
ORIGINAL PAPER

A novel content classification scheme for web caches

G. P. Sajeev • M. P. Sebastian

Received: 8 August 2010 / Accepted: 2 December 2010 / Published online: 28 December 2010

� Springer-Verlag 2010

Abstract Web caches are useful in reducing the user

perceived latencies and web traffic congestion. Multi-level

classification of web objects in caching is relatively an

unexplored area. This paper proposes a novel classification

scheme for web cache objects which utilizes a multinomial

logistic regression (MLR) technique. The MLR model is

trained to classify web objects using the information

extracted from web logs. We introduce a novel grading

parameter worthiness as a key for the object classification.

Simulations are carried out with the datasets generated

from real world trace files using the classifier in Least

Recently Used-Class Based (LRU-C) and Least Recently

Used-Multilevel Classes (LRU-M) cache models. Test

results confirm that the proposed model has good online

learning and prediction capability and suggest that the

proposed approach is applicable to adaptive caching.

Keywords Web caching � Predictive caching � Adaptive

caching � Content classification � Performance � Logistic

regression

1 Introduction

Caching and replication of web contents are well accepted

techniques to improve the performance of web services. A

proxy-cache deployed near to a client serves the web

documents locally as shown in Fig. 1. This increases the

client side download speed and reduces the outborn traffic.

An efficient proxy-cache server can deliver most of the

requests from its local cache. The performance of such a

service depends on the cache architecture, admission pol-

icy, replacement method and cache consistency. Handling

the input traffic dynamics is the key aspect in a cache

server’s success.

With the introduction of web cache systems, traffic

characteristics like self-similarity (Dill et al. 2002), popu-

larity of web objects (Breslau et al. 1999) and web sites

(Krashakov et al. 2006) were identified as important. These

characteristics are utilized to optimize and improve the web

cache performance using better cache replacement algo-

rithms, cache architecture and cache consistency. The web

is highly dynamic in nature with respect to the type of

applications, growth, number of users and services. Hence,

the reported traffic properties and their values are liable to

change continuously. Thus, generalizing the characteristics

of the web traffic is considered to be difficult (Cobb and

ElAarag 2008).

The web caching task includes object caching, object

replacement and consistency handling of an object. Each of

the subtask arises in the following situations:

1. Caching to decide whether an object is to be cached or

admitted to the cache store, when it arrives from the

origin server.

2. Replacement to decide whether an object is to be

replaced/evicted from the cache store, when the cache

storage is full. This is the process of finding out the

best candidate for eviction.

3. Consistency to decide an action (update/pre-fetch),

when an object in the cache store becomes stale.

G. P. Sajeev (&)

Government Engineering College Kozhikode,

WestHill, Kozhikode 673005, Kerala, India

e-mail: gpsajeev@geckkd.ac.in

M. P. Sebastian

Indian Institute of Management Kozhikode (IIMK),

Calicut 673570, Kerala, India

e-mail: sebasmp@iimk.ac.in

123

Evolving Systems (2011) 2:101–118

DOI 10.1007/s12530-010-9026-6

The above mentioned tasks are simple object selection

issues, in which an object is selected using some grading

value. The basic caching policies estimate this grading

value using certain object request statistics like recency and

frequency. The corresponding algorithms are known as

LRU (Least Recently Used) and LFU (Least Frequently

Used), respectively. These schemes are simple to imple-

ment and perform well in the case of uniform objects and

latencies. As they cannot adapt with the size of the object

and changes in traffic patterns, they are not good enough

for the web caching. Extended methods like Greedy Dual-

Size Popularity (GDSP) (Jin and Bestavros 2000), LUV

(Least Unified Value) (Bahn et al. 2002) and Grade (Bian

and Chen 2008) use a combination of two or more object

attributes for decision making. They generally perform

better than the basic caching schemes. The adaptive and

intelligent caching schemes estimate the grading value by

using the request statistics, network information and web

server’s capacity, which utilizes statistical or machine

learning techniques (Sulaiman et al. 2008; Cobb and

ElAarag 2008; Yang and Zhang 2003). The grading value

used in these methods captures the traffic dynamics better,

but with more computational overhead.

Podlipnig et al. (Podlipnig and Böszörmenyi 2003)

conduct an extensive survey on cache replacement

schemes. They claim that the caching schemes are influ-

enced by four factors (characteristics) while applying a

caching or a replacement strategy. The factors are fre-

quency, recency, size and cost. However, it is very difficult

to keep track of the history of all these factors simulta-

neously. Hence most of the existing approaches rely upon

some object grading mechanism, like popularity-rank of

the object (Chen and Zhang 2003; Jin and Bestavros 2000),

cost function for retrieval of an object (Li et al. 2007; Cao

and Irani 2002) and page grade (Bian and Chen 2008). All

these approaches assume some general characteristics to

define the grading parameter. These methods are not

applicable if the traffic nature is dynamic. To tackle this

situation, researchers adopted intelligent and heavy

machine learning techniques in the form of neural networks

(NN) (Cobb and ElAarag 2008), artificial intelligence (AI)

(Sulaiman et al. 2008) and web log mining technique

(Yang and Zhang 2003) for which the computational

overheads are high. Also, the practical feasibility of such

methods is yet to be established. So, we propose a semi

intelligent classification method (for object grading) which

uses a light-weight machine learning technique and is

adaptable to the dynamic nature of the web traffic.

The beneficiaries of caching are both users and system

resources. Users will experience an immediate delivery of

the object, as it is delivered from a local cache server. The

demand for network resources such as bandwidth and

server capacity will be reduced when the objects are

cached. Generally, these benefits are represented in the

form of two performance metrics named as hit ratio (HR)

and byte hit ratio (BHR), which are borrowed from the

conventional processor cache. Intuitively, HR indicates the

benefit of caching from the user’s perspective and the BHR

reflects the cache benefits for the network resources. Note

that in a processor cache, all the object attributes (size,

latency and type) are uniform. Though HR and BHR are

indicative of the performance in terms of percentage of

saving, they are only very peripheral when the complex

nature of web caching is considered. So, there is a need for

other meaningful metrics which combine the object attri-

butes and the benefits of caching.

Caching schemes can be developed using an object

classification approach. In fact, an inherent (or hidden)

classification works in all caching schemes, except for the

basic caching algorithms. For instance, the model descri-

bed by (Jin and Bestavros 2000), classifies objects into two

classes; cache-able and non cache-able, according to its

popularity and size. A classification scheme of user

requests for objects as cache-able and non cache-able is

given in (Cobb and ElAarag 2008), which uses the neural

network (NN) as the classifier. To the best of our knowl-

edge, only binary classification schemes are available for

web cache objects, which use cache-ability of the object as

Clients

W
eb

 S
er

ve
rs

Server
Proxy−Cache

Req
ue

sts

W
eb

Obje
cts

Internet

Fig. 1 A proxy-cache server

system

102 Evolving Systems (2011) 2:101–118

123

the key for classification. Motivated by this fact, we pro-

pose a generic classification scheme, which classifies the

web objects into multilevel classes with reasonable pre-

diction capability. We believe that this classification

method can perform better than the binary classifiers. Our

approach is different from the earlier classification

approaches by constructing a model for the object wor-

thiness with the informations extracted from the web traf-

fic. This approach incorporates traffic patterns and object

properties and can be extended or modified for a specific

form of caching; examples include multimedia caching,

server side caching and cooperative caching.

Logistic regression (LR) models are widely used in a

number of applications, particularly in the medical field

for the classification of data. Other classifier tools of

interest are Artificial Neural Network (ANN), Support

Vector Machine (SVM), K-nearest Neighbors and Deci-

sion Trees. Among these, LR and ANN methods are quite

popular (Dreiseitl et al. 2001). The reported results in

(Long et al. 1993) suggest that there is no significant

performance difference between LR and Decision Trees.

We have not considered the K-nearest Neighbors as its

classification performance is not good enough to be

comparable with LR and ANN (Dreiseitl and Ohno-

Machado 2002).

The LR models have many advantages over other

machine learning models (Sargent 2001). They are simple

and flexible compared to the other models (Dreiseitl et al.

2001; Sargent 2001). The interpretation of results, ease of

use and implementation support in various software pack-

ages are the main attractions of the LR method. Based on

the observations, we choose MLR as the classifier (which

has less computational overhead and simplicity, compared

to the NN counterpart). Also, our caching model does not

demand very high classification accuracy which is offered

by the neural network classifiers (Green et al. 2006). The

major contributions of this work are:

• Proposing a novel content classification scheme, which

classifies the web objects into multiple classes.

• Computing a new comprehensive quality parameter

worthiness for web objects, to help in caching

decisions.

• Providing an experimentation showing that our method

is flexible and adaptive compared to the binary level

classification.

The remainder of the paper is organized as follows.

Section 2 discusses the details of the related research.

Section 3 introduces the classification scheme and the

MLR model. Section 4 presents the details of simulation,

data processing and performance evaluation. Section 5

gives the results of the simulation experiments. Section 6

concludes the paper, with suggestions for future work.

2 Related work

In spite of the large number of proposed caching schemes,

traffic analysis reports and replacement algorithms in the

literature, only a few of them pay attention to the web

object classification. (Foong et al. 1999) proposes a binary

logistic regression model to predict the future access pat-

tern. Their study considered size, type, previous hits and

time since the last access as predictive variables (Xs) and

the response variable (Y) maps into two categories; the

object will be re-accessed in a given forward looking

window (with Y = 1), or not (with Y = 0). This approach,

though simple in design, does not address the download

latencies of the object. As there is no specific object clas-

sification scheme adopted, this model is limited for content

distribution applications.

A nonlinear model is used by (Koskela et al. 2003) to

predict the value of each cache object using the features

from the HTTP responses of the server, the access log of

the cache and from the HTML structure of the object. Here

the web objects are classified into class0 and class1. The

classification is done with respect to only one parameter:

popularity. Even though the results are promising, it lacks a

general classification approach and hence useful mainly for

cache replacement.

An adaptive method is suggested in (Tian et al. 2002)

using NN to predict the future access of web pages. This

model is similar to (Foong et al. 1999), except for the

usage of the NN. This approach has definite advantages of

the NN, but lacks a strong classification scheme. The

Neural Network Proxy Cache Replacement (NNPCR)

technique suggested in (Cobb and ElAarag 2008), extracts

frequency, recency and size from the web logs to predict

the cache-ability of an object. Even though this model has

high learning rate and prediction accuracy, it does not

consider the previous latencies and type of the objects,

which are important in the current web cache. Though the

approach in (Bian and Chen 2008) is promising as it uses a

page grading mechanism, its prediction mechanism is

weak. This model also does not use any object classifica-

tion method.

It is worth mentioning the classification scheme pro-

posed by (Pallis et al. 2007), even though it is applicable

for CDN’s (Content Delivery Networks) only. A binary

scheme classifies the objects as dynamic and static

according to the user’s interest (or popularity). However,

this scheme does not consider the size, type and latency in

order to estimate the quality value of the object.

Thus, the number of caching schemes based on web

object classification is low and are with some limitations.

So there is a need for further research in this direction. In

the proposed work, we use a discrete choice parameter as a

key for classification in contrast to the binary classification

Evolving Systems (2011) 2:101–118 103

123

in the above works. Our technique is similar to (Foong

et al. 1999) in the sense that both use Logistic Regression

for the object classification. Rather than concentrating

much on the cache-ability of objects, we focus on a general,

predictive object classification scheme, which can be uti-

lized for cache admission, replacement and pre-fetching.

3 The proposed content classification scheme

Our proposed scheme is derived from (Foong et al. 1999),

where the web access is modelled as hit/miss sequence and

targeting whether an object would be referenced in the near

future or not, using a binary LR model. Our idea is dif-

ferent from this by the use of grading parameter worthi-

ness, which incorporates object attributes and traffic

parameters to a single factor. The worthiness parameter has

advantages over the other parameters such as grade (Bian

and Chen 2008), cost (Li et al. 2007; Cao and Irani 2002)

and popularity (Chen and Zhang 2003; Jin and Bestavros

2000) as it is comprehensive and generic. So, the worthi-

ness parameter can be tuned for a specific form of content

distribution (e.g., multimedia caching and object pre-

fetching). Rather than finding the value of the worthiness of

objects individually, a relationship is to be obtained among

the object attributes and traffic characteristics, which is to

be mapped to multilevel classes.

As mentioned earlier, caching schemes are generally

influenced by four factors (characteristics) of objects while

applying a cache admission/replacement strategy (Podlipnig

and Böszörmenyi 2003) as listed below:

• Frequency the number of references to an object in the

past (popularity).

• Recency the time elapsed since the last reference to the

object (reflects temporal locality in the request stream).

• Size the size of the object.

• Cost the cost of fetching an object from the origin

server (usually a function of frequency and size).

We consider three more parameters to estimate the

worthiness of an object. They are—Consistency in popu-

larity—the mean popularity obtained by considering the

past accesses as number of windows.

• Distance to the origin server (or previous download

latency): the time taken for an object to get into

the cache. Usually this is pd þ Sd, where pd is the

propagation delay (travelling time) and Sd is the

processing time at the origin server. We understand

that this parameter is very difficult to measure correctly

in the practical situations. However, we include this

parameter to avoid caching of objects from nearby, fast,

and powerful web servers.

• Type of the object: the different types of web objects

include HTML, image and applications.

3.1 The classification problem

The classification problem is essentially a decision on the

class membership (Dreiseitl and Ohno-Machado 2002).

More specifically, a classifier h maps any object x [X to

its true classification label y [Y defined by some unknown

function g : X ! Y on a dataset T ¼ fðx1; y1Þ; ðx2; y2Þ;
. . .; ðxn; ynÞg: The class label values could be dichotomous

(y values are either 0 or 1) or polytomous (y takes more

than two values) and xi are usually m-dimensional vectors

(Dreiseitl and Ohno-Machado 2002).

To classify the web objects, two approaches are possible

as can be seen from Fig. 2a and b. One is by labeling the

classes according to the grading parameter (e.g., cost, rank

or worthiness), which can be used as a key for caching

tasks like admission or replacement. The second approach

is by assigning class label values with respect to object

attributes like frequency, recency and size (e.g., a class

with popular objects with small size). Both the approaches

are relevant in its own way; the first approach is useful

when the intention is to develop caching schemes by a

single quality factor of the objects and the second approach

has the advantage of grouping the objects with combination

of attributes. The second approach is useful to analyze the

nature of objects which are handled by the cache. We

choose the first approach as our objective is to develop a

caching scheme using classification.

3.1.1 Object worthiness

The notion of object worthiness is similar to rank (Chen and

Zhang 2003; Jin and Bestavros 2000), cost (Li et al. 2007;

Cao and Irani 2002) and page grade (Bian and Chen 2008)

but is different in definition and in the method of computa-

tion. The above parameters classify the objects according to

cache-ability, popularity, size and cost of fetching and

captures these parameters online. Their objective is to

increase the performance of the cache server by keeping

most of the popular objects in the cache. However, it is not

feasible to keep track of the history of all these factors

simultaneously. Hence most of the existing grading mech-

anisms have considered only the popularity and size and did

a trade off between HR and BHR. This may improve the

cache performance from the users perspective, but the per-

formance will not be consistent with the changes in the

traffic patterns. Our objective is to classify the web objects

using the worthiness parameter which adapts to the traffic

conditions and object properties. The worthiness of an object

104 Evolving Systems (2011) 2:101–118

123

is essentially its merit to become a new member of the cache

store, or to continue its membership.

Definition 1 The object worthiness W of a web cache is a

discrete choice variable which is defined as

W ¼ Fðx1;x2; . . .;xmÞ ð1Þ

where W takes values from 0 to N - 1 in a N-class clas-

sifier and xi s are the individual worthiness contributions.

In this paper, six factors are considered for computing the

aggregate worthiness as given in Tables 1, 2. The number

of such independent variables is flexible and can be deci-

ded based on the relevance.

3.1.2 Computing the object worthiness

The goal of the data stream classifier is to go online and

adapt with the line conditions. The desirable features of

such a classifier are fast response time and the use of

less memory and computational resources (Attar et al.

2010). Another desirable aspect of the classifier is its

stability in prediction accuracy. It is known (Miller 2002;

Ahn et al. 2007) that a single classifier model performs

poorly. Averaging or ensembling of multiple models can

address this problem (Friedman et al. 2000; Ahn et al.

2007).

Ensembling addresses the stability issue of the classifier

by combining multiple classification models and features

of the data. The different options of combining are parallel

combining, stack combining and weak combining (Ahn

et al. 2007). In weak combining method, classifiers of the

same type are trained using the same set of features or

subsets of the same set. In our proposed method, we use a

weak combining ensembling since the classifier is meant

for classifying input data stream of the web cache server.

The weak combining is desirable because it learns faster

and consumes less resources (Chu et al. 2004).

Consider a multiclass classification environment where

the training data for an ensemble is represented as

(a) (b)

Fig. 2 Possible ways of classifying web objects for caching a Objects are classified according a grading parameter worthiness, b classified

according to attributes

Table 1 Variables and

descriptions
Variable name Notation Description

Independent variables

Primary variables

Popularity xp The factor represents relative popularity of an object

Recency xr The factor represents the recency of the object

Object size xs Size of the object in bytes

Auxiliary variables

Popularity consistency xpc The factor represents bursts in popularity

Delay xd The factor represents delivery time of objects or

distance to the origin server

Type of object xt Object types fall into three categories html/text,

image/video, application

Dependent variable W Aggregate worthiness factor

Evolving Systems (2011) 2:101–118 105

123

ðX; YÞ ¼ fðxi; yiÞ; i ¼ 1; . . .;Ng ð2Þ

where xi is a vector-valued sample attribute and yi [
f1; . . .;mg is the class label. Since yi is mapped as new

parameter worthiness (which is not directly available from

the cache logs), it is computed using the adaptive technique

depicted in Fig. 3. The worthiness factor is (re) computed:

(1) for training the classifier, (2) when learning or predic-

tion accuracy is not within the expected limit, (3) when a

concept drift is detected.

Consider a continuous data stream with the point of

observation at T. Let WF and WB are the forward and back-

ward looking windows with number of samples as NF and

NB, respectively. The simple way to compute the worthiness

factor is by comparing the actual values in the WF with the

threshold values by assigning the weight for individual

worthiness contributions. We denote ck
l as the score of

sample k at T for the attribute l. Then the new score of the

sample k (for the attribute l) at T ? 1 is cl
k ± dl

k, where dl
k is

the score in WF.

Let Alj ; j ¼ 1; . . .; p be the threshold values of different

p attributes and alj be the estimate of observed values in

WF. dl
k is computed using a function (either growing or

decaying) according to the observed value in WF and the

history of past samples as

dl
k ¼ C1 NF; alj ; c

l
k

� ��
aðljÞ �Alj ð3Þ

or

dl
k ¼ C2 NF;�alj ; c

l
k

� ��
aðljÞ\Alj ð4Þ

C1 and C2 are chosen by analyzing the trace data and the

nature of the attribute. The aggregate score yk is computed as

yk ¼
X

8l
cl

k � xk ð5Þ

This method computes the worthiness class of the objects

by computing the score (contribution) of all attributes,

successively. Minor changes and tuning are necessary for

computing the score of attributes like consistency in

popularity and the delay. Algorithm 1 describes this

computational process.

Table 2 Notations used in the model

Notations

used

Meaning

N Number of references

Oi ith cache object

S Size of the object

t0 Time of consideration

tr Time of last reference to the object

f Frequency; number of times the object

referred in the previous window

p Aggregate popularity index

k Number of windows

pi Popularity indices of windows, where

i ¼ 1; 2; . . .; k

te Elapsed time for the object, when

it is delivered from origin server

T Constant used to subdue the recency factor. The value

is chosen by observing the timing information

Speed Bit rate of outer link from the cache server

Data
Stream

Pre
Processor

Learning

Prediction

Computation
Worthiness

W

Error

Error

W

Fig. 3 A generic model for computing the worthiness from the data

stream and integrating with the classifier

106 Evolving Systems (2011) 2:101–118

123

3.2 The MLR model

A MLR model is used for the data where the dependent (or

response) variable is unordered or polytomous (multicate-

gory), and the independent (or explanatory) variables are

continuous or categorical predictors (Hosmer and Leme-

show 2000; Agresti and Wiley 1990; Wang 2005). This type

of model is therefore measured on a nominal scale and was

introduced by McFadden in 1974. This model is also called

as discrete choice model and is an extension of the binary

logistic regression. In a binary logistic model, a dependent

variable has only a binary choice (e.g., presence or absence

of a characteristic), whereas the dependent variables in a

multinomial logistic regression model can have more than

two choices that are coded categorically, and one of the

categories is taken as the reference category (Wang 2005).

An important application of the multinomial logistic

model is in determining the effects of explanatory variables

on a subject’s choice from a discrete set of options. An

explanatory variable takes different values for different

response choices.

A general MLR model is of the form

Y ¼ b� X ð6Þ

where Y is the unordered dependent variable, b is the

vector of coefficients and X is the vector of independent

variables.

We assume that the categories of outcome or response

variables, Y, are coded as 0; 1; . . .; J þ 1, and the explana-

tory variables X is a vector of size p ? 1, as in (Hosmer

and Lemeshow 2000; Agresti and Wiley 1990). In the

model we define J logit (logistic) functions g1(x) to gJ(x) as

follows:

g1ðxÞ ¼ log
PðY ¼ 1jxÞ
PðY ¼ 0jxÞ

� �

¼ b10 þ b11x1 þ b12x2 þ � � � þ b1pxp

¼ Xb1

g2ðxÞ ¼ log
PðY ¼ 2jxÞ
PðY ¼ 0jxÞ

� �

¼ b20 þ b21x1 þ b22x2 þ � � � þ b2pxp

¼ Xb2

gJðxÞ ¼ log
PðY ¼ JjxÞ
PðY ¼ 0jxÞ

� �

¼ bJ0 þ bJ1x1 þ bJ2x2 þ � � � þ bJpxp

¼ XbJ

The conditional probabilities are now calculated as

PðY ¼ ijxÞ ¼ expðgiðxÞÞPJ
k¼1 expðgkðxÞÞ

ð7Þ

where Yi is the unordered categorical dependent variable

for the observation i (which takes an integer value from 1

to J), xi is the vector of k explanatory variables for obser-

vation i, and bj is the vector of coefficient for category J.

We apply the multinomial logistic regression by con-

sidering the object worthiness W as a dependent variable

and the independent variables (x ’s) are drawn from the

cache logs. Thus,

W ¼ b� X ð8Þ

where X is the vector of x values. The object worthiness is

defined to have eight1 categories. The ‘0’ category is the

least worthy objects and the category ‘7’ is with the most

worthy objects. Note that we could use Ordered Logistic

Regression (OLR) since the dependent variable object

worthiness has some order. But the MLR method is robust

and covers a much wider class, and the OLR method is

treated as a special case of MLR (Hosmer and Lemeshow

2000; Komarek 2004).

The worthiness factor of web objects is an unknown

function. A MLR model is constructed and trained to

approximate this unknown function from the real-world

data. The model is trained using x values to estimate b
coefficients. The beta values are computed by the Maxi-

mum Likehood Estimation (MLE)2 method (Hosmer and

Lemeshow 2000; Agresti and Wiley 1990). Then the model

is validated using an internal validation technique. Figure

4 shows the MLR training and prediction. To train the

model, x values are fed along with aggregate worthiness

value W. This yields a matrix of b coefficients. The details

of validation and testing are discussed in subsequent

sections.

4 Simulation

Our simulation experiments include, processing of the web

traces, training and verification of the MLR model and the

cache simulation. We have collected the traces and sani-

tized logs from the IRcache proxy-cache servers (NLANR,

Last accessed in January 2010) as shown in Table 3a.

These logs typically contain 10 fields as shown in

Table 3b. The hit ratio in Table 3a is the hit ratio measured

1 There are six explanatory variables. Hence, we consider the nearest

power of 2 as 8. This gives a flexibility to redefine W, according to an

application.
2 Maximum likelihood estimation begins with writing a mathematical

expression known as the Likelihood Function of the sample data. The

likelihood of a set of data is the probability of obtaining that particular

set of data, given the chosen probability distribution model. This

expression contains the unknown model parameters. The values of

these parameters that maximize the sample likelihood are known as

the Maximum Likelihood Estimator.

Evolving Systems (2011) 2:101–118 107

123

using a standard trace analyzing tool proxytrace and Zipf

slope is measured using zipfR package of R Language

software (Team 2008).

The initial file processing is done using a standard Unix

utility awk, to extract the timestamp, frequency, size, URI,

and the type of the objects. Then, the individual worthiness

contributions are computed, and normalized to generate the

dataset.

4.1 Data pre-processing

The need for preprocessing arises because of the large

dispersion of data of the collected trace files. For example,

size of an object varies from few bytes to several Mega

bytes and the timing informations used to be much more

scattered. The data pre-processing serves the following

purposes: (i) subdues the data so that it can be fed directly

to the MLR model, (2i) computes the worthiness contri-

bution of each data (field). The worthiness contribution of

the object’s popularity (Jin and Bestavros 2000) is com-

puted as a relative score. Let object Oi be referenced fi
number of times at an instant. Assume that there are

n distinct objects referred through the cache (Refer Table

2). Then the worthiness factor of Oi contributed by popu-

larity is computed as

xp �
fi � n

N
ð9Þ

Further, the contribution of the object’s size is considered

as an integer function of its size and speed of the outer link

(in our experiments, we assume its value as 256 Kbps to 2

Mbps, depending upon the average size of the objects in

the workload) and is computed as

xs �
S

Speed
ð10Þ

To capture the temporal locality, the worthiness

contribution of recency of an object is evaluated as

shown in Fig. 5. Let the time of last access to the object

be tr. Let the elapsed time (or number of references to other

objects) since its last access be Ds which is equal to t0 - tr.

Then the contribution to the worthiness factor is

xr �
Ds

T
ð11Þ

The type of an object is classified into four categories;

HTML (php, text), image/video, others (pdf, ps) and

applications (cgi, asp). The type ‘applications’ include

those objects, which are dynamically generated in the

Fig. 4 MLR training and prediction

Table 3 Traces used and the fields of the cache logs

Date Number of requests Trace/source Hit ratio (%) Zipf slope

(a) Traces used

1st September 2007 2,80,062 NLANR-pa 36 0.72

1st October 2008 2,10,734 NLANR-pa 32 0.76

10th August 2007 2,43,356 NLANR-bo2 26 0.69

9th January 2007 5,44,356 NLANR-sj 20 0.80

23rd January 2005 28,338 Internet Traffic Archive 48 0.72

Time stamp Elapsed time Client IP HTTP code Size

(b) Fields in the cache log

Request Method URL User ident Hierarchy data Content type

W1W2W3

. . . Δτ

p1p2p3

Popularity indices

Windows with size L

Elapsed time since last access

Last reference

Cache Object

Fig. 5 Computing the popularity consistency and the weightage of

recency

108 Evolving Systems (2011) 2:101–118

123

origin server. Hence these objects are not good candidates

for caching. Weightages are assigned to the different types

following a similar convention as in (Tian et al. 2002).

These weights are needed as the variable type is non-

metric. We choose ‘15’ for HTML, ‘10’ for images, ‘5’ for

other types and ‘0’ for applications. These values are

chosen based upon the relative frequency of the type of

files.

The consistency in popularity is taken into account to

reduce the effect of bursts (large number of accesses in a

small duration) in popularity (Jin and Bestavros 2000). In

Fig. 5, the object references are taken as number of win-

dows. Let the object Ok be referred at t0 and pi, i ¼ 1; 2; . . .
be the popularity indices with p be the mean popularity

(weighted average of pi’s). We need to check whether the

current popularity is due to a burst in one of the windows.

For this purpose, we do the variance analysis of pi [r (pi)].

That is, the integer values of the range [0 : 9] are assigned

to xpc with the following restrictions:

• maximum value 9 is assigned if the current popularity

is consistent (pi & p, V i or r (pi) & 0).

• 8 is assigned if p is less consistent ðpi [rapprox p; 9iÞ
and so on.

• minimum value 0 is assigned if there is a burst in one of

the windows (pi i p, A i or r (pi) & 1).

The factor xd is obtained by measuring the elapsed time

of the object when it is delivered from the origin server. An

object which is delivered faster is a less worthy object for

the cache. The same object may experience varying

elapsed times. This situation is handled by considering the

mean of the elapsed times. Finally, the fields of the dataset

(X) are normalized using a linear normalization function in

the range ½X1 : X2� as

X ¼ X � Xmin

Xmax � Xmin
� ðX2 � X1Þ þ X1: ð12Þ

4.2 Simulation metrics

The Correct Classification Rate (CCR) is a measure of

classification accuracy. CCR gives the percentage of inputs

that are correctly classified. However, CCR alone may be

insufficient for measuring the classification accuracy,

especially if the data is imbalanced (Xu et al. 2005).

Therefore, Misclassification Rate (MCR), True Positive

Rate (T?), True Negative Rate (T-), geometric mean

(Gmean) and en are also used in the the MLR model as given

in Table 4.

The web cache performance is measured using the

metrics, HR and BHR. HR gives the percentage of number

of requests served from the cache server and BHR gives the

percentage of volume in bytes, served. For using the object

worthiness as a key for the classification, we define two

new performance metrics named WHR (worthiness hit

ratio) and WBHR (worthiness byte hit ratio) for the sim-

ulation experiment. The definition of WHR is analogous to

the performance metrics used by (Gonzalez-Canete et al.

2006) and is given as

WHR ¼ RHit

RN
X

Rmw

Rw
ð13Þ

where RHit is the total number of objects served from the

cache, RN is the total number of requests, Rmw is the

number of the most worthy objects served from the cache

and Rw is the total number of worthy objects including

class 0. When all objects are worthy, then WHR will be

reduced to HR. Similarly, WBHR is defined as

WBHR ¼ BHit

BN
X

Bmw

Bw
ð14Þ

The terms in the above equation have similar meaning as in

Eq. 13, except for the word ‘object’ used is replaced with the

word ‘byte’. Another important cache performance metric is

access time or response time which is the time taken for the

user to access a web object. We measure the mean response

time (MRT) for different cache sizes, HR and WHR to check

the effectiveness of the classification scheme.

4.3 Performance evaluation

Before evaluating the performance of the scheme, the

model is validated using the bootstrapping method. The

validation process is necessary to make sure that the con-

verged model is not simply the artifact of the data used. In

the bootstrapping method of validation, sub samples are

used for the simulation (Efron and Gong 1983; Steyerberg

et al. 2001). The dataset is divided into m blocks of equal

size. Then the simulation is performed m times, each time

exactly leaving one block. This method works better than

the cross-validation technique as reported in (Steyerberg

et al. 2001). The performance evaluation of the MLR

Table 4 Additional metrics used

(a) Metrics

used

1. Tþ ¼ TP
TPþFN

2. T� ¼ TN
TNþFP

3. Gmean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tþ � T�
p

4. ei = Depth of error, with i being the number of

classes shifted when the classification is wrong

Predicted positive Predicted negative

(b) Confusion matrix

Actual positive True positive (TP) False negative (FN)

Actual negative False positive (FP) True negative (TN)

Evolving Systems (2011) 2:101–118 109

123

model is a testing process to make sure that the model

generalizes the relationship between predicative inputs and

the response.

We implement the classification scheme in an object

replacement method called LRU-M (Least Recently Used-

Multilevel Classes). This method is similar to the LRU-C

(Koskela et al. 2003) except for the use of multilevel

classes to arrange the web objects in the cache store. In

LRU-M, the replacement of objects is carried out from a

designated class and the classes below that. For example,

when the cache is full, an object from class2 and the classes

below that, is selected for eviction (in reverse order). If the

requested object is not found in the cache, then the class of

the object is checked. If the class, is say 2, then the object is

placed at the bottom of the segment m2 and if the object is

found in the cache then the object is placed at the top of the

segment m2. The Objects are always removed from the

bottom of the stack segment of a particular class. LRU-M

performance needs to be compared with that of the con-

ventional LRU and LRU-C3 in terms of WHR, WBHR and

response time of the objects.

5 Results

We use the open source R Language statistical software

(Team 2008) and Zelig package (Imai et al. 2006) to

implement the MLR model. The dataset required for the

estimation is generated from the traces of IR Cache

(NLANR, Last accessed in January 2010). The training and

the testing process is shown in Fig. 4. Several MLR forms

were experimented to fit the data. Initially, all the input

variables (worthiness contributions) are considered as pri-

mary variables. In order to check the fitness or convergence

of the data the p-value is checked. As this resulted in a less

accurate fitting (with high p value) or non-convergence,

two input variables (xpc and xd) are fed as auxiliary

variables.

5.1 Classification

5.1.1 Training and validation

The model is initially trained using a dataset with 5,000

records (required for convergence). The b value are com-

puted using the Maximum Likehood Estimation (MLE)

method and Pearson residual values are used to confirm the

convergence of the iterations. Using the b values,

probabilities and the values of the dependent variable W are

computed and are plotted in Fig. 6. In one of the experi-

ments with a dateset size of 104, we observe that class0

(Y = 0) and class1 (Y = 1) together constitute about 52%

of the objects. Note that class0 (40%) contains objects

which are not worthy in any way; either these objects are

not cache-able or have very minute value of popularity,

size and recency. This shows that, any caching scheme

should equip with a consistency handling mechanism to

achieve higher HR.

In the bootstrapping method, a total of 50 sample sets of

the same size of the original data sets were utilized.

Table 5 compares the results of simulation and validation.

All the independent variables consistently correlate with

the worthiness factor. This shows that the model has good

prediction power and is not simply the artifact of the data

used to develop the model.

5.1.2 Accuracy

Figure 7a–c show Correct classification Rate (CCR), True

Positive Rate (T?), True Negative Rate (T-) and Gmean

ratio of different datasets for training and verification. The

highest CCR observed for training (88%) and testing (84%)

is with the dataset of bo2.ircache.net. This bo2 dataset

performs consistently for training and testing of T? (83%,

Y=0
Y=1
Y=2
Y=3
Y=4
Y=5
Y=6
Y=7

Predicted Values: Y=k|X

Percentage of Simulations
0 10 20 30 40

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20

D
en

si
ty

Predicted Probabilities: Pr(Y=k|X)

−0.006 −0.004 −0.002 0.000 0.002

0
20

00
40

00

D
en

si
ty

First Differences: Pr(Y=k|X1) − Pr(Y=k|X)

Fig. 6 Worthiness of cache objects. i Values of classes, ii probabil-

ities, iii first differences. Y, k and X are analogous to W, i and x

3 Here, we implement LRU-C method using binary LR method.

Hence, worthiness factor will have only two classes; W = 0 and

W = 1. Also, we do not consider the features from HTTP responses

of the server and the HTML structure of the object.

110 Evolving Systems (2011) 2:101–118

123

81%), T- (89%, 83%) and Gmean (90%, 83%). These

results indicate that the model had been trained well and is

doing good prediction.

5.1.3 Error rates

Figure 7d shows the misclassification rates for the eight

classes of datasets. Two datasets generated from each trace

are used for this check. Random number of samples are

used in every test. The general observation is that,

misclassification rates are higher in lower classes. For

class0, it is 12–25% and for class1, the error rate is 9–31%.

The misclassification rate ranges from 1 to 5% for classes

5–7. This observation is maintained for all datasets. The

statistical package Zelig (Imai et al. 2006) does not have a

direct measure of accuracy. Hence, we measure its accu-

racy manually. The model is trained using 5,000 samples.

In order to test the prediction accuracy, we used another

data set of size 100, 500, 1,000, 2,000, 5,000 and 10,000

samples. We found that the prediction accuracy varies from

Table 5 Probabilities for simulation and validation

Simulation Validation

Mean SD 2.5% 97.5% Mean SD 2.5% 97.5%

Pr(Y = 0) 0.470024 0.193630 0.318606 0.621442 0.451072 0.176230 0.306656 0.595488

Pr(Y = 1) 0.267541 .070040 0.186914 0.348168 0.275239 0.214592 0.016593 0.384547

Pr(Y = 2) 0.092402 0.005900 0.056441 0.128363 0.096156 0.054065 0.018219 0.174093

Pr(Y = 3) 0.065546 0.004803 0.012829 0.118279 0.068462 0.044889 0.014413 0.122511

Pr(Y = 4) 0.022030 0.001924 0.003435 0.040625 0.019347 0.014138 0.003271 0.035424

Pr(Y = 5) 0.039428 0.003559 0.006182 0.072674 0.040871 0.032663 0.007219 0.074522

Pr(Y = 6) 0.018898 0.001326 0.002528 0.035268 0.019293 0.017164 0.002271 0.036315

Pr(Y = 7) 0.007006 0.006278 0.000674 0.013338 0.007978 0.006408 0.000612 0.015345

R
at

e

0.0

0.2

0.4

0.6

0.8

Correct Classification Rate (CCR)

bo2
sj
pa
ITA

(a)

R
at

io

0.0

0.2

0.4

0.6

0.8

1.0 True Positive Rate True Negative Rate

bo2
sj
pa
ITA

(b)

R
at

io

0.0

0.2

0.4

0.6

0.8

Geometric Mean (G-mean)

TestingTraining TestingTraining TestingTraining

TestingTraining

bo2
sj
pa
ITA

(c)

M
is

cl
as

si
fi

ca
ti

o
n

 R
at

e
(%

)

0

5

10

15

20

25

30

35
(d)

Fig. 7 a Correct Classification Rate of different datasets. b True Positive Ratio (T?) and True Negative Ratio (T-). c GMean ratio.

d Misclassification rates

Evolving Systems (2011) 2:101–118 111

123

56 to 78.6%. Further, we investigated the depth of error

when a prediction fails. We denote these prediction errors

by ei, where i is the number of classes shifted, when a

prediction fails. We found that in most of the cases (as

indicated in Table 6) the prediction shifts by only one

class. We are sure that this error may not have a significant

impact on the caching policies.

5.2 Cache simulation

We have customized the simulation tool WebTraf to meet

our requirements (Markatchev and Williamson 2002). The

LRU stack model is modified to hold multiple class data.

The stack is divided into segments dedicated for class0,

class1 and so on. Also, the LRU method is modified by

adding the class label to the object id. In order to generate

the dataset from the trace files, traceconv (Tracegraph

2005) is used. The traceconv generates two datasets;

request stream generator (which preserves the temporal

locality) and page pool generator. We use a standard

simulation setup with values as shown in Fig. 8 and

Table 7, respectively. The simulation is repeated for LRU,

LRU-C and GDSF for two differently trained MLR model.

The cache simulations were carried out, with varying cache

size (100 MB to 4 GB). We observe that the dataset per-

formance in training and testing are more or less getting

repeated in the cache simulation also (with certain

exceptions).

5.2.1 HR and BHR

Figure 9a and b show the performance comparisons for

different cache sizes such as 256 MB, 512 MB, 1 GB and

2 GB, respectively. In terms of HR, LRU-M has a slight

advantage over LRU-C and GDSF. LRU-M performs

much better in terms of BHR compared to the other two.

With 2 GB of cache size, LRU-M is much superior

compared to all other methods. Here, GDSF performs

better than LRU-C. This could be due to the fact that

LRU-M replaces the objects based on the worthiness

factor, whereas GDSF uses a combination of size and

popularity. Note that the worthiness factor compounds the

effect of multiple parameters.

5.2.2 WHR and WBHR

Figure 10a and b show the performances of LRU, LRU-C

and LRU-M. It is observed that LRU-M performs better for

all datasets considered. Here, the simulation is performed

by replacing class0 objects and the worthiness hit ratios are

measured by considering the objects from class1 and

above, as Rmw.

The performance of LRU-M is checked by replacing the

objects from different classes. LRU/m/n denote the LRU-M

policy with the replacement of objects allowed from the nth

class and below. Figure 11a and b compare the WHR and

WBHR performances. It is observed that the LRU-M

methods (LRU/m/n) perform better than the LRU and

Table 6 Misclassification and prediction error

Samples Correct Accuracy (%) e1 (%) e2 (%) e3 (%) e4 (%) e5 (%) e6 (%) e7 (%)

100 56 56 76 18 4 2 0 0 0

500 312 62.4 74 16 6 3 1 0 0

1,000 611 61.1 84 11 2 3 0 0 0

3,000 1,923 64.1 79 19 2 0 0 0 0

5,000 3,567 71.3 69 24 5 1 1 0 0

10,000 7,862 78.6 73 23 2 2 0 0 0

Trace File Cache ServerLog Files

Request Generator

Page Generator

Fig. 8 Simulation setup

Table 7 Simulation environment values

Cache server Single

Number of web servers 100–10,000

Web cache size 512 MB–4 GB

Cache size as % of web server’s size 10–80%

Number of requests 5,000–1,00,000

Zipf parameter of input trace 0.72–0.84, heavy tailed

Number of unique requests 2,000–10,000

Policies tested LRU, LRU-C, GDSF

and LRU-M

112 Evolving Systems (2011) 2:101–118

123

LRU-C. Note that LRU/m/3 uses about 40% of the objects as

worthy and performs almost similar to that of LRU-C. This

implies that the cache size is better utilized in multilevel

classification than with the binary classification approach.

5.2.3 MRT

The MRT is measured for different cache sizes. We compare

the MRT of bo2.ircahe.net (best performed in classification)

H
R

 (
%

)

0

10

20

30

40

50

Cache Size (KB)
1e+00 1e+02 1e+04 1e+06

LRU
LRU-C
GDSF
LRU-M

512 MB

H
R

 (
%

)

0

10

20

30

40

50

60

Cache Size (%)
1e+00 1e+02 1e+04 1e+06 1e+08

LRU
LRU-C
GDSF
LRU-M

2 GB

H
R

 (
%

)

0

10

20

30

40

50

Cache Size (%)
1e+00 1e+02 1e+04 1e+06 1e+08

LRU
LRU-C
GDSF
LRU-M

1 GB

H
R

 (
%

)

0

10

20

30

40

50

Cache Size (KB)
1e+00 1e+02 1e+04 1e+06

LRU
LRU-C
GDSF
LRU-M

256 MB

(a)

B
H

R
 (

%
)

0

5

10

15

20

25

30

Cache Size (KB)
1 10 100 1,000 1e+041e+051e+06

LRU
LRU-C
GDSF
LRU-M

1 GB

B
H

R
 (

%
)

0
5

10
15
20
25
30
35

Cache Size (KB)
1 100 1e+04 1e+06

LRU
LRU-C
GDSF
LRU-M

2 GB

B
H

R
 (

%
)

0

5

10

15

20

25

Cache Size (KB)
1 100 1e+04

LRU
LRU-C
GDSF
LRU-M

512 MB

B
H

R
 (

%
)

0

5

10

15

20

25

Cache Size (KB)
1 100 1e+04

LRU
LRU-C
GDSF
LRU-M

256 MB

(b)

Fig. 9 a HR comparisons of different policies (CCR = 75–85%). b BHR comparisons of different policies (CCR = 75–85%)

512 MB

W
H

R
 (

%
)

20

25

30

35

40

45
1 GB

W
H

R
 (

%
)

25

30

35

40

45
2 GB

W
H

R
 (

%
)

25

30

35

40

45

50
256 MB

W
H

R
 (

%
)

15

20

25

30

35

40
(a)

W
B

H
R

 (%
)

10

15

20

25

30

W
B

H
R

 (%
)

15

20

25

30

35

40

W
B

H
R

 (%
)

15

20

25

30

35

40

W
B

H
R

 (%
)

10

15

20

(b)

LRU LRU−C LRU−M

Fig. 10 a WHR comparisons of different policies (CCR = 75–85%). b WBHR comparisons of different policies (CCR = 75–85%)

W
H

R
 (

%
)

0

5

10

15

20

25

30

35

Cache Size (%)

LRU

LRU-C

LRU/m/3

LRU/m/2

LRU/m/1

LRU/m/0

(a)

W
B

H
R

 (
%

)

0

5

10

15

20

25

Cache Size (%)
20 30 40 50 60 70 80 20 30 40 50 60 70 80

LRU

LRU-C

LRU/m/3

LRU/m/2

LRU/m/1

LRU/m/0

(b)Fig. 11 a WHR comparisons of

different policies (CCR =

75–85%). b WBHR

comparisons of different

policies (CCR = 75–85%)

Evolving Systems (2011) 2:101–118 113

123

and ITA (worst performed in classification) traces. The

response is faster in LRU-M compared to that of LRU and

LRU-C as can be seen from Fig. 12a and b. We now com-

pare the response time of the LRU/m/n replacement meth-

ods. Though the LRU/m/3 gives a low WHR compared to the

other LRU/m/n, its performance is better in terms of the

response time. This is because the LRU/m/3 policy works on

worthy objects of class3 and above. This result shows that

the worthiness factor is capable of capturing the latency (xd)

and size (xs) information of objects better than the other

grading parameters. Worthiness hit ratios are measures of

worthy objects stored in the cache. From the simulation logs,

it is possible to compute the response time of each object.

The MRT is measured by finding the average of response

time for a particular cache size and then it is mapped to the

corresponding hit ratios. Table 8 shows the MRT for dif-

ferent HRs and WHRs. The results show that the MRT is less

for WHR compared to the HR of similar value. A similar

observation is found in the case of BHR and WBHR also.

These results give us the confidence to state that the wor-

thiness hit ratios are better performance indicators than the

ordinary HRs.

5.3 Comparison with ANN

A neural network is a set of interconnected simple pro-

cessing elements called neurons, where each connection

has an associated weight. A neural network can achieve the

desired input-output mapping with a specified set of

weights (Xu et al. 2005); therefore we can train the neural

network to do a particular job by adjusting the weights on

each connection. A neural network with one or more hid-

den layer is called multilayer perceptrons. Back propaga-

tion is the commonly used method for adjusting the

weights in MLP (Cobb and ElAarag 2008). Back-propa-

gation iteratively processes the training data through input

forward propagation and error backward propagation to

search for a set of weights that can model the problem so as

to minimize the network prediction error (Xu et al. 2005).

An input vector according to Table 1, generated from the

cache logs is utilized for the training session. We use a

standard back-propagation technique using delta function

to adjust the weights. Similar to the MLR model, the

worthiness parameter is labelled (from 0 to 7). The model

is validated using m-fold cross validation technique (Ste-

yerberg et al. 2001).

A brief comparison between MLR and ANN based,

classifier and caching, models is given in Tables 9 and 10.

The results indicate that the MLR based scheme achieves a

comparable performance with that of the ANN based

methods. The ROC characteristics suggest that MLR is

more suitable for classifying large quantity of web cache

data.

M
ea

n
 R

es
p

o
n

se
 T

im
e

(m
s)

4

8

12

16

Cache Size (%)
1007550250

(a)

M
ea

n
 R

es
p

o
se

 T
im

e
(m

s)

4

8

12

16

Cache Size (%)
1007550250

(b)Fig. 12 Mean response time

observed for binary and multi-

level object classification.

a Trace file of bo2.ircache.net
with CCR = 0.85, T? = 0.82,

T- = 0.79 and Gmean = 0.80.

b Trace file of ITA with

CCR = 0.71, T? = 0.73,

T- = 0.68 and Gmean = 0.70

Table 8 Comparison of HR, WHR, BHR, WBHR and MRT

MRT Ratio (%)

10 15 20 25 30 35 40 45 50

MRTHR 9.81 9.07 8.39 7.23 6.51 6.40 6.19 5.83 5.58

MRTWHR 8.05 7.91 7.52 7.04 6.05 5.73 5.16 4.64 –

MRTBHR 9.17 8.82 8.12 7.07 6.28 5.71 – – –

MRTWBHR 7.84 7.38 6.37 5.42 4.65 – – – –

Table 9 ROC characteristics: area under ROC curve for different

data sizes

Method \5,000 10,000 20,000 [30,000

MLR (%) 67.2 79.2% 88.7 93.6

ANN (%) 76.7 81.4 86.3 89.2

Table 10 Comparison between MLR and ANN based caching

schemes: HR performance for different cache sizes

Method 256 MB 512 MB 1 GB 2 GB

MLR based (%) 29.2 34.5 39.2 44.6

ANN based (%) 30.6 35.2 38.8 42.8

114 Evolving Systems (2011) 2:101–118

123

6 Discussion

The experimental and simulation results of classification and

caching are really positive. The CCR, T?, T- and Gmean give

good accuracy rates (above 80%) and hence the classifier is

said to have good prediction capability. To find the effect of

worthiness contributions (x’s) on aggregate worthiness W,

we find the average worthiness contributions of each factor

in every class. These factors are normalized to a range

[1:10], and is plotted in Fig. 13a. We observe that the fre-

quency, size and recency are the most influential parameters

on the aggregate worthiness as depicted in Fig. 13a and c.

Among these parameters it is difficult to identify the most

influential one. In general, the contributions are more or less

equal in lower and upper classes, and it shows variations in

the mid range classes. Among the other three parameters,

xpc is dominant in the lower classes. We could observe that

this parameter alone is capable of shifting the class number

from 0 to 1. xt’s contribution is almost uniform in all the

classes, whereas xd has a slight edge in the higher classes as

can be seen from Fig. 13b and d.

The overall statistical significance is to be tested with

the Wald’s test (as suggested by statisticians). We have not

performed Wald test as MLE and the Wald test give very

similar conclusions in most of the situations (Agresti and

Wiley 1990). Even though the performance of the cache

with respect to HR and BHR are not very promising, WHR

and WBHR performance are with consistency. The per-

formance of the cache with respect to the MRT is better for

small WHRs.

This research is an attempt to apply the MLR for clas-

sifying the web objects according to the novel grading

parameter worthiness, making better caching decisions.

Since the proposed method is generic in nature, cache

designers may adopt context specific choices. One can add

or remove independent variables to redefine the worthiness

factor. We suggest frequency, recency and size as man-

datory parameters and the remaining three parameters are

optional. Though we have demonstrated the merit of our

technique through LRU-M policy, cache designers may

choose any class based upon the replacement policy to suit

their application. Further, any domain specific information

(for e.g., rank of the web sites) can be added to refine the

worthiness factor.

6.1 Concept drift

Machine learning methods suffer from concept drift and

contamination in the input data. A difficult problem with

learning in many real-world domains is that the concept of

interest may depend upon some hidden context, not given

explicitly in the form of predictive features (Tsymbal

2004). Often the causes of change is hidden, not known

a priori, making the learning task more complicated.

Changes in the hidden context can induce more or less

radical changes in the target concept, which is generally

known as concept drift (Tsymbal 2004; Gao et al. 2007). In

an adaptive web cache, the concept drift may occur in the

data stream deteriorating the performance of the classifier

and the proxy cache. Rebuilding the classifier model using

C
o

n
tr

ib
u

ti
o

n
s

0

5

Worthiness Classes

(a)

C
o

n
tr

ib
u

ti
o

n
s

0

5

Worthiness Classes

(b)

C
o

n
tr

ib
u

ti
o

n
s

0

5

Worthiness Classes

(c)

C
o

n
tr

ib
u

ti
o

n
s

0

5

Worthiness Classes

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

(d)

Fig. 13 Worthiness

contributions of a sample data.

a and c Popularity, size and

recency. b and d Popularity

consistency, delay and type of

the objects

Evolving Systems (2011) 2:101–118 115

123

the most recent data is one solution to this problem (Wang

et al. 2003).

In general, the approaches to cope with concept drift can

be classified into two categories: (1) approaches that adapt

a learner at regular intervals without considering whether

changes have really occurred, (2) approaches that first

detect concept changes, and then, the learner gets adapted

to these changes (Gama et al. 2004). Difficulties arise in

detecting the concept drift, as the performance reduction

may also be due to the presence of noise (or contaminated)

in the input data (Gama et al. 2004; Klinkenberg and Renz

1998). Hence, we suggest a two-tier mechanism to auto-

mate the proxy and to handle the concept drift in a running

proxy cache, as depicted in Fig. 14. In this method, the

adaptive controller is turned ON and OFF periodically and

on detection of drift. The controller is periodically trig-

gered for rebuilding the model. Here, the difficulty is in

setting the frequency of triggering (Gama et al. 2004) and

the size of the recent input data for training the classifier. A

cache designer must set these values by experimentation or

by applying some heuristics (Klinkenberg and Renz 1998;

Gao et al. 2007). The classifier and the proxy performances

shall be checked continuously to detect the concept drift

(Lu et al. 2002). The parameters used for detecting the drift

are HR, WHR, CCR, T?, T- and Gmean. We do acknowl-

edge the weakness of this method, as the performance of

the classifier and the proxy may be affected by many other

factors also.

We conduct experiments by inducing the concept drift to

the synthetic and real data. The synthetic traces are gen-

erated using WebTraf (Markatchev and Williamson 2002)

and traceconv (Tracegraph 2005) tools. Concept drifts are

induced in two ways; abrupt shifts and small shifts in

randomly selected blocks. The concept drift is simulated

using the RapidMiner (Mierswa et al. 2006) tool. The

parameter k is the measure of shifts with values ranging

from 0 to 1. A value of[0.5 for k is treated as abrupt shift

and\0.1 is considered to be a small shift. Cache simulation

is carried out using two types of datasets; one set is with

three number of abrupt shifts in randomly selected blocks

and the other is with one number of abrupt shift and ten

number of small shifts. The results, in terms of the cache

performance, are shown in Fig. 15a and b. It is observed

that the proposed model is capable of withstanding both

types of shifts (with a small reduction in the cache

performance).

6.2 Computational overhead

The MLR method is a light-weight machine learning

technique, which causes less computational overhead than

NN, SVM and Decision Trees. It is reported that the LR

method is faster among the statistical methods and stands

second in terms of accuracy criteria (Lim et al. 2000).

Their training time growth is linear with respect to the

number of samples (Landwehr et al. 2005). Our method

requires additional computational cost for pre-processing

the data and for training the LR model. The data prepro-

cessing can be done in linear time and the asymptotic

complexity for building a logistic regression model is O

(n . v 2) where n is the number of training samples and v is

the number of attributes in the data (Landwehr et al. 2005).

7 Conclusions

Web caching has a history of more than one decade. It

started by drawing ideas from the processor cache, but later

moved to totally different approaches. Numerous resear-

ches have been carried out in this area. Most of them are

variants of LFU, LRU and GDS that rely upon the general

traffic characteristics. These methods usually have some

assumptions on the traffic characteristics in order to sup-

port the algorithm design. The sole advantage of such

schemes is simplicity. In contrast to this, there are complex

caching schemes, which employ intelligent and adaptive

mechanisms utilizing ANN or genetic algorithms. Natu-

rally, they perform much better than the basic caching

techniques but with very high computational overhead.

The proposed classification scheme in this paper takes a

middle path, which uses a light-weight machine learning

technique. It uses a generic classification scheme with a

novel grading parameter, worthiness. The worthiness

parameter is defined as a discrete choice variable, which

compounds the effects of many traffic and object proper-

ties. Rather than classifying the objects into two classes

based on its cache-ability, this scheme classifies the objects

Pre−processor

Adaptive

Controller

Proxy Cache

Stream
Request

MLR
Module

Classifier

On/Off

on detection
on detectionperiodic

1 0

Fig. 14 The adaptive cache model to tackle concept drift

116 Evolving Systems (2011) 2:101–118

123

into multilevel classes. As this scheme is flexible, it can be

fine tuned by adding or removing predictive variables, in

order to match a specific form of caching or content

distribution.

We used the MLR model to construct the classification

scheme. The MLR model is capable of learning from the

samples and predict the outcomes.Experiments have shown

that the model has a good prediction capability, and is

suitable for the adaptive nature of content distribution.

We used a modified version of the LRU algorithm LRU-

M to test the effectiveness of the content classification. The

LRU-M performance is compared with another class based

algorithm (LRU-C). We observe that the cache replace-

ment performs better with the multi class information. The

new performance parameters WHR and WBHR reflect the

overall performance of the cache rather than only from the

users point of view. Thus they reflect the actual effect on

the deployed cache.

More research may be useful to determine the exact

relationship between the worthiness factor and cache per-

formance. The performance and the cost comparison of the

MLR model with the other machine learning techniques

such as SVM and Decision Trees is suggested as a topic for

further research.

References

Agresti A, Wiley J (1990) Categorical data analysis, vol 1, 2nd edn.

Wiley, New York

Ahn H, Moon H, Fazzari M, Lim N, Chen J, Kodell R (2007)

Classification by ensembles from random partitions of high-

dimensional data. Comput Stat Data Anal 51(12):6166–6179

Attar V, Sinha P, Wankhade K (2010) A fast and light classifier for

data streams. Evol Syst 1(3):199–207. doi:10.1007/s12530-010-

9010-1

Bahn H, Koh K, Noh S, Lyul S (2002) Efficient replacement of

nonuniform objects in web caches. Computer 35(6):65–73

Bian N, Chen H (2008) A least grade page replacement algorithm for

web cache optimization. In: Knowledge discovery and data

mining, 2008. WKDD 2008. First international workshop on,

pp 469–472

Breslau L, Cao P, Fan L, Phillips G, Shenker S (1999) Web caching

and Zipf-like distributions: evidence and implications. IEEE

INFOCOM 1(1):126–134

Cao P, Irani S (2002) Cost-aware www proxy caching algorithms.

IEEE Trans Comput 51(6):193–206

Chen X, Zhang X (2003) A popularity-based prediction model for

web prefetching (No. 3). IEEE Computer Society Press, Los

Alamitos

Chu F, Wang Y, Zaniolo C (2004) An adaptive learning approach for

noisy data streams. In: Data mining, 2004. ICDM ’04. Fourth

IEEE international conference on, pp 351–354

Cobb J, ElAarag H (2008) Web proxy cache replacement scheme based

on back-propagation neural network. J Syst Softw 81(9):1539–1558

Dill S, Kumar R, McCurley K, Rajagopalan S, Sivakumar D,

Tomkins A (2002) Self-similarity in the web. ACM Trans Int

Technol 2(3):205–223

Dreiseitl S, Ohno-Machado L (2002) Logistic regression and artificial

neural network classification models: a methodology review.

J Biomed Inform 35(5–6):352–359

Dreiseitl S, Ohno-Machado L, Kittler H, Vinterbo S, Billhardt H, Binder

M (2001) A comparison of machine learning methods for the

diagnosis of pigmented skin lesions. J Biomed Inform 34(1):28–36

Efron B, Gong G (1983) A leisurely look at the bootstrap, the

jackknife, and cross-validation. Am Stat, pp 36–48

Foong AP, Hu Y-H, Heisey DM (1999) Logistic regression in an

adaptive web cache. IEEE Int Comput 3(5):27–36

Friedman J, Hastie T, Tibshirani R (2000) Additive logistic regres-

sion: a statistical view of boosting (With discussion and a

rejoinder by the authors). Ann Stat 28(2):337–407

Gama J, Medas P, Castillo G, Rodrigues P (2004) Learning with drift

detection. Lect Notes Comput Sci 1:286–295

Gao J, Fan W, Han J, Yu PS (2007) A general framework for mining

concept-drifting data streams with skewed distributions. In:

Proceedings of SDM

Gonzalez-Canete FJ, Casilari E, Trivino-Cabrera A (2006) Two new

metrics to evaluate the performance of a web cache with

admission control. In: Electrotechnical conference, 2006. MEL-

ECON 2006. IEEE mediterranean, pp 696–699

Green M, Björk J, Forberg J, Ekelund U, Edenbrandt L, Ohlsson M

(2006) Comparison between neural networks and multiple

logistic regression to predict acute coronary syndrome in the

emergency room. (No. 3). Tecklenburg, Federal Republic of

Germany, Burgverlag, c1989

Hosmer D, Lemeshow S (2000) Applied logistic regression, vol 354,

2nd edn. Wiley, New York. http://books.google.com/books?id=

Po0RLQ7USIMC

W
H

R
 (

%
)

16

18

20

22

24

26

Data Blocks
0 50 100 150 200

Original Trace
Trace with shifts

Worst Performing Case

(3 abrupt shifts)

(a)

W
H

R
 (

%
)

30

35

40

45

50

Data Blocks
0 50 100 150 200

Orignal Trace
Trace with shifts

Best Performing Case

(1 abrupt shift and 10 small shifts)

(b)Fig. 15 Adaptability check:

cache performance under

concept drift. Shows that the

proposed method is capable of

withstanding abrupt and small

shifts

Evolving Systems (2011) 2:101–118 117

123

http://dx.doi.org/10.1007/s12530-010-9010-1
http://dx.doi.org/10.1007/s12530-010-9010-1
http://books.google.com/books?id=Po0RLQ7USIMC
http://books.google.com/books?id=Po0RLQ7USIMC

Imai K, King G, Lau O (2006) Zelig: everyone’s statistical software.

http://gking.harvard.edu/zelig

Jin S, Bestavros A (2000) Popularity-aware greedy dual-size web

proxy caching algorithms. In: Distributed computing systems,

2000. Proceedings. 20th international conference on, pp 254–261

Klinkenberg R, Renz I (1998) Adaptive information filtering: learning

in the presence of concept drifts. Learn Text Categor 1:33–40

Komarek P (2004) Logistic regression for data mining and high-

dimensional classification. Biostatistics 4:138

Koskela T, Heikkonen J, Kaski K (2003) Web cache optimization

with nonlinear model using object features. Comput Netw 43(6):

805–817

Krashakov SA, Teslyuk AB, Shchur LN (2006) On the universality of

rank distributions of website popularity. Comput Netw 50(11):

1769–1780

Krashakov SA, Teslyuk AB, Shchur LN (2006) On the universality of

rank distributions of website popularity. Comput Netw 50(11):

1769–1780

Landwehr N, Hall M, Frank E (2005) Logistic model trees. Mach

Learn 59(1):161–205

Li K, Nanya T, Qu W (2007) A minimal access cost-based

multimedia object replacement algorithm. In: IEEE international

parallel and distributed processing symposium, 2007. IPDPS

2007, pp 1–7

Lim T, Loh W, Shih Y (2000) A comparison of prediction accuracy,

complexity, and training time of thirty-three old and new

classification algorithms. Mach Learn 40(3):203–228

Long W, Griffith J, Selker H, D’agostino R (1993) A comparison of

logistic regression to decision-tree induction in a medical

domain. Comput Biomed Res 26:74–97

Lu Y, Abdelzaher T, Lu C, Tao G (2002) An adaptive control

framework for QoS guarantees and its application to differen-

tiated caching. In: Quality of service, 2002. Tenth IEEE

International Workshop on, pp 23–32

Markatchev N and Williamson C (2002) Webtraff: A GUI for web

proxy cache workload modeling and analysis. In: Modeling,

analysis and simulation of computer and telecommunications

systems, 2002. MASCOTS 2002. Proceedings. 10th IEEE

international symposium on, p 356–363

Mierswa I, Wurst M, Klinkenberg R, Scholz M, Euler T (2006) Yale:

rapid prototyping for complex data mining tasks. In: Ungar L,

Craven M, Gunopulos D, Eliassi-Rad T (eds) Kdd ’06:

Proceedings of the 12th acm sigkdd international conference

on knowledge discovery and data mining. ACM Press, New

York, NY, USA, pp 935–940

Miller A (2002) Subset selection in regression. CRC Press, New York

NLANR (2010) Cache access logs [online]. ftp://ircache.nlanr.

net/traces/

Pallis G, Thomos C, Stamos K, Vakali A, Andreadis G (2007)

Content classification for caching under CDNs. In: Innovations

in information technology, 2007. IIT ’07. 4th international

conference on, pp 586–590

Podlipnig S, Böszörmenyi L (2003) A survey of web cache

replacement strategies. ACM Comput Surv 35(4):374–398

Sargent D (2001) Comparison of artificial neural networks with other

statistical approaches. CA A Cancer J Clin 91(S8):1636–1642

Steyerberg EW, Harrell FE, Borsboom GJJM, Eijkemans MJC,

Vergouwe Y, Habbema JDF (2001) Internal validation of

predictive models: efficiency of some procedures for logistic

regression analysis. J Clin Epidemiol 54(8):774–781

Sulaiman S, Shamsuddin SM, Forkan F, Abraham A (2008)

Intelligent web caching using neurocomputing and particle

swarm optimization algorithm. In: Ams ’08: Proceedings of the

2008 second asia international conference on modelling &

simulation (ams). IEEE Computer Society, Washington, DC,

pp 642–647

Team RDC (2008) R: a language and environment for statistical

computing. R Language software Team, Vienna

Tian W, Choi B, Phoha VV (2002) An adaptive web cache access

predictor using neural network. In: Iea/aie ’02: Proceedings of

the 15th international conference on industrial and engineering

applications of artificial intelligence and expert systems.

Springer, London, pp 450–459

TraceGraph (2005) Trace graph tool (online). http://www.tracegraph.

com/traceconverter.html

Tsymbal A (2004) The problem of concept drift: definitions and

related work. Computer Science Department, Trinity College,

Dublin

Wang H, Fan W, Yu PS, Han J (2003) Mining concept-drifting data

streams using ensemble classifiers. In: Proceedings of the ninth

ACM SIGKDD international conference on knowledge discov-

ery and data mining, pp 226–235

Wang Y (2005) A multinomial logistic regression modeling approach

for anomaly intrusion detection. Comput Secur 24(8):662–674

Xu L, Chow M-C, Gao XZ (2005) Comparisons of logistic regression

and artificial neural network on power distribution systems fault

cause identification. In: Soft computing in industrial applica-

tions, 2005. SMCia/05. Proceedings of the 2005 IEEE Mid-

summer workshop on, pp 128–131

Yang Q, Zhang HH (2003) Web-log mining for predictive web

caching. IEEE Trans Knowl Data Eng 15(4):1050–1053

118 Evolving Systems (2011) 2:101–118

123

http://gking.harvard.edu/zelig
ftp://ircache.nlanr.net/traces/
ftp://ircache.nlanr.net/traces/
http://www.tracegraph.com/traceconverter.html
http://www.tracegraph.com/traceconverter.html

	A novel content classification scheme for web caches
	Abstract
	Introduction
	Related work
	The proposed content classification scheme
	The classification problem
	Object worthiness
	Computing the object worthiness

	The MLR model

	Simulation
	Data pre-processing
	Simulation metrics
	Performance evaluation

	Results
	Classification
	Training and validation
	Accuracy
	Error rates

	Cache simulation
	HR and BHR
	WHR and WBHR
	MRT

	Comparison with ANN

	Discussion
	Concept drift
	Computational overhead

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

