obtained for the classification

data sets animals and cov-type. Both contain a large

number of samples and are therefore ideal test data sets for

data-stream clustering methods. In order to judge how well

the clusters follow the characteristics of the class distri-

bution in feature space, we used two well-known measures

from the literature (also used in Zhao and Karypis 2004;

Orlandic et al. 2005 for the same purpose): entropy and

purity. While entropy measures how the various sample

classes are distributed within each cluster, purity measures

the extent to which each cluster contains samples from

primarily one class. Thus, the entropy of a cluster i is

defined by Zhao and Karypis (2004):

EðCiÞ ¼ �
1

logðKÞ
XK

k¼1

nik

ni
log

nik

ni

� �
ð21Þ

with ni the number of samples falling into cluster i (=the

support of cluster i) and nik the number of samples falling

into cluster i and belonging to class k. Then, the entropy of

a whole cluster partition becomes:

EðCÞ ¼
XjCj

i¼1

ni

N
EðCiÞ ð22Þ

with N the number of data samples in the whole data set. The

purity of a cluster i is defined by Zhao and Karypis (2004):

PðCiÞ ¼
1

ni
maxk¼1;...;KðnikÞ: ð23Þ

Table 2 Number of clusters identified by the evolving cluster model

(ECM) variants: without split-and-merge operations, with merge

operation only and using both, split-and-merge (SAM); in all cases,

the true number of clusters contained in the data stream is 9, and the

learning parameter was set to the default value; the right part of

the table shows the quality measures obtained by the Xie–Beni index

(the lower the better)

ECM ECM with

merge

ECM-

SAM

ECM ECM with

merge

ECM-

SAM

2-dim 11 8 10 5.343 0.205 0.439

4-dim 7 7 9 0.268 0.268 0.175

6-dim 22 12 12 1.347 0.474 0.421

8-dim 11 11 10 1.089 0.734 0.502

10-dim 36 9 9 1.334 0.068 0.068

12-dim 9 9 9 0.114 0.074 0.074

14-dim 12 9 9 0.254 0.071 0.071

Av.

dev./

qual.

7.0 1.1 0.7 1.398 0.271 0.250

Fig. 10 Computation times for clustering the whole data stream

versus dimensionality of the streaming data in the clustering task, the

number of data samples for each dimensionality are indicated

Table 3 Unsupervised clustering of high-dimensional streaming

classification data, using evolving cluster model (ECM) variants:

without split-and-merge operations, with merge operations only,

using both split and merge (SAM); the measures of entropy (before

slashes) and purity (after slashes) indicate the quality of the clusters

with respect to their class content (ideally, each cluster represents one

class ? purity equal to 1 and entropy equal to 0)

Animals Cov-type

ECM w/o SAM (using eVQ) 0.248/0.751 0.383/0.610

ECM with merge (using eVQ) 0.248/0.751 0.383 /0.610

ECM–SAM (using eVQ) 0/1 0.105/0.891

ECM w/o SAM (using EC) 0.248/0.751 0.453/0.542

ECM with merge (using EC) 0.248/0.751 0.421/0.580

ECM–SAM (using EC) 0.134/0.864 0.223/0.775

CLUTOR 0.212/0.818 0.548/0.518

GARDEN 0.239/0.767 0.389/0.652

Bold values indicate the best performing method in terms of entropy/

purity (best entropy = 0, best purity = 1)

Evolving Systems (2012) 3:135–151 149

123

Then the purity of a whole cluster partition becomes:

PðCÞ ¼
XjCj

i¼1

ni

N
PðCiÞ ð24Þ

The optimum entropy and purity values are 0 and 1,

respectively, which means, that all clusters are ‘clean’, i.e.

they contain only samples from one class, thus achieving a

non-ambiguous class representation in the whole cluster

partition. In fact, new samples falling in a clean cluster can

be safely classified to the class it contains (no conflict

between classes occurs); furthermore the training samples

can be classified with 0 error rate when all clusters in a

partition are clean.

Table 3 compares the performance of the new ECM-

SAM technique with conventional ECM, ECM including

merge operations only (first two parts of the table) and with

the batch clustering algorithms GARDEN and CLUTOR

(as used in Orlandic et al. 2005) (third part of the table).

The split-and-merge concepts are here connected with two

different incremental prototype-based clustering approa-

ches, namely eVQ (as used in the prior results) and

evolving clustering method (EC) as implemented in

DENFIS approach (Kasabov and Song 2002) for con-

structing rules in an evolving neuro-fuzzy inference sys-

tem. Also in the latter approach touching or overlapping

clusters may arise over time due to the cluster expansion

concept. The interesting thing is that (1) this clustering

method performs similar as eVQ (compare second with

fifth row) and (2) our split-and-merge operations have a

similar effect on the performance (achieving a higher

purity and a lower entropy).

Furthermore, the ECM-SAM (using eVQ or EC) per-

forms clearly better than the conventional ECMs and also

outperforms GARDEN and CLUTOR for cov-type data set

and CLUTOR for animals data set. For the animals data set

and using eVQ, such a good performance is even achieved

with the number of extracted clusters equal to the number

of classes (4). Since entropy is equal to 0, a perfect cluster-

class match can be obtained; using EC as clustering method

performs slightly worse as achieving five clusters. ECM

w/o SAM and ECM with merge both extracted three

clusters in case when using eVQ and EC; in fact, since

ECM w/o SAM only extracts three clusters, achieving an

under-clustered partition, the merge operation is more or

less obsolete: hence, it is remarkable that it does not per-

form an unncessary merge of three to two clusters, which

shows that the merging criteria work in this case. Moreove,

the split operation is able to split the correct cluster with

mixed classes (on an unsupervised basis) into two, yielding

four clusters in total and optimal entropy/purity values

(0/1). CLUTOR also extracts four clusters, but these con-

tain mixed classes, as the entropy level is significantly

higher than 0 (0.212). GARDEN performs similarly to

CLUTOR, but extracts 1,480 clusters. In Orlandic et al.

(2005), it is reported that GARDEN can achieve an entropy

of 0.999 with a different parameter setting, but then it

extracts 6,208 clusters, which is remarkably high and hard

to handle in an on-line classification setting. On the cov-

type data set, ECM-SAM clearly out-performs the other

methods, but extracts 240 clusters when using eVQ and

322 clusters when using EC, while ECM w/o SAM and

ECM with merge both extract 28 clusters when using eVQ

and more than 40 clusters when using EC; CLUTOR

extracts 84 clusters and GARDEN 112 clusters, while

entropy and purity values were similar to those of ECM

w/o SAM (however, with 3–4 times more clusters).

7 Conclusion

In order to make data stream clustering more dynamic, we

have introduced a new split-and-merge approach for

evolving cluster models. Specifically, our approach is able

to adapt to changes in the local data clouds, overcomes

cluster fusion and delamination effects, and eliminates

trial-and-error tuning phases for achieving (an) optimal

learning parameter(s). It operates on the basis of sample-

wise incremental learning and is able to split and merge

clusters as required by the characteristics of local data

distributions. It is generally applicable to all kinds of

prototype-based incremental, evolving clustering algo-

rithms that extract ellipsoidal clusters in main position and

providing centers, spreads and support of all evolved

clusters (these three variables are required in all merging

and split operations). The merging criteria are based on

touching and homogeneity conditions for two clusters, the

splitting criterion employs a penalized Bayesian informa-

tion criterion evaluated for the current versus a sub-clus-

tered partition. All criteria operate in fully sample-wise

incremental (on-line) learning mode, single-pass capability

is achieved for merging operations, but not for splitting

technique, which may go at the expense of computation

time (see e.g. Fig. 10), however still operates within mil-

liseconds on each sample, usually fast enough for on-line

processes.

The results show that ECMs connected with the pro-

posed split-and-merge operations can extract better cluster

partitions than conventional ECMs as coming closer to the

real number of clusters contained in high-dimensional

streaming data sets together with a higher cluster validation

index and producing more reliable partitions visualized by

two-dimensional plots. Furthermore, the results for classi-

fication data show that split-and-merge is able to extract

clusters with lower entropy and higher purity, which indi-

cates a more unique, non-ambiguous representation of the

150 Evolving Systems (2012) 3:135–151

123

class distribution in feature space than when applying

conventional incremental as well as batch clustering

methods. Future work includes (1) the extension and

application of the proposed techniques to clustering-based

classifiers (classifiers that consist of prototype clusters and

use supervised label information) or to clustering/rule-

based regression models; and (2) an extension of all the

proposed techniques to ellipsoidal clusters in arbitrary

position.

Acknowledgments This work was funded by the Austrian fund for

promoting scientific research (FWF, contract number I328-N23,

acronym IREFS). This publication reflects only the authors’ views.

The author also acknowledges Eyke Hüllermeier for providing

valuable comments on the paper.

References

Andrews GE, Askey R, Roy R (2001) Special functions. Cambridge

University Press, Cambridge

Angelov P (2004) An approach for fuzzy rule-base adaptation using

on-line clustering. Int J Approx Reason 35(3):275–289

Angelov P, Filev D, Kasabov N (2010) Evolving intelligent

systems—methodology and applications. Wiley, New York

Angelov P, Zhou XW (2006) Evolving fuzzy systems from data

streams in real-time. In: 2006 International symposium on

evolving fuzzy systems (EFS’06). Ambleside, Lake District,

pp 29–35

Beringer J, Hüllermeier E (2006) Online clustering of parallel data

streams. Data Knowl Eng 58(2):180–204

Beringer J, Hüllermeier E (2007) Adaptive optimization of the

number of clusters in fuzzy clustering. In: Proceedings of the

FUZZ-IEEE 2007, London, pp 1–6

Bifet A, Holmes G, Kirkby R, Pfahringer B (2010) MOA: massive

online analysis. J Mach Learn Res 11:1601–1604

Bouchachia A (2011) Evolving clustering: an asset for evolving

systems. IEEE SMC Newslett 36

Bouchachia A, Vanaret C (2011) Incremental learning based on

growing gaussian mixture models. In: Proceedings of 10th

international conference on machine learning and applications

(ICMLA 2011), Honululu, Haweii (to appear)

Declercq A, Piater J (2008) Online learning of gaussian mixture

models—a two-level approach. In: Proceedings of the 3rd

international conference on computer vision theory and appli-

cations VISAPP, Funchal, Portugal, pp 605–611

Dovzan D, Skrjanc I (2011) Recursive clustering based on a

Gustafson-Kessel algorithm. Evol Syst 2(1):15–24

Farnstrom F, Lewis J, Elkan C (2000) Scalability for clustering

algorithms revisited. In: SIGKDD explorations, London 2(1):

51–57

Gama J (2010) Knowledge discovery from data streams. Chapman &

Hall/CRC, Boca Raton

Gan G, Ma C, Wu J (2007) Data clustering: theory, algorithms, and

applications (Asa-Siam Series on Statistics and Applied Prob-

ability). Society for Industrial & Applied Mathematics, USA

Hall P, Hicks Y (2005) A method to add gaussian mixture models.

Tech. rep., University of Bath

Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical

learning: data mining, inference and prediction, 2nd edn.

Springer, New York

Hühn J, Hüllermeier E (2009) FR3: a fuzzy rule learner for inducing

reliable classifiers. IEEE Trans Fuzzy Syst 17(1):138–149

Jain A, Dubes R (1988) Algorithms for clustering data. Prentice Hall,

Upper Saddle River

Jimenez L, Landgrebe D (1998) Supervised classification in high-

dimensional space: Geometrical, statistical, and asymptotical

properties of multivariate data. IEEE Trans Syst Man Cybern

Part C Rev Appl 28(1):39–54

Kasabov NK, Song Q (2002) DENFIS: Dynamic evolving neural-

fuzzy inference system and its application for time-series

prediction. IEEE Trans Fuzzy Syst 10(2):144–154

Klinkenberg R (2004) Learning drifting concepts: example selection

vs. example weighting. Intell Data Anal 8(3):281–300

Lima E, Hell M, Ballini R, Gomide F (2010) Evolving fuzzy

modeling using participatory learning. In: Angelov P, Filev D,

Kasabov N (eds) Evolving intelligent systems: methodology and

applications. Wiley, New York, pp 67–86

Lughofer E (2008) Extensions of vector quantization for incremental

clustering. Pattern Recogn 41(3):995–1011

Lughofer E (2011) All-pairs evolving fuzzy classifiers for on-line

multi-class classification problems. In: Proceedings of the

EUSFLAT 2011 conference. Elsevier, Aix-Les-Bains,

pp 372–379

Lughofer E, Bouchot JL, Shaker A (2011) On-line elimination of

local redundancies in evolving fuzzy systems. Evol Syst

2(3):165–187

Nelles O (2001) Nonlinear system identification. Springer, Berlin

Orlandic R, Lai Y, Yee W (2005) Clustering high-dimensional data

using an efficient and effective data space reduction. In:

Proceedings of ACM conference on information and knowledge

management CIKM05, pp 201–208

Qin S, Li W, Yue H (2000) Recursive PCA for adaptive process

monitoring. J Process Control 10(5):471–486

Schwarz G (1978) Estimating the dimension of a model. Ann Stat

6(2):461–464

Song M, Wang H (2005) Highly efficient incremental estimation of

gaussian mixture models for online data stream clustering. In:

Priddy KL (ed) Intelligent computing: theory and applications

III. In: Proceedings of the SPIE, vol 5803, pp 174–183

Sun H, Wang S, Jiang Q (2004) FCM-based model selection

algorithm for determining the number of clusters. Pattern

Recogn 37(10):2027–2037

Tabata K, Kudo MSM (2010) Data compression by volume proto-

types for streaming data. Pattern Recogn 43(9):3162–3176

Vachkov G (2010) Similarity analysis and knowledge acquisition by

use of evolving neural models and fuzzy decision. In: Angelov P,

Filev D, Kasabov N(eds) Evolving intelligent systems: method-

ology and applications. Wiley, Hoboken, pp 247–272

Varmuza K, Filzmoser P (2009) Introduction to multivariate statis-

tical analysis in chemometrics. CRC Press, Boca Raton

Vitter JS (1985) Random sampling with a reservoir. ACM Trans Math

Softw 11:37–57

Xie XL, Beni G (1991) A validity measure for fuzzy clustering. IEEE

Trans Pattern Anal Mach Intell 13(48):841–847

Zhao Y, Karypis G (2004) Empirical and theoretical comparisons of

selected criterion functions for document clustering. Mach Learn

55(3):311–331

Evolving Systems (2012) 3:135–151 151

123

	A dynamic split-and-merge approach for evolving cluster models
	Abstract
	Introduction
	Motivation and state of the art
	Our approach

	Problem statement
	On-line split-and-merge in ECMs
	Basic algorithm
	Merging clusters
	Splitting clusters
	Cluster split technique
	Cluster quality criterion

	Comments on computational costs
	Merging
	For splitting

	Experimental setup
	Results
	Two-dimensional streaming clustering data sets
	Gaussian streaming data sets (2-dim to 14-dim)
	High-dimensional classification data (purity, entropy)

	Conclusion
	Acknowledgments
	References

