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Abstract During the recent decades, option pricing

became an important topic in computational finance. The

main issue is to obtain a model of option prices that reflects

price movements observed in the real world. In this paper

we address option pricing using an evolving fuzzy system

model and Brazilian interest rate options data. Evolving

models are particularly appropriate because they gradually

develops the model structure and parameters from a stream

of data. Therefore, evolving fuzzy models provide a higher

level of system adaptation and learns the system dynamics

continuously, an essential attribute in pricing options esti-

mation. In particular, we emphasize the use of the evolving

participatory learning methods. The participatory evolving

models considered in this paper are compared against the

traditional Black’s closed-form formula, artificial neural

networks structures, and alternative evolving fuzzy system

approaches reported in the literature. Actual daily data used

in the experiments cover the period from January 2003 to

June 2008. We measure forecast performance of all models

and report the statistical tests done for the competing

forecast models. The results show that the participatory

evolving fuzzy system modeling approach is effective to

estimate prices of fixed income options.

Keywords Evolving fuzzy systems � Option pricing �
Neural networks � Interest rate � Derivatives

1 Introduction

One of the most important field in financial engineering is

option pricing, particularly in derivatives market. Option

pricing is an essential information for players because it

provides mechanisms for hedge operations against higher

market fluctuations. The term structure of interest rates or

yield curve is a basis for most investments, the reason why

pricing interest rate derivatives currently attract attention of

researches and practitioners.

In the Brazilian derivative markets, one important fixed

income instrument are One-Day Interbank Deposit Con-

tract Index (IDI) options. IDI are contracts that reflect the

behavior of interest rates between the trade date and option

maturity. In USA and European derivative markets, stan-

dard interest rate options has as underlying asset a fixed

income equity with maturity greater than the option con-

sidered. This peculiarity means that IDI becomes option

prices, and the factors that affect them, differently from

those that follow standard models, demand a particular

approach.

Recently Junior et al. (2003), Barbedo et al. (2009),

Almeida and Vicente (2006) employed static models based

on Black–Scholes (BS) formula (Black and Scholes 1973)

and its derivations to price IDI options. Their results have

shown that the theoretical prices differ significantly from
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actual market prices, despite considering the interest rate

options peculiarities.

The BS formula can be put in closed-form and is based

on the following explicit assumptions: (a) it is possible to

borrow and lend cash at a known constant risk-free interest

rate; (b) the stock price follows a geometric Brownian

motion with constant drift and volatility; (c) there are no

transaction costs, taxes or bid-ask spread; (d) the underly-

ing security does not pay a dividend; (e) there is no arbi-

trage opportunity; (f) it is possible to buy any fraction of a

share, and (g) there are no restrictions on short selling.1

Several of these original assumptions have been removed

in subsequent extensions of the model, but they cause

misspecification when the prices estimated are compared

against actual prices. Moreover, one must realize that

option pricing occurs daily, and BS formula does not take

past information into account. Input variables are time

series and models based on static formulas are not able to

capture the temporal dependence of the series involved.

Models that describe the dynamical properties of the series

are more suitable for forecasting. Therefore, static models

like BS and its variations, with more restrictive assump-

tions, do not consider temporal information associated with

the variables that determine the price of an option. These

features suggest the need to develop more accurate option

pricing models to overcome temporal restrictions and to

consider information contained in data.

As option pricing theory typically gives non-linear rela-

tions between option prices and the variables that determine

them, a highly flexible model is required to capture the

empirical pricing mechanism. Computational intelligence

(CI) methods based on Artificial Neural Networks (ANN)

and Fuzzy Systems are particularly useful for this purpose

due to their ability to handle complex systems. During the

last decades, several researchers have attempted ANN for

option pricing (Gençay and Qi 2001 to Maciel and Ballini

2010). In general, their results show that neural networks

models outperform traditional option pricing models.

The use of Fuzzy Set Theory in option pricing became a

new research field in financial engineering. For instance,

Wu (2005) uses fuzzy sets and the BS formula considering

the risk-free interest rate, volatility, and asset price to price

European options. This allows financial analysts to choose

the European price with an acceptance degree.

A fuzzy pricing model of currency options was

addressed in Liu (2009). Here the option price is a fuzzy

number. The author shows that the model helps financial

investors to pick any currency option price with an

acceptable degree for later use. The approach is useful to

handle the imprecise nature of financial environments.

Considering the main classes of stochastic volatility

models (the endogenous and exogenous sources of risk),

Figa-Talamanca and Guerra (2009) generalized the Black–

Scholes option valuation model. In this case, the option

price is also a fuzzy number which, according to the

authors, helps to reduce price misspecifications associated

with uncertainty and vagueness. More recently, Leu (2010)

introduced a fuzzy time series-based neural network

(FTSNN), a hybrid approach composed of a fuzzy time

series model and a neural network model to price options.

The results show that FTSNN outperforms many existing

methods in terms of distinct error measures.

The purpose of this paper is to develop and test evolving

fuzzy rule-based models to price IDI call options traded

on the Securities, Commodities and Future Exchange

(BM&FBOVESPA).

The concept of evolving fuzzy systems introduces the

idea of gradual self-organization and parameter learning in

fuzzy rule-based models (Angelov 2002). Evolving fuzzy

systems use data streams to continuously adapt the struc-

ture and functionality of fuzzy rule-based models. The

evolving mechanism ensures greater generality of the

structural changes because rules are able to describe a

number of data samples. Evolving fuzzy rule-based models

include mechanisms for rule modification to replace a less

informative rule by a more informative one (Angelov

2002). Overall, the evolving mechanism guarantees grad-

ual change of the rule base structure inheriting structural

information. The idea of parameter adaptation of rules

antecedent and consequent is similar in the framework of

evolving connectionists systems (Kasabov and Song 2002),

evolving Takagi-Sugeno (eTS) and extended Takagi-

Sugeno (xTS) models, and their variations (Angelov 2002;

Angelov and Filev 2004; Angelov and Filev 2005; Angelov

and Zhou 2006a). In particular the eTS model is a func-

tional fuzzy model in the Takagi-Sugeno (TS) form whose

rule base and parameters continually evolve by adding

new rules with higher summarization power and modify-

ing existing rules and parameters to match current

knowledge.

The evolving fuzzy participatory learning (ePL) mod-

eling was suggested in (Lima et al. 2010b). The approach

joins the concept of participatory learning (PL) (Yager

1990) with the evolving fuzzy modeling idea (Angelov

2002; Angelov and Filev 2004). In evolving systems the PL

concept is viewed as an unsupervised clustering algorithm

(Silva et al. 2005) and is a natural candidate to find rule

base structures in dynamic environments. Here we focus

on functional fuzzy (TS) models. Similarly as in eTS,

1 The Black model (Black 1976) considered in this work follows the

Black–Scholes model exactly, except for the assumption that the spot

price is a log-normal process which is replaced by the assumption that

the forward price at maturity of the option is log-normally distributed.

The derivation is identical and the final formula is the same except

that the spot price is replaced by the forward price. The forward price

represents the undiscounted expected future value.
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structure identification and self-organization in ePL means

estimation of the focal points of the rules, the antecedents

parameters, except that ePL uses participatory learning

fuzzy clustering instead of scattering, density or informa-

tion potential. With the antecedent parameters fixed, the

remaining TS model parameters can be found using least

squares methods (Chiu 1994; Ljung 1999b). The evolving

fuzzy participatory learning captures the rule base structure

at each step using convex combinations of new data sam-

ples and the closest cluster center, the focal point of a rule.

After, the rule base structure is updated and, similarly as in

eTS, the parameters of the rule consequents are computed

using the recursive least squares algorithm.

Recently, a new class ePL model has been developed

exploring fuzzy rule-based systems with multivariable

Gaussian membership functions, namely, the evolving

Multivariable Gaussian (eMG) (Lemos et al. 2011). This

model consider the possibility that input variables may

interact with each other, avoids the curse of dimensionality,

and introduces a more sound and systematic approach for

learning. The result is an more robust algorithm with less

parameters.

Evolving fuzzy models are inherently adaptive and

particularly appropriate for pricing options because

dynamic markets require rapid information processing and

accurate results, as reflected in investment decisions, form

portfolios and hedging strategies. Moreover, evolving

models require only the latest data, which results in more

efficient processing and the capability to capture option

prices movements in the derivatives market.

After this introduction, this paper proceeds as follows.

Section 2 briefly reviews the idea of evolving fuzzy rule-

based modeling and the basic eTS method. Next, Sect. 3

introduces the concept of participatory learning, the fea-

tures of the evolving fuzzy participatory learning (ePL)

method and its computational details. Section 4 describes

the eMG, an extension ePL model. Section 5 explains IDI

contracts, the model of Black, and alternative neural net-

work models. Section 6 compares the evolving fuzzy

models addressed in this paper against Black model, neural

network and alternative evolving fuzzy models using actual

Brazilian financial market data from 2003 to 2008. Finally,

Sect. 7 concludes the paper summarizing its contributions

and suggesting issues for further investigation.

2 Evolving fuzzy systems

When learning models online, data are collected and pro-

cessed continuously. New data may confirm and reinforce

the current model if data is compatible with existing

knowledge. Otherwise, new data may suggest changes and

a need to review the model. For instance, this is the case

when modeling systems whose operating conditions mod-

ify, fault occurs, or parameters of the processes change.

In evolving systems, a key question is how modify the

current model structure using the newest data sample.

Evolving systems use incoming data to continuously

develop their structure and functionality through online

self-organization.

Fuzzy rule-based models whose rules are endowed with

local models forming their consequents are commonly

referred to as fuzzy functional models. The Takagi-Sugeno

(TS) is a typical example of a fuzzy functional model. A

particularly important case is when rule consequents are

linear functions. The evolving Takagi-Sugeno (eTS) model

and its variations (Angelov and Filev 2004) assume rule-

based models whose fuzzy rules are as follows

Ri : IF x is Ci THEN yi ¼ ci0 þ
Xm

j¼1

cij xj i ¼ 1; . . .; ck

ð1Þ

where

Ri ith fuzzy rule

ck number of fuzzy rules at k; k ¼ 0; 1; . . .

x [ [0,1]m input data

yi output of the ith rule

Ci vector of antecedents fuzzy sets

cij parameters of the consequent

The collection of the rules assembles a model as a

combination of local linear models. The contribution of a

local linear model to the overall output is proportional to

the degree of firing of each rule. eTS uses antecedent fuzzy

sets with Gaussian membership functions:

li ¼ e�rjjxk�vijj2 ð2Þ

where r is a positive constant which defines the zone of

influence of ith local model and vi is the respective cluster

center, the focal point, i ¼ 1; . . .; ck:

Online learning with eTS needs online clustering to find

cluster centers, assumes gradual changes of the rule base,

and uses a recursive least squares to compute the conse-

quent parameters. Each cluster defines a rule.

The TS model output at k is found as the weighted

average of the individual rule contributions as follows:

yk ¼
Pck

i¼1 liyiPck

i¼1 li

ð3Þ

where ck is the number of rules after k observations and yi

the output of ith rule at k.

Clustering starts with the first data point as the center of

the first cluster. The procedure is a form of subtractive

clustering, a variation of the Filev and Yager mountain

clustering approach (Yager and Filev 1994). The capability
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of a point to become a cluster center is evaluated through

its potential. Data potentials are calculated recursively

using Cauchy function to measure the potential. If the

potential of a new data is higher than the potential of the

current cluster centers, then the new data becomes a new

cluster center and a new rule is created. If the potential of a

new data is higher than the potential of the current centers,

but it is close to an existing center, then the new data

replaces the existing center. See Angelov (2002) and

Angelov and Filev (2004) for more details. Current

implementations of eTS adopt Cauchy functions to define

the notion of data density evaluated around the last data of

a data stream, monitors the clustering step, and contains

several mechanisms to improve model efficiency such as

online structure simplification.

The eXtended Takagi-Sugeno (xTS) fuzzy system,

developed by Angelov and Zhou (2006a), introduces the

idea of an daptive recursively updated radius of the clusters

(zone of the influence of the fuzzy rules) that learns the

data distribution/variance/scatter in each cluster and a new

condition to replace clusters that excludes contradictory

rules as the main differences from eTS model.

The clustering method of xTS model is based on the

recursive calculation of the potential of the new data point,

as in eTS model. However, xTS does not consider a con-

stant radius/spread, r. In eTS model the spread is a dif-

ferent, fixed value for each input variable. During clusters

updating process, if a new data point has higher potential

than the existing cluster centers, then a new cluster is

created centered at the new point. Otherwise, the cluster

structure does not change. This mechanism is similar in

xTS model, but if the condition mentioned above holds and

the new point is well represented by existing cluster cen-

ters, then the closest cluster center is replaced by this new

point. Details about xTS models is found in Angelov and

Zhou (2006a).

3 Evolving fuzzy participatory learning

Evolving fuzzy participatory learning (ePL) modeling

adopts the same philosophy as eTS. After the initialization

phase, data processing is performed at each step to verify if

a new cluster must be created, if an old cluster should be

modified to account for the new data, or if redundant

clusters must be eliminated. Cluster centers are the focal

point of the rules. Each rule corresponds to a cluster.

Parameters of the consequent functions are computed using

the local recursive least squares algorithm. In this paper we

assume, without loss of generality, linear consequent

functions.

The main difference between ePL and eTS concerns the

procedure to update the rule base structure. Differently

from eTS, ePL uses a compatibility measure to determine

the proximity between new data and the existing rule base

structure. The rule base structure is isomorphic to the

cluster structure because each rule is associated with a

cluster. Participatory learning assumes that learning

depends on what the system already knows about the

model. Therefore, in ePL, the current model is part of the

evolving process itself and influences the way in which

new observations are used for self-organization. An

essential property of participatory learning is that the

impact of new data in causing self-organization or model

revision depends on its compatibility with the current rule

base structure, or equivalently, on its compatibility with the

current cluster structure.

3.1 Participatory learning

Let vi
k [ [0,1]m be a variable that encodes the ith ði ¼

1; . . .; ckÞ cluster center at the kth step. The aim of the

participatory mechanism is to learn the value of vi
k, using a

stream of data xk [ [0,1]m. In other words, each xk; k ¼
1; . . .; is used as a vehicle to learn about vi

k. We say that the

learning process is participatory if the contribution of each

data xk to the learning process depends upon its acceptance

by the current estimate of vi
k as being valid. Implicit in this

idea is that, to be useful and to contribute to the learning of

vi
k, observations xk must somehow be compatible with

current estimates of vi
k.

In ePL, the object of learning is a cluster structure.

Cluster structure is defined by a set of cluster centers (focal

points, prototypes). More formally, given an initial cluster

structure, a set of vectors vk
i 2 ½0; 1�

m; i ¼ 1; . . .; ck; is

updated using a compatibility measure, qk
i 2 ½0; 1� and an

arousal index, ak
i 2 ½0; 1�: While qi

k measures how much a

data point is compatible with the current cluster structure,

the arousal index ai
k acts as a critic to remind when current

cluster structure should be revised in front of new infor-

mation contained in data. Figure 1 summarizes the main

Fig. 1 Participatory learning

8 Evolving Systems (2012) 3:5–18
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constituents and functioning of the participatory learning

approach.

Due to its unsupervised, self-organizing nature, the PL

clustering procedure may create a new cluster or modify

the existing ones at each step. If the arousal index is greater

than a threshold value s 2 ½0; 1�; then a new cluster is

created. Otherwise, the ith cluster center, the one most

compatible with xk, is adjusted as follows:

vkþ1
i ¼ vk

i þ Gk
i ðxk � vk

i Þ ð4Þ

where

Gk
i ¼ aqk

i ð5Þ

a 2 ½0; 1� is the primary learning rate, and

qk
i ¼ 1� jjx

k � vk
i jj

m
ð6Þ

with jj � jj a norm, m the dimension of input space, and

i ¼ arg max
j
fqk

j g ð7Þ

Notice that the ith cluster center is a convex combination of

the new data sample xk and the closest cluster center.

Similarly as (4), the arousal index ai
k is updated as

follows:

akþ1
i ¼ ak

i þ bð1� qkþ1
i � ak

i Þ ð8Þ

The value of b 2 ½0; 1� controls the rate of change of

arousal: the closer b is to one, the faster the system is to

sense compatibility variations.

The way in which ePL considers the arousal mechanism

is to incorporate the arousal index (8) into (5). Here we

assume

Gk
i ¼ aðqk

i Þ
1�ak

i ð9Þ

When ai
k = 0, we have Gi

k = aqi
k which is the PL proce-

dure with no arousal. Notice that if the arousal index

increases, the similarity measure has a reduced effect. The

arousal index can be interpreted as the complement of the

confidence we have in the truth of the current belief,

the rule base structure. The arousal mechanism monitors

the performance of the system by observing the compati-

bility of the current model with the observations. Therefore

learning is dynamic in the sense that (4) can be viewed as a

belief revision strategy whose effective learning rate (9)

depends on the compatibility between new data, the current

cluster structure, and on model confidence as well.

Notice also that the learning rate is modulated by

compatibility. In conventional learning models, there are

no participatory considerations and the learning rate is

usually set small to avoid undesirable oscillations due to

spurious values of data that are far from cluster centers.

Small values of learning rate while protecting against the

influence of noisy data, slow down learning. Participatory

learning allows the use of higher values of the learning rate

and the compatibility index acts to lower the effective

learning rate when large deviations occur. On the contrary,

when the compatibility is large, it increases the effective

rate, which means speeding up the learning process.

Clearly, whenever a cluster center is updated or a new

cluster added, the PL fuzzy clustering procedure should

verify if redundant clusters are created. This is because

updating a cluster center using (4) may push a given center

closer to another one and a redundant cluster may be

formed. Therefore a mechanism to exclude redundancy is

needed. An alternative is to verify if similar outputs due to

distinct rules are produced. In PL clustering, a cluster

center is declared redundant whenever its compatibility

with another center is greater than or equal to a threshold

value h. If this is the case, then we can either maintain the

original cluster center or replace it by the average of the

cluster centers. Similarly as in (6), the compatibility index

among cluster centers is computed as follows:

qk
ij ¼ 1�

Xp

j¼1

jvk
i � vk

j j ð10Þ

Therefore, if

qk
ij� h ð11Þ

then the cluster i is declared redundant.

Participatory clustering requires choosing parameters

a; b; h and s. The choice can be pursued as follows. If a

given data lead to an increase in the arousal index greater

than the threshold s 2 0; 1½ �; then this data will be the

cluster center of a new cluster (Lima 2008). Consequently,

if the cluster with the highest compatibility, s, is updated,

then it is the case that as
k?1 \ s. Thus from (8) we get:

ak
s þ bð1� qkþ1

s � ak
sÞ ¼ ð1� bÞak

s þ bdk
s \s

) dk
s \

s� ð1� bÞak
s

b
\

s
b

ð12Þ

where ds
k = d(vs

k, xk) is the distance between the cluster

center s and the data xk at k.

On the other hand, considering the compatibility mea-

sure qij
k , for any two distinct cluster i; j ¼ 1; . . .; ck; we

have:

qk
ij ¼ qk

ijðvk
i ; v

k
j Þ ¼ 1� dk

ij\h) dk
ij [ 1� k ð13Þ

If dij
k \ 1 - k, then clusters i and j are considered redun-

dant and redefined as a single cluster. Here dij
k = d(vi

k, vj
k)

is the distance between the centers vi
k and vj

k.

From expressions (12) and (13), to ensure that a new,

nonredundant cluster is added, we should choose values of

b, h and s such that:

Evolving Systems (2012) 3:5–18 9
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0\
s
b
� 1� h� 1

where

s� bð1� hÞ

Analysis of the dynamic behavior of the participatory

learning considering the compatibility and arousal mech-

anisms simultaneously with the learning rate is discussed in

Lima et al. (2010a). The primary learning rate a is a small

value, typically a 2 ½10�1; 10�5�:

3.2 Parameter estimation

After clustering, the fuzzy rule based is constructed using a

similar procedure as eTS described in Sect. 2. The cluster

centers define the modal values of the Gaussian member-

ship functions while dispersions are chosen to achieve

appropriate levels of rule overlapping. Moreover, for each

cluster found, the corresponding rule has linear consequent

function (see (1)) and its parameters adjusted using the

recursive least squares algorithm. Only the rule with

highest compatibility index has its consequent updated.

The computational details are as follows.

Let xk ¼ ½xk
1; x

k
2; . . .; xk

m� 2 ½0; 1�
m

be the vector of

observations and yk
i 2 ½0; 1� the output of the ith rule, i ¼

arg maxjfqk
j g; at k ¼ 1; 2; . . .: Notice that the i-th rule is the

one with highest compatibility index. The consequent

parameters of the ith rule is estimated using (index i is

omitted below for sake of notation simplicity):

Yk ¼ Xkck ð14Þ

where ck 2 R
mþ1 is the vector of unknown parameters

ðckÞT ¼ ½ck
0 ck

1 ck
2 . . . ck

m�

and Xk ¼ ½1 xk� 2 ½0; 1�1�ðmþ1Þ
is composed by the k-th

input vector xk and a constant term. Yk = [yi
k] is the output

vector.

Model (14) gives a local description of the system, but

the vector of parameters c is unknown. One way to estimate

the values for c is to use the data available. Assume that

Yk ¼ Xkck þ ek ð15Þ

where ck represents the parameters to be recursively

computed and ek is the modeling error at k. The least

squares algorithm chooses ck to minimize a sum of squares

errors

Jk ¼ JðckÞ ¼ ðekÞT ek ð16Þ

Define Xk?1 and Yk?1 as follows:

Xkþ1 ¼ Xk

1 xkþ1

� �
; Ykþ1 ¼ Yk

ykþ1
i

� �
ð17Þ

where xk?1 is the current input data and yi
k?1 is the

corresponding model output. The vector of parameters that

minimizes the functional Jk at k is (Young 1984):

ck ¼ Pkbk ð18Þ

where Pk = [(Xk)tXk]-1 and bk = (Xk)TYk. Using the matrix

inversion lemma (Young 1984):

ðAþ BCDÞ�1 ¼ A�1 � A�1BðC�1 þ DA�1BÞ�1DA�1

and making

A ¼ ðPkÞ�1; C ¼ I; B ¼ Xkþ1; D ¼ ðXkþ1ÞT

we get

Pkþ1 ¼ Pk I � Xkþ1ðXkþ1ÞT Pk

1þ ðXkþ1ÞTPkXkþ1

" #
ð19Þ

where I is the identity matrix. After simple mathematical

transformations, the vector of parameters is computed

recursively as follows:

ckþ1 ¼ ck þ Pkþ1Xkþ1 Ykþ1 � ðXkþ1ÞTck
� �

ð20Þ

Detailed derivation can be also found in Astrom and Wit-

tenmark (1994). For convergence proofs see Johnson

(1988) for example. Expression (20) is used to update the

rule consequent parameters at each k.

The use of the recursive least squares algorithm depends

of the initial values of the parameters bc0; and of the initial

values of the entries of matrix P0. These initial values are

chosen based on:

1. Existence of previous knowledge about the system,

exploring a database to find an initial rule base and,

consequently, bc0 and P0.

2. A useful technique when no previous information is

available is to choose large values for the entries of

matrix P0 (Wellstead and Zarrop 1995). If the initial

values of consequent parameters are similar to exact

values, then it is enough to choose small values for the

entries of P0. A standard choice of P0 is

P0 ¼ sIm

where Im is the identity matrix of the order m, and m is the

number of consequent parameters. The value of s usually is

chosen such that s 2 ½100; 10000� if large values are

required, while for the small values s 2 ½1; 10�: More

details can be found in Wellstead and Zarrop (1995).

In this paper, we use the first option, that is, we use a

database to choose the initial rule base and its parameters.

10 Evolving Systems (2012) 3:5–18
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4 Evolving multivariable Gaussian

In Lemos et al. (2011) a new type for ePL modeling is

developed. The evolving Multivariable Gaussian (eMG)

uses an evolving Gaussian clustering algorithm also rooted

in the concept of participatory learning to define the rule

base at each step. However, the clustering procedure con-

siders the possibility that input variables may interact with

each other. Clusters are estimated using a normalized dis-

tance measure (similar to the Mahalanobis distance) and

trigger ellipsoidal clusters whose axes are not necessarily

parallel to the input variables axes, as it would be the case

if the Euclidean distance were used (Kasabov and Song

2002; Lughofer 2008; Angelov and Filev 2004). The idea is

to preserve information about interactions between input

variables. The fuzzy sets of the rules antecedents are

multivariable Gaussian membership functions character-

ized by a center vector, and a dispersion matrix repre-

senting the dispersion of each variable and their

interactions. Similarly as in other evolving system model-

ing approaches (Lughofer 2008; Angelov and Filev 2004),

the parameters of the fuzzy rules consequents are updated

using weighted recursive least squares.

The eMG model uses membership functions of the form:

HðxÞ ¼ exp � 1

2
ðx� vÞR�1ðx� vÞT

� �
ð21Þ

where x is an 1 9 m input vector, v is the 1 9 m center

vector and R is a m 9 m symmetric, positive definite

matrix. The center vector v is the modal value and repre-

sents the typical element of H(x). The matrix R denotes the

dispersion and represents the spread of H(x) (Pedrycz and

Gomide 2007). Both, v and R; are parameters of the

membership function to be associated with cluster center

and cluster spread, respectively.

Most of evolving fuzzy systems perform clustering in

the input or input-output data space, and rules are created

using one-dimensional, single variable fuzzy sets which are

projections of the clusters on each input variable space.

During fuzzy inference, the fuzzy relation induced by the

antecedent of each fuzzy rule is computed using an

aggregation operator (e.g. a t-norm) and the input fuzzy

sets. This approach is commonly used, but it may cause

information loss if input variables interact (Kim et al.

1998; Abonyi et al. 2002). For instance, system identifi-

cation and time series forecasting usually use lagged values

of the input and/or output as inputs, and these lagged

values tend to be highly related.

To avoid information loss, the algorithm introduced

herein uses multivariable, instead of single variable

Gaussian membership functions to represent each cluster

found by the recursive clustering algorithm. The parame-

ters of the membership functions are extracted directly

from the corresponding clusters. These multivariable

membership functions use the information about the dis-

persion matrix of each cluster (estimated by the clustering

procedure) and thus provide information about input vari-

ables interactions.

4.1 Gaussian participatory evolving clustering

The evolving clustering algorithm used by the eMG model

to construct the rule base at each step assumes that the

object of learning is, similarly as in the previous section, the

cluster structure, i.e, the cluster centers vk
i ; i ¼ 1; . . .; ck;

where ck is the number of clusters at step k. The shape of the

clusters are encoded by a dispersion matrix Rk:At each step,

the learning process may create a new cluster, modify the

parameters of an existing one, or merge two similar clusters.

The cluster structure is updated using a compatibility

measure qk
i 2 ½0; 1� and an arousal index, ak

i 2 ½0; 1�; sim-

ilar to ePL. Thresholds are defined for the compatibility

measure (Tq) and the arousal index (Ta). If at each step the

compatibility measure of the current observation is less

than the threshold for all clusters, i.e, qk
i \Tq 8 i ¼

1; . . .; ck; and the arousal index of the cluster with the

greatest compatibility is greater than the threshold, i.e,

ai
k [ Ta for i ¼ arg maxjfqk

j g; then a new cluster is created.

Otherwise the cluster center with the highest compatibility

is adjusted using (4).

The compatibility measure qi
k suggested here uses the

squared value of the normalized distance between the new

observation and cluster centers (M-Distance):

Mðxk; vk
i Þ ¼ ðxk � vk

i ÞðRk
i Þ
�1ðxk � vk

i Þ
T ð22Þ

To compute the M-Distance, the dispersion matrix of each

cluster Rk
i must be estimated at each step. The recursive

estimation of the dispersion matrix proceeds as follows:

Rkþ1
i ¼ ð1� Gk

i ÞðRk
i � Gk

i ðxk � vk
i Þðxk � vk

i Þ
TÞ ð23Þ

The compatibility measure at each step k is given by:

qk
i ¼ exp � 1

2
Mðxk; vk

i Þ
� �

ð24Þ

To find a threshold value for the compatibility measure, we

assume that the values M(xk, vi
k) can be modeled by a Chi-

Square distribution. Thus, given a significance level k, the

threshold can be computed as follows:

Tq ¼ exp � 1

2
v2

m;k

� �
ð25Þ

where vm,k
2 is the k upper unilateral confidence interval of a

Chi-Square distribution with m degrees of freedom, where

m is the number of inputs.
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The compatibility measure is based on a normalized

distance measure (22). The corresponding threshold (25)

must be adjusted considering the input space dimension to

avoid the curse of dimensionality. This is because, as the

input space dimension increases, the distance between two

adjacent points also increases (Hastie et al. 2001). If a fixed

threshold value is used and it does not depend of the input

space dimension, then the number of threshold violations

will increase, which may lead to an excessive generation of

clusters (Lughofer 2008). Looking at expression (25), one

can note that the compatibility measure threshold includes

information about the data space dimensionality because

vm,k
2 is a function of the number m of inputs. Therefore no

manual adjust is needed and the curse of dimensionality is

automatically avoided. In other words, the clustering

method has an automatic mechanism to adjust the com-

patibility measure threshold according to input space

dimension. As the data dimension increases, the distance

between two adjacent points also increases, and the

respective compatibility measure decreases. However, the

compatibility measure threshold also decreases avoiding

excessive threshold violations.

The arousal mechanism adopted by the eMG model uses

a sliding window assembled by the last w observations.

More specifically, we define the arousal index as the

probability of observing less then nv violations of the

compatibility threshold on a sequence of w observations.

Low values of the arousal index are associated with no or

few violations of the compatibility threshold, implying a

high confidence about the system knowledge. High values

of the arousal index are associated with several threshold

violations, meaning that the current cluster structure must

be revised.

To compute the arousal index for each observation, a

related occurrence value oi
k is found using the following

expression

ok
i ¼

0; for Mðxk; vk
i Þ\v2

m;k
1; otherwise

�
ð26Þ

Notice that the occurrence value oi
k = 1 indicates threshold

violation.

Occurrence value oi
k can also be viewed as the output of

a statistical test to evaluate if the values of M(xk, vi
k) are the

expected ones. The null hypothesis of the corresponding

test is that M(xk, vi
k) can be modeled by a Chi-Square

distribution with m degrees of freedom. Under null

hypothesis, the probability of observing oi
k = 1 is k

because k defines vm,k
2 and it is the probability of observing

a false positive, i.e., M(xk, vi
k) [ vm,k

2 .

Since the nature of oi
k is binary and the probability of

observing oi
k = 1 is known, the random variable associated

with oi
k can be described by a Bernoulli distribution with

probability of success k.

Given a sequence assembled by the last w observations,

the number of threshold violations nvi
k is:

nvk
i ¼

Pw�1
j¼0 ok�j

i ; k [ w
0; otherwise

�
ð27Þ

Notice that nvi
k is computed during the first w steps. This

means that the algorithm has an initial latency of w steps.

However this causes no problem because usually w is much

smaller than the number of steps in which learning occurs.

For instance, in real-time applications learning can happen

continuously.

The discrete probability distribution of observing nv

threshold violations on a window of size w is P(NVi
k = nv),

with NVi
k assuming the values nv ¼ 0; 1; . . .;w:Thus, because

NVi
k is the sum of a sequence of i.i.d. random variables drawn

from a Bernoulli distribution with the same probability of

success k, P(NVi
k = nv) can be characterized by the Binomial

distribution:

PðNVk
i ¼ nvÞ ¼

w
nv

� �
knvð1� kÞw�nv; nv ¼ 0; . . .;w

0; otherwise

8
<

:

ð28Þ

The binomial distribution gives the probability of observ-

ing nv threshold violations in a sequence of w observations.

High probability values enforce the assumption that

observations fit the current cluster structure while low

probability values suggests that the observations should be

described by a new cluster.

The arousal index is defined as the value of the cumu-

lative probability of NVi
k, i.e.

ak
i ¼ PðNVk

i \nvÞ ð29Þ

The threshold value of the arousal index Ta is 1 - k, where

k is the same as the one that defines the threshold for

the compatibility measure. The minimum number of

compatibility threshold violations on a window of size w

necessary to exceed Ta can be computed numerically

looking for the first value of nv for which the discrete

cumulative distribution is equal to or greater than 1 - k.

More formally

nv� ¼ arg min
nv

Xnv

k¼1

w
nv

� �
kkð1� kÞw�k � ð1� kÞ

					

					 ð30Þ

The clustering algorithm of eMG continually revises the

current cluster structure and eventually merges similar

clusters. The compatibility between the updated or created

cluster and all remaining cluster centers is computed at

each step. If, for a given pair, the compatibility exceeds

the threshold Tq, then the two clusters are merged, i.e., if

qi
k(vj

k, vi
k) [ Tq or qj

k(vi
k, vj

k) [ Tq, then clusters j and i are

merged.
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The compatibility between two clusters i and j is com-

puted as follows:

qk
i ðvk

j ; v
k
i Þ ¼ exp � 1

2
Mðvk

j ; v
k
i Þ

� �
ð31Þ

where M(vj
k, vi

k) is the M-distance between cluster centers i

and j, that is:

Mðvk
j ; v

k
i Þ ¼ ðvk

j � vk
i ÞðRk

i Þ
�1ðvk

j � vk
i Þ

T ð32Þ

To check if two clusters are similar, we need to compute

qi
k(vj

k, vi
k) and qj

k(vi
k, vj

k) because usually Rk
i 6¼ Rk

j :

Notice that the clustering algorithm has only three

parameters:

– the primary learning rate a used to compute vi
k and Rk

i ;

– the window size w used by the arousal mechanism;

– the confidence level k to compute thresholds Tq and Ta.

The primary learning rate is usually set to a small value,

i.e., typically a 2 ½10�1; 10�5�:
The window size w is a problem specific parameter

because it defines how many consecutive observations

must be considered to compute the arousal index. In other

words, considering the current system knowledge, w

defines the length of the anomaly pattern needed to classify

data either as a new cluster or as a noise or outlier.

The value of the significance level k depends on w. It

must be set such that the arousal threshold Ta corresponds

to more than one compatibility threshold violation, i.e.,

nv [ 1 when ai
k [ Ta. Suggested ranges for values of

k, given w, are:

k�
0:01; if w� 100

0:05; if 20�w\100

0:1; if 10�w\20

8
<

: ð33Þ

The clustering process may start with either a single

observation or an initial data set. If initial data set is

available, then an off-line clustering algorithm can be used

to estimate the initial number of clusters and their

respective parameters. The off-line algorithm should be

capable to provide both, cluster centers and respective

dispersion matrices. If the clustering process starts with a

single observation, then an initial dispersion matrix Rinit

must be chosen, eventually using a priori information about

the problem.

Whenever a new cluster is created during the clustering

process, the new cluster center is set as the current obser-

vation, and the new dispersion matrix is the initial value

Rinit:

If two clusters are merged, then the center of the

resulting cluster is the average of the corresponding clus-

ters centers and the dispersion matrix is Rinit:

4.2 Evolving multivariable fuzzy model

The eMG model uses the evolving clustering algorithm

described above to construct the rule base. The number of

eMG rules is the same as the number of clusters found by

the clustering algorithm at each step when a new cluster

can be created, an existing cluster removed, or existing

clusters updated. Summing up, rules can be created,

merged, or adapted at each step of the algorithm. Rules

antecedents are of the form:

xk is Hi ð34Þ

where xk is a 1 9 m input vector and Hi is a fuzzy set with

multivariable Gaussian membership function (21) and

parameters extracted from the corresponding cluster center

and dispersion.

The model is formed by a set of functional fuzzy rules:

Ri : IF xk is Hi THEN yk
i ¼ ck

io þ
Xm

j¼1

ck
ijx

k
i ð35Þ

where Ri is the ith fuzzy rule, for i ¼ 1; . . .; ck; ck is the

number of rules, and cio
k and cij

k are the parameters of the

consequent at step k.

The model output is the weighted average of the outputs

of the each rule, that is:

ŷk ¼
Xck

i¼1

WiðxkÞyk
i ð36Þ

with normalized membership functions:

WiðxkÞ ¼
exp ðxk � vk

i ÞR�1
i ðxk � vk

i Þ
T
 �

Pck

i¼1 exp ðxk � vk
i ÞðRk

i Þ
�1ðxk � vk

i Þ
T

h i ð37Þ

where vi
k and Rk

i are the center and dispersion matrix of the

ith cluster membership function at step k.

Contrary to ePL, the parameters of the consequent are

updated using the weighted recursive least squares (Ljung

1999; Astrom and Wittenmark 1994) algorithm, similarly

as other TS evolving fuzzy models (Angelov and Filev

2004; Lughofer 2008). Thus, the consequent parameters

and matrix Pi of the update formulas for rule i at each

iteration k become:

ckþ1
i ¼ ck

i þ Pkþ1
i xkWiðxkÞ yk

i � ððxkÞTck
i Þ


 �

Pkþ1
i ¼ Pk

i �
WiðxkÞPk

i xkðxkÞT Pk
i

1þ ðxkÞT Pk
i xk

ð38Þ

The eMG algorithm can be initialized either with an

existing data set, or with a single observation.

If the eMG starts with an existing data set, then an

offline clustering algorithm can be used to estimate the

number and parameters of the initial set of rules. Clustering
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can be done in the input space and a rule created for each

cluster. The antecedent parameters of each rule is extracted

from the clusters, and the consequent parameters estimated

by the weighted least squares algorithm.

If the eMG starts with a single observation, then one rule

is created with the antecedent membership function cen-

tered at the observation, and the respective dispersion

matrix set at the pre-defined initial value. The consequent

parameters are initialized as c0 ¼ ½y00 � � � 0� and Pk = x
Im?1, where Im?1 is an m ? 1 identity matrix and x is a

large real value, for example, x 2 ½102; 104� (Astrom and

Wittenmark 1994).

As new data is input, the eMG algorithm may create,

update or merge clusters. Thus, the set of rules, the rule-

base, must be updated as well. This is done as follows.

If a new cluster is created, then a corresponding rule is

also created with antecedent parameters extracted from the

cluster and consequent parameters computed as the

weighted average of the parameters of the existing clusters:

ck
new ¼

Pck

i¼1 ck
i q

k
iPck

i¼1 qk
i

ð39Þ

The matrix P is set as Pnew
k = xIm?1.

If an existing cluster is updated, then the antecedent

parameters of the corresponding rule are updated

accordingly.

Finally, if two clusters i and j are merged, then the

consequent parameters of the resulting rule are computed

as follows:

ck
new ¼

ck
i q

k
i þ ck

j q
k
j

qk
i þ qk

j

ð40Þ

The matrix P is set as Pnew
k = xIm?1.

5 Fixed income options and pricing model

5.1 IDI contracts

The most important Brazilian interest rate is the One-Day

Interbank Deposit Contract rate, or ‘‘CDI rate’’. It is

computed as the average rate of all interbank overnight

transactions in Brazil, published daily by ANBIMA (Bra-

zilian National Association of Investment Banks).2

The underlying asset of IDI options is the One-Day

Interbank Deposit Contract Index, or IDI index. This index

is calculated by BM&FBOVESPA as the result of the

accrual daily CDI rate. The IDI index was set to 100,000 on

January 2nd, 2003. The IDI index at t is

IDIt ¼ 100; 000 �
Yt

u¼1

1þ CDIuð Þ ð41Þ

where u = 0 refers to the date when the IDI was set to

100,000 and CDIu is the CDI rate of day u.

IDI options are European-styled cash-settled options

that entitles the owner to receive the maximum between

zero and the difference of the index and the strike price,

according to the option style, i.e., call or put.

5.2 Black formula

The model of Black (Black formula) is commonly used by

players of BM&FBOVESPA. The model is based on Black

(1976) and gives the price of an IDI call option as:

ct ¼ IDIt � N d1ð Þ � X � P t; Tð Þ � N d2ð Þ ð42Þ

where:

d1 ¼
ln IDIt

X�P t;Tð Þ

� 
þ r2� T�tð Þ3

6

r �
ffiffiffiffiffiffiffiffiffiffi
T�tð Þ3

3

q and d2 ¼ d1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T � tð Þ3

3

s

where IDIt is the value of the IDI index at time t, P(t, T) is

the price at time t of a discounted 1$ equity with maturity

T, r is the short-term interest rate volatility, X is the strike

price, and N(�) the normal cumulative distribution function.

In this model, short-term interest rate volatility is esti-

mated using a Generalized Autoregressive Conditional

Heteroskedasticity, GARCH (1,1), process based on CDI

rate returns, parametrized according to Bayesian Informa-

tion Criterion (BIC) (Schwarz 1978). Volatility is the

unobservable parameter in the model of Black. The strike

price, IDI index, and maturity form the database.

5.3 Neural networks models

A number of empirical studies that include Zurada et al.

(1999) show that ANN are better than time series models in

finance and economics applications. However, Yang et al.

(1999) pointed that Black and neural networks models have

similar performance in some cases.

For comparison purposes, we adopt Elman and Jordan

recurrent neural networks structures, ERNN and JRNN,

respectively, for IDI calls option pricing.

The main issue in neural network models is how to find

the optimal architecture, that is, the optimal number of

hidden layers and neurons. For inputs we used a model

with all parameters that can influence IDI call option price:

IDI index, short-term interest rate volatility, maturity and

strike price.

2 Brazilian banks usually express their costs of funding in percentage

of the published CDI terms, and it can be said that CDI is the relevant

cost of opportunity for Brazilian banks.
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The database was partitioned into three sets: training set,

testing set and validation set, with 65, 20 and 15% of total

data, respectively. The gradient algorithm was used to train

the neural network.

6 Results and discussion

Data consists on time series of IDI options for different

strikes and maturities. The data covers the period from

January 2nd, 2003 to June 5th, 2008.3 We selected the most

liquid IDI calls within each day with negotiated contracts

greater or equal to 1000. Nevertheless, the CDI daily index

was selected for all business days of the period.

The models were adjusted considering the same inputs

that determines IDI call options price according to the

Black model: IDI index at day t, short-term interest rate

volatility, estimated by a GARCH(1,1) process considering

CDI spot rate returns, strike price and maturity.

Table 1 summarizes the neural networks structures

adjusted to IDI call options. The hidden neurons numbers

were selected according to a Bayesian Information Crite-

rion procedure (BIC) (Schwarz 1978) based on root mean

squared error (RMSE). We can see that the obtained

structures are composed by three hidden layers.

The ePL model adopted the following values:

b = s = a = 0.01 and h = 0.11. The ePL found 4 rules

during the 3,512 days (trainning) period. During testing,

ePL uses daily data and run as in online mode.

The eTS and xTS models were developed considering

the first 3,512 days before the testing period. The value of

the cluster radii for the eTS model was r = 0.4 and the

initial value for covariance matrix X ¼ 450: The eTS

model found 8 rules. For the xTS model is necessary to

define only the initial value for covariance matrix X ¼ 750

to initialize the recursive least squares. xTS found 6 rules.

The eTS and xTS implementations used here are reported

in Angelov and Zhou (2006b).

The eMG started clustering with the first observation

and the parameters were k = 0.01, w = 50, a = 0.01 and

Rinit defined as a diagonal matrix containing the variance of

each input variable in the diagonal, estimated using the first

250 input samples. The eMG model derived 6 rules.

The superiority in terms of low computational costs

(time) and low complexity (low number of fuzzy rules) of

evolving family is clearly visible in Table 2. The test was

carried out on a laptop computer Intel(R) Core(TM)2 Duo

with a CPU 2.00 GHz. Total CPU time means processing

all available data samples. The programming language of

the eTS and xTS models is Java. ePL and eMG were

written in Matlab.

6.1 Performance measures

We consider the mean absolute percentage error (MAPE),

maximum percentage error (MPE), root mean squared error

(RMSE), mean absolute error (MAE) and Theil’s inequality

coefficient (TIC)4 as performance measures:

MAPE ¼ 100

N

XN

i¼1

ct � ĉtj j
ct

ð43Þ

MPE ¼ max
t¼1;...;N

100
ct � ĉtj j

ct

� �
ð44Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

� �XN

t¼1

ct � ĉtð Þ2
vuut ð45Þ

MAE ¼ 1

N

XN

t¼1

ct � ĉtj j ð46Þ

TIC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

t¼1
ct�ĉtð Þ2

N

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

t¼1
ðctÞ2

N

r

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

t¼1
ðĉtÞ2

N

r ð47Þ

where ct is the true value of the tth point of the series of

length N; ĉt is the predicted value.

Moreover, we computed the determination coefficient

R2 which is also an indicator of performance. This indicator

is obtained by a simple regression model of the market

prices estimated by models against the theoretical prices.

The results were evaluated according to the degree of

moneyness (M), defined by the relation between the strike

price present value and the underlying asset spot price:

Table 1 Recurrent neural network structures

Models Number of neurons

1st layer 2nd layer 3rd layer

ERNN 4 5 3

JRNN 5 6 4

Table 2 Structure for each evolving systems

Models Parameters Rules Total CPU time (s)

eTS 2 8 8.78

xTS 1 6 9.03

ePL 4 4 9.02

eMG 3 6 11.95

3 The data was obtained with BM&FBOVESPA.

4 The best model, in terms of accuracy, is the one that shown TIC

index close to zero.
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M ¼ IDIt

X � Pðt; TÞ ð48Þ

In this case, IDI options were considered according to the

degree of moneyness: out-of-the-money (M B 1 - p), at-

the-money (1 - p \ M B 1 ? p) and in-the-money

(M [ 1 ? p), considering p = 0.05.

Although all performance measures of forecasting

accuracy that have been extensively employed in practice,

they do not reveal whether the forecast of a model is sta-

tistically superior to another one. Therefore, it is imperative

to use additional tests to help comparison among two or

more competing models in terms of forecasting accuracy.

The parametric test of equal forecast accuracy adopted

here is the Morgan–Granger–Newbold (MGN) test, pro-

posed by Diebold and Mariano (1995). This test is employed

when the assumption of contemporaneous correlation in the

prediction errors is relaxed. Let xt = (eit ? ejt) and

zt = (eit - ejt), where eit and ejt are the residuals of two

models, i and j, adjusted. The null hypothesis of equal

forecast accuracy is equivalent to zero correlation between x

and z (that is, qxz = 0) and the test statistic

MGN ¼ q̂xzffiffiffiffiffiffiffiffiffi
1�q̂2

xz

N�1

q ð49Þ

is distributed as Student’s t with N - 1 degrees of freedom.

q̂xz is the estimated correlation coefficient between x and z.

The significance (SIGN) test, due to Lehmann (1988), is

a nonparametric test that does not require errors to be

normally distributed or serially uncorrelated. The null

hypothesis is H0 : HN ¼ N
2
; which indicates that the models

will be equally accurate. The null hypothesis is rejected

when HN is sufficiently large. The test statistic

SIGN ¼
HN � N

2

� �

1
2

ffiffiffiffi
N
p ð50Þ

tends to the standard normal distribution. HN denotes the

number of periods that the forecasting errors of a model is

expected to surpass the errors of another model.

6.2 Comparison and analysis

Here we evaluate the models using the performance mea-

sures and accuracy statistical tests. The test set is composed

by the data from August 1st, 2007 to June 5th, 2008, a

sample with 884 points.

Table 3 shows the results for each performance mea-

sures. According to these measures, we can see that Back

model performed worst. The neural networks have shown

no significant performance difference. The evolving fuzzy

models provided forecasts with the lowest performance

measures values. This shows the capability of evolving

models to capture temporal data dependence. The evolving

fuzzy models give IDI call prices closer to real prices than

the remaining models.

Table 4 shows the performance measures according to

the degree of moneyness. It confirms the superiority of the

evolving models. They also capture IDI option pricing

movements. The Black model, in general, has low capa-

bility to price out-of-the-money IDI call options because

the higher the degree of moneyness, the higher the error.

The results of the MGN test are summarized in Table 5.

It gives pair-wise comparisons between forecasts of two

Table 3 Forecast evaluation and error measures for IDI call options

Models MAPE MPE RMSE MAE TIC R2

Black 47.34 549.10 0.27 0.23 0.21 0.01

RNRE 15.42 500.53 0.10 0.07 0.09 0.18

RNRJ 15.04 504.35 0.09 0.07 0.09 0.20

eTS 12.73 501.12 0.08 0.06 0.07 0.39

xTS 11.60 491.57 0.07 0.05 0.07 0.45

ePL 12.14 494.57 0.08 0.06 0.07 0.42

eMG 9.81 453.94 0.07 0.05 0.06 0.44

Table 4 Forecast evaluation for IDI call options, according to the

degree of moneyness

Models MAPE MPE RMSE MAE TIC R2

Out-of-the-Money

Black 68.12 625.91 0.38 0.32 0.24 0.01

ERNR 14.76 502.87 0.13 0.10 0.08 0.18

JRNR 15.32 478.76 0.12 0.09 0.09 0.20

eTS 11.93 453.09 0.07 0.05 0.06 0.39

xTS 10.86 462.12 0.06 0.06 0.07 0.43

ePL 11.04 449.87 0.09 0.08 0.07 0.44

eMG 10.82 444.82 0.07 0.05 0.06 0.42

At-the-Money

Black 44.31 501.87 0.30 0.22 0.19 0.02

ERNR 14.51 507.65 0.10 0.08 0.09 0.21

JRNR 15.23 487.01 0.09 0.07 0.09 0.21

eTS 12.21 444.39 0.07 0.05 0.07 0.40

xTS 10.92 450.92 0.06 0.04 0.06 0.44

ePL 10.43 449.44 0.09 0.06 0.07 0.44

eMG 9.67 458.23 0.06 0.05 0.06 0.43

In-the-Money

Black 45.76 564.98 0.29 0.22 0.19 0.02

ERNR 16.23 501.23 0.11 0.09 0.09 0.19

JRNR 15.99 489.00 0.10 0.10 0.08 0.19

eTS 11.76 451.92 0.07 0.06 0.07 0.37

xTS 11.89 448.76 0.07 0.05 0.07 0.44

ePL 11.06 451.22 0.06 0.04 0.08 0.43

eMG 9.55 439.82 0.06 0.04 0.06 0.41

16 Evolving Systems (2012) 3:5–18

123



competing models. It reveals that statistically all the

models outperform the Black model when pricing IDI call

options.5 Table 5 also reveals that, from the MGN point

view, eMG is statistically more accurate than ePL.

The nonparametric test, SIGN, also compares pair-wise

forecasts of competing models. Table 5 shows that,

agreeing with the results pointed by MGN, that neural

networks and evolving fuzzy models are better to price IDI

options. SIGN also confirms the capability of eMG to

model the Brazilian fixed income option pricing.

7 Conclusion

This paper has suggested evolving fuzzy systems as

approaches to develop evolving fuzzy rule-based models for

options pricing. Option pricing is an important field of

financial engineering and particularly relevant for deriva-

tives market. Computational experiments with prices the

Brazilian fixed income options data have shown that evolv-

ing fuzzy modeling outperforms conventional Black model

and neural network models. Further work shall address

human perception as part of modeling and models, and

experiment the models in actual decision-making instances.
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