
Vol.:(0123456789)

Journal of Computing in Higher Education
https://doi.org/10.1007/s12528-024-09407-3

1 3

The effects of pre‑training types on cognitive load,
self‑efficacy, and problem‑solving in computer
programming

Jaewon Jung1 · Yoonhee Shin2 · HaeJin Chung3 · Mik Fanguy4

Accepted: 10 June 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2024

Abstract
This study investigated the effects of pre-training types on cognitive load, self-effi-
cacy, and problem-solving in computer programming. Pre-training was provided to
help learners acquire schemas related to problem-solving strategies. 84 undergradu-
ate students were randomly assigned to one of three groups and each group received
three different types of pre-training: 1) WOE (worked-out example) and metacog-
nitive scaffolding, 2) faded WOE and metacognitive scaffolding, and 3) WOE and
faded metacognitive scaffolding. After the pre-training phase, the participants’ cog-
nitive load, self-efficacy, and programming problem-solving skills were analyzed.
Then, during the training phase, the participants were asked to attempt a program-
ming problem-solving task with faded WOE and faded metacognitive scaffoldings.
After the training phase, the participants’ cognitive load, self-efficacy, and program-
ming problem-solving were analyzed again. The findings revealed that providing
both cognitive scaffolding (i.e., WOE or faded WOE) and non-faded metacognitive
scaffolding during the pre-training phase is effective for novice learners for optimiz-
ing cognitive load, promoting self-efficacy, and enhancing programming problem-
solving skills.

Keywords Metacognitive scaffolding · Faded WOE · Cognitive load · Self-efficacy ·
Problem-solving programming

Introduction

With the increasing importance of computer programming skills in twenty-first cen-
tury critical competencies (Wu et al., 2020), various instructional strategies have
been proposed for effective programming instruction. According to previous stud-
ies, self-regulation skills, including cognitive and metacognitive skills, are impor-
tant to solve complex tasks when programming (Loksa et al., 2016; Shin et al.,

Extended author information available on the last page of the article

http://orcid.org/0000-0003-2282-0379
http://orcid.org/0000-0001-6684-3404
http://orcid.org/0009-0003-1499-4632
http://orcid.org/0000-0002-9383-1510
http://crossmark.crossref.org/dialog/?doi=10.1007/s12528-024-09407-3&domain=pdf

 J. Jung et al.

1 3

2023; Zimmerman & Schunk, 2011). Self-regulation skills refer to strategies learn-
ers employ in order to systematize their thinking and behavior to apply them to
achievement of a learning goal (Berk, 2003). Specifically, learners with high aca-
demic achievement use more self-regulated learning strategies than learners with
low achievement (Hwang & Vrongistnos, 2002), and self-regulation increases learn-
ing motivation or self-efficacy, giving learners an autonomous and active attitude
(Deweck & Leggett, 1988). However, novice learners may experience difficulties
in solving programming problems because they lack the self-regulation ability to
understand computational principles and apply them effectively to programming
(Loksa et al., 2020; Magana et al., 2019) and because low self-efficacy may prevent
successful learning. Pre-training is one of the ways to overcome such difficulties,
and it is necessary to understand important concepts and practice reflective thinking
in the problem-solving process through pre-training.

Instructional strategies that consider both cognitive and metacognitive aspects
are important when providing pre-training for improving the self-regulation skill
of novice computer programmers. Specifically, if cognitive skills are necessary for
understanding computational principles, metacognitive skills can be seen as nec-
essary for overall programming problem-solving (Shin & Song, 2022; Shin et al.,
2023). Worked-out example (WOE) is a type of instructional strategy that in which
the learner is guided through a stepwise demonstration of how to solve a problem
or complete at task (Kirschner et al., 2006). Shin et al. (2023) found that providing
metacognitive scaffolding to promote metacognitive skills together with a WOE to
promote cognitive skills in programming learning was more effective in program-
ming knowledge acquisition and problem-solving than providing a WOE alone. In
addition, providing a WOE with metacognitive scaffolding was found to be effec-
tive in reducing unnecessary cognitive load and promoting germane cognitive load
(Molenaar et al., 2011; Prather et al., 2020). In terms of metacognition, metacogni-
tive scaffolding is effective in structuring the solution process through planning in
the early phase of problem-solving and applying metacognitive strategies through
monitoring and reflection in the problem-solving phase (Molenaar et al., 2011;
Prather et al., 2020). In terms of cognition, providing well-structured WOE can
help learners learn the computational principles necessary for programming prob-
lem-solving (Garner, 2002). However, it is important to apply appropriate fading,
meaning a reduction in the level of assistance or guidance provided to learners in
completing a task or solving a problem, to WOE in order optimize cognitive load
and effectively apply acquired knowledge (Garner, 2001; Renkl, 2002; Salleh et al.,
2018).

As mentioned above, despite research findings that cognitive and metacognitive
support need to be provided together to improve self-regulation abilities in pro-
gramming learning, so far, most studies have provided only cognitive or metacog-
nitive scaffolding. Moreover, even if cognitive and metacognitive scaffoldings are
provided together, there is a lack of research on which types of scaffolding provide
more synergistic effects to novice learners’ understanding of computer program-
ming. In previous research, Zheng et al. (2022) revealed findings indicating that
scaffolding strategies where scaffolding is gradually introduced are more effective
than scaffolding strategies where scaffolding is gradually removed. However, there

1 3

The effects of pre‑training types on cognitive load,…

remains a scarcity of studies investigating the effectiveness of faded metacognitive
scaffolding strategies. Furthermore, despite the importance influence of self-efficacy
on self-regulated learning (Shell et al., 1995), there is a paucity of research explor-
ing the relationship between scaffolding types aimed at supporting self-regulation
in programming education and self-efficacy. Therefore, the present study focuses on
pre-training to support the promotion of cognitive and metacognitive skills, which
are components of learners’ self-regulation ability, and seeks to explore how pre-
training types affect novice learners’ programming learning. Through this, we intend
to present empirical evidence to identify the type of pre-training that is most effec-
tive for programming instruction.

Literature review

Programming and pre‑training

Recently, as interest in computational thinking has increased, the importance of
problem-solving in programming has increased. In order to successfully solve com-
plex problems when learning to program, self-regulation skill to apply various solu-
tions based on the principles necessary for problem-solving is required (Loksa et al.,
2016; Zimmerman & Schunk, 2011). Self-regulation skill enhances learners’ self-
efficacy (Deweck & Leggett, 1988), and learners with high self-efficacy use more
self-regulated learning strategies (Zimmerman & Martinez-Pons, 1990). However,
novice learners lack self-regulation skill, which can make it difficult to apply appro-
priate programming-related knowledge to solve programming problems (Magana
et al., 2019).

For example, a study examining the problem-solving strategies of experts in
programming has revealed that experts adopt a problem-solving approach focused
on knowledge clarification and strategic planning. During the problem-analysis
stage, experts tend to demonstrate a clear understanding of the problem and effec-
tively developed a well-structured plan to arrive at a solution (Chao, 2016; Lister
et al., 2006; Loksa et al., 2016; Xie et al., 2019). Novices, on the other hand, tend
to approach the solution without employing any specific problem-solving strategies,
resulting in the manifestation of simplistic and repetitive errors during the imple-
mentation phase (Loksa et al., 2020; Magana et al., 2019). In other words, novice
learners lack the skills to solve problems through a series of processes such as sys-
tematic planning of their programming, testing the programming output, and evalu-
ating programming solutions. A possible way to assist novice learners during the
problem-solving process of programming is to provide instruction that aids in their
understanding of computational principles and enables them to practice applying
metacognitive strategies through pre-training in the process of problem-solving.

Previous studies have shown that for complex tasks, pre-training can improve
learners’ expertise and effectively support problem-solving (Jung et al., 2021;
Kalyuga et al., 2001). Pre-training has been shown to reduce unnecessary cogni-
tive load and improve comprehension of learning content by enabling learners
to pre-learn core concepts or core content in the process of solving complex

 J. Jung et al.

1 3

problems (Jung et al., 2016). Pre-training has been applied to diverse fields such
as multimedia learning (Mayer et al., 2002) and computer-based collaborative
learning (CSCL) (Jung et al., 2021). In the present study, we intend to apply pre-
training to help learners solve computer programming problems.

Worked‑out examples and cognitive load

Cognitive load occurs because the amount of information that can be processed
at one time by human working memory is fixed, and in order to lead learning
effectively, an instructional strategy that considers cognitive load is required
(Mayer & Moreno, 2003; Sweller et al., 1998). Cognitive load can be divided
into intrinsic cognitive load, extraneous cognitive load, and germane cognitive
load. Intrinsic load primarily pertains to the complexity of the content that stu-
dents need to comprehend, extraneous load relates to factors that hinder compre-
hension during information transfer, and germane load refers to the information
that learners have absorbed (Sweller et al., 1998).

Previous studies have proposed various instructional design strategies to
reduce extraneous cognitive load and promote germane cognitive load benefi-
cial to learning (Paas & Sweller, 2012; Renkl & Atkinson, 2003). Among them,
a representative example for controlling the cognitive load of novice learners
is providing WOE, which presents an expert’s problem-solving process (Clarke
et al., 2005; Renkl & Atkinson, 2003). In learning to program, novice learn-
ers can experience cognitive load in the process of attempting to comprehend
basic programming-related concepts and applying appropriate problem solutions
to problems. Accordingly, in previous studies, WOE was provided to support
the cognitive aspect to help acquire computational principles (Garner, 2002).
Faded WOE, in particular, can maximize learning outcomes by eliminating the
key parts from expert’s problem-solving process and allowing learners to figure
out the solution on their own (Hancock-Niemi et al., 2016; Renkl et al., 2000;
Salleh et al., 2018; van Merriënboer & de Croock, 1992). However, when the
use of a faded WOE that does not match the learner’s prior knowledge level,
unnecessary information is provided redundantly or necessary information is not
provided, causing extraneous cognitive load for the learner (Seta et al., 2007).
Therefore, when using faded WOE, it is important to apply fading appropriately
in consideration of the learner’s expertise (Merriënboer & Kirschner, 2012; de
Jong, 2010).

Recently, some studies have found that providing cognitive and metacognitive
support together in programming instruction for novice learners is more effective in
controlling cognitive load, acquiring programming-related knowledge, and solving
problems than providing only cognitive support (Pol et al., 2010; Chen et al., 2023;
Shin & Song, 2022; Shin et al., 2023). Therefore, programming learning for novice
learners should be provided with instructional strategies that consider both cognitive
and metacognitive aspects. Currently, research is needed to ascertain effective com-
binations of cognitive and metacognitive support.

1 3

The effects of pre‑training types on cognitive load,…

Metacognitive scaffolding in programming

Recently, the provision of metacognitive scaffolding has been utilized as a strategy
to promote learners’ metacognition and support metacognitive behaviors as they
engage in problem-solving during programming. Previous research on programming
instruction has shown that metacognitive scaffolding is effective in improving learn-
ers’ problem-solving skills in that it provides a means to check what learners already
know and supports them in selecting appropriate problem-solving strategies (Shin
& Song, 2022). Specifically, metacognitive scaffolding plays an important role in
leveraging metacognitive strategies such as planning the programming, monitoring
programming output, and reflecting the programming solutions necessary for the
entire process of programming troubleshooting (Shin et al., 2023).

According to Mohd Rum and Ismail (2017), novice learners provided with meta-
cognitive scaffolding exhibited superior programming performance to learners not
provided with metacognitive scaffolding. This indicates that by providing novice
learners with an expert’s fine problem-solving strategies through metacognitive
scaffolding, the process of goal setting, organizing knowledge, enacting strategies,
evaluating a potential solution, and implementing a solution of novice learners was
effectively supported. In particular, given that proper fading of a WOE promotes
cognition (Renkl et al., 2000), providing a faded WOE and metacognitive scaf-
folding together can be expected to be effective in solving programming problems.
Moreover, it is expected that this approach has a positive effect on the improvement
of learners’ problem-solving and self-efficacy because learners can concentrate on
essential information from experts’ problem-solving processes (Sweller, 2010) and
infer the principles required at each stage of the problem-solving process through
the eliminated parts of the WOE (Chi et al., 1989; Renkl, 2002).

In a study exploring effective metacognitive scaffolding types for novice learn-
ers in collaborative programming settings (Zheng et al., 2022), fade-in scaffolding
(where scaffolding is gradually introduced) was found to be more effective than
fade-out scaffolding (where scaffolding is gradually removed). The study provided
empirical support for the notion that fade-in scaffolding is an effective metacogni-
tive scaffolding type for collaborative programming of novice learners. However,
research on the effect of faded metacognitive scaffolding is still lacking. Despite
various studies on metacognitive scaffolding for novice learners in programming
instruction, the literature remains rather porous. Although there are many stud-
ies that apply fading to cognitive scaffolding such as WOE in individual program-
ming learning, few attempts have investigated how to apply fading to metacognitive
scaffolding.

The present study

In the present study, we aim to provide both cognitive and metacognitive scaffold-
ing together to promote learners’ cognitive and metacognitive skills, thereby opti-
mizing cognitive load, promoting self-efficacy, and enhancing problem-solving
skills. Specifically, we will examine which types of metacognitive scaffolding are

 J. Jung et al.

1 3

most effective for programming instruction among novice learners. Additionally,
we will explore the potential synergistic effect of providing cognitive and metacog-
nitive scaffolding together. Specifically, 84 undergraduate students were randomly
assigned to one of three groups respectively receiving three different types of pre-
training: 1) WOE (worked out example) and metacognitive scaffolding, 2) faded
WOE and metacognitive scaffolding (FWM), and 3) WOE and faded metacogni-
tive scaffolding (WFM). The participants’ levels of cognitive load, self-efficacy, and
programming problem-solving were assessed after the pre-training phase, and then
during the training phase, the participants were asked to attempt a programming
problem-solving task with faded WOE and faded metacognitive scaffoldings. After
the training phase, the participants’ cognitive load, self-efficacy, and programming
problem-solving were assessed again.

Research questions and hypotheses

The present study was guided by the following research questions and correspond-
ing hypotheses:

RQ1 Does the use of fading in pre-training programs containing both WOE and
metacognitive scaffolding help control learners’ cognitive load?H1 Learners
engaged in pre-training that includes fading will exhibit more optimized cognitive
load compared to learners engaged in pre-training that omits fading.H1a Learners
in the FWM and WFM conditions will exhibit lower levels of intrinsic cognitive
load than learners in the WM condition.H1b Learners in the FWM and WFM
conditions will exhibit lower levels of extraneous cognitive load than learners in
the WM condition.

RQ2 If so, is it more beneficial to learners’ cognitive load to fade the WOE or to
fade the metacognitive scaffolding?H2 Fading the WOE will be more beneficial
to learners’ cognitive load than fading the metacognitive scaffolding.H2a Learn-
ers in the FWM conditions will exhibit lower levels of intrinsic cognitive load
than learners in the WFM condition.H2b Learners in the FWM conditions will
exhibit lower levels of extraneous cognitive load than learners in the WFM
condition.H2c Learners in the FWM conditions will exhibit higher levels of
germane cognitive load than learners in the WFM condition.

RQ3 Does the use of fading in pre-training programs containing both WOE and
metacognitive scaffolding promote learners’ self-efficacy?H3 Learners engaged
in pre-training that includes fading will exhibit improved self-efficacy compared
to learners engaged in pre-training that omits fading.H3a Learners in the FWM
and WFM conditions will exhibit higher levels of self-efficacy than learners in
the WM condition.

RQ4 If so, is it more beneficial to learners’ self-efficacy to fade the WOE or to
fade the metacognitive scaffolding?H4 Fading the WOE will be more beneficial

1 3

The effects of pre‑training types on cognitive load,…

to learners’ self-efficacy than fading the metacognitive scaffolding.H4a Learners
in the FWM conditions will exhibit higher levels of self-efficacy than learners in
the WFM condition.

RQ5 Does the use of fading in pre-training programs containing both WOE
and metacognitive scaffolding benefit learners’ programming problem-
solving?H5 Learners engaged in pre-training that includes fading will exhibit
enhanced programming problem-solving compared to learners engaged in pre-
training that omits fading.

RQ6 If so, is it more beneficial to learners’ programming problem-solving to fade
the WOE or to fade the metacognitive scaffolding?H6 Fading the WOE will be
more beneficial to learners’ programming problem-solving than fading the meta-
cognitive scaffolding.H6a Learners in the FWM condition will exhibit higher
levels of programming problem-solving than learners in the WFM condition.

Method

Participants

The participants in this study were 84 female first-year undergraduate students
majoring in science and technology at a 4-year women’s university. The partici-
pants were enrolled in a 2-credit course titled “Introduction to Programming,” and
none had experience taking courses related to Python programming. In addition,
students had no prior experience taking courses related to computational thinking
skills and problem-solving skills at a university. The average age of the students
was 20.35 years. All participants were randomly assigned to one of three groups,
and each group was provided with different types of pre-training: traditional WOE
and metacognitive scaffolding (WM), faded WOE and metacognitive scaffolding
(FWM), and traditional WOE and faded metacognitive scaffolding (WFM). All of
groups carried out programming problem-solving tasks for three weeks using a web-
based programming tool.

Experimental materials

Three types of pre‑training

During their pre-training, the participants performed basic-level programming prob-
lem-solving tasks. The purpose of the pre-training was to demonstrate an under-
standing of the basic concepts and accurately arrive at a solution through a process
of planning, monitoring, and reflection. The three types of pre-training were con-
structed as WM, FWM, and WFM.

 J. Jung et al.

1 3

Worked‑out example

The WOE used in this study was designed based on WOE developed by Shin
et al. (2023). The WOE used herein included problem statements and objectives
in a “problem” section as well as a basic program structure and problem-solving
context, including input data and output data, in a “solution” section. While tra-
ditional WOE included a guide with all the code, faded WOE was provided with
core and important concepts being removed (e.g., variables, control statements,
functions, etc.) with 2–3 concepts per problem (see Fig. 1).

Metacognitive scaffolding

Metacognitive scaffolding was provided to assist novices in planning, monitoring,
and reflecting while solving programming problems. The planning guide aimed
to help learners construct a plan to reach the group’s goal such as the choos-
ing learning strategies and managing timelines. The monitoring guide provided
instructions on conducting a systematic analysis of solutions, and the reflection
guide facilitated novice learners in discerning their acquired knowledge and areas
of oversight. The metacognitive questions were developed based on Loksa et al.
(2016) and Shin et al. (2023) (see Table 1). Metacognitive scaffolding included
a guide with metacognitive questions and a sample of experts’ metacognitive
strategies with core metacognitive concepts regarding planning, monitoring,

Fig. 1 Problem-solving WOE examples (left: traditional WOE (WM), right: faded WOE (FWM))

1 3

The effects of pre‑training types on cognitive load,…

and reflecting, while faded metacognitive scaffolding included a guide with only
metacognitive questions with a sample of experts’ metacognitive strategies with
some core concepts faded.

Pre‑test

Ten multiple-choice questions about basic concepts and syntax of Python program-
ming were used to measure the participants’ prior knowledge (e.g., “Choose the
appropriate principle when declaring a variable”). One point was provided for a cor-
rect answer to each problem, with a maximum score of 10 points (see Table 2).

There were no significant differences in prior knowledge across the three condi-
tions. Specifically, the result shows that there was no statistically significant differ-
ence among three groups (F = 0.96, p = 0.39, ŋ2 = 0.02) (see Table 3).

Cognitive load measures

A ten-point Likert scale was used to measure cognitive load, based on previous
research by Leppink et al., 2013, ranging from “Extremely Easy” (0) to “Extremely
Difficult” (10) (see Table 4). The cognitive load measurement consisted of 10

Table 1 Sample metacognitive
scaffolding questions

Strategies Metacognitive questions

Planning What variables and key phrases
are needed to solve the problem?

Monitoring Has the detailed goal setting for
problem-solving been accom-
plished?

Reflection What did you learn from this task?

Table 2 Sample pre-test items
to measure prior knowledge

Items# Problems

1 Choose the one that is
appropriate as a principle
when declaring a vari-
able

2 Choose the one that is
appropriate for the
description of the condi-
tional statement

Table 3 The group means of prior knowledge

Groups N Mean SD

WM (Traditional WOE with metacognitive scaffolding) 27 5.59 2.24
FWM (Fade WOE with metacognitive scaffolding) 30 4.83 2.72
WFM (Traditional WOE with faded metacognitive scaffolding) 27 5.56 2.01

 J. Jung et al.

1 3

multiple-choice items: three items for intrinsic load, three for extraneous load, and
four for germane load. Cognitive load was measured after the pre-training and train-
ing phases (Cronbach’s Alpha = 0.87 and 0.82, respectively).

Measurement of level of self‑efficacy

Self-efficacy was measured using a subscale of the Motivated Strategies for Learn-
ing Questionnaire (MSLQ) (Pintrich et al., 1991). The questionnaires consisted of
eight multiple-choice questions (e.g., “I’m confident I can learn the basic concepts
taught in this course.”) (see Table 5). Self-efficacy was measured after the pre-train-
ing and training phases (Cronbach’s Alpha = 0.79 and 0.85, respectively).

Measurement of level of programming problem‑solving

Programming problem-solving tests were conducted to measure the participants’
programming-related knowledge after the pre-training and training phases. Each
test comprised a contextual and intricate programming problem-solving task.
Participants were asked to create a grade calculator using Python after the pre-
training phase and then create a course registration program after the training
phase. They were given 50 min for each problem. Both problems were semi-open
structured, with certain programming concepts that had to be included, but were
presented as real-life-based problem-solving scenarios. The difficulty level of the
second task was higher than the first. Programming problem-solving tests were
assessed by two experts with more than five years of experience in teaching and
researching computer programming. The evaluation comprised a set of two ques-
tions, with each question being worth 10 points, resulting in a total score of 20

Table 4 Sample questions for cognitive load measures

Type of load Questions

Intrinsic load The content of this learning task was very complex
Extraneous load The instructions and explanations during the activity were very unclear
Germane load The activity really enhanced my understanding of the topic(s) covered

Table 5 Sample self-efficacy
items to measure prior
knowledge

Items# Problems

1 I’m certain I can
master the skills
being taught in this
class

2 I’m confident I can
learn the basic
concepts taught in
this course

1 3

The effects of pre‑training types on cognitive load,…

points. The total grade points of the course are 100 points, and the problem-solv-
ing test score measured in the experiment accounts for 20 points out of the total
100 points (attendance 10 points, problem-solving test 20 points, midterm exam
30 points, final exam 40 points).

Procedure

The participants were divided into three groups, with each group receiving a dif-
ferent type of pre-training to perform their tasks. The experiment was conducted
once a week for three consecutive weeks during the three-hour class meetings,
so that the procedures took a total of nine hours. The participants had spent one
week learning basic programming concepts (e.g., variables, loops, conditionals,
and functions) and then took a pre-test. The instructor delivered a comprehen-
sive briefing to the participants regarding the study’s objectives, methodologies,
advantages, data utilization, and the rights bestowed upon them as research par-
ticipants. Eligibility for participation in this study was contingent upon individ-
uals’ voluntary consent subsequent to receive a comprehensive briefing on the
study’s nature and objectives. All 84 learners in the class agreed to participate in
the study.

After the pre-test, the participants were asked to individually perform a pro-
gramming problem-solving task as part of their assigned type of pre-training
(WM, FWM, and WFM). After completing the pre-training, each participant took
initial measurements of cognitive load, self-efficacy, and programming problem-
solving. During the training phase, the participants were asked to carry out a pro-
gramming problem-solving task using the faded WOE and faded metacognitive
scaffolding. After completing the training, all of the participants took final meas-
urements of cognitive load, self-efficacy, and programming problem-solving (see
Fig. 2).

Fig. 2 Experiment Design. Note WM = traditional WOE with metacognitive scaffolding. FWM = faded
WOE with metacognitive scaffolding. WFM = WOE with faded metacognitive scaffolding.
WFWM = faded WOE with faded metacognitive scaffolding

 J. Jung et al.

1 3

Data collection and analysis

The independent variables were the three different types of pre-training, and the
dependent variables were cognitive load, self-efficacy, and programming problem-
solving. While there was no significant difference in prior knowledge among the
three groups, it was considered as a covariate due to its potential correlation with
problem-solving skills. The analysis was conducted using PSAW Statistics 21, with
the significance level set at 0.05 and 0.01 for statistical verification.

Results

Cognitive load

The descriptive statistics of the participants’ cognitive load levels are shown in
Table 6. A two-way repeated measures ANOVA was conducted using the type of
task in the pre-training and training as an intra-subject factor and the scaffolding
type as an inter-subject factor.

Intrinsic load. There was a statistically significant difference in intrinsic cogni-
tive load among the three groups in the pre-training and training, though the magni-
tude of this difference was not substantial, F (2, 81) = 7.851, p < 0.1. The effect size
was η2 = 0.058, which is on the upper end of what is typically considered a small
effect, approaching medium (Cohen, 1988). An increase in intrinsic cognitive load
was observed in the training in comparison to in the pre-training for both the FWM
and WFM groups, while the WM group conversely exhibited a reduction in intrin-
sic cognitive load in the training. Post-hoc analysis revealed a significant difference
only between FWM and WFM (p < 0.05).

Extraneous load. There was no statistically significant difference in extrane-
ous load among the three groups in the pre-training and training, F (2, 81) = 1.315,
p = 0.53. The effect size was η2 = 0.016, which is considered a small effect, indicat-
ing minimal differences among the groups.

Table 6 The descriptive statistics of cognitive load

Pre-training: Task 1, Training: Task 2

Cognitive load type WM (n = 27) FWM (n = 30) WFM (n = 27)

Pre-training Training Pre-training Training Pre-training Training

Intrinsic Load M 4.25 3.65 2.98 3.38 4.32 4.56
SD 1.79 2.10 2.06 2.34 1.97 2.18

Extraneous Load M 3.00 2.80 2.32 2.50 3.10 3.28
SD 1.26 1.56 1.48 1.53 1.91 1.94

Germane Load M 7.29 7.98 7.51 7.22 7.25 7.27
SD 1.46 1.42 2.13 1.87 1.32 1.41

1 3

The effects of pre‑training types on cognitive load,…

Germane load. There was a statistically significant difference in germane load
among the three groups in the pre-training and training, F (2, 81) = 3.567, p < 0.05.
The effect size was η2 = 0.074, which is on the upper end of what is typically con-
sidered a small effect, approaching medium (Cohen, 1988), suggesting meaningful
differences in how the groups processed the learning materials. Both the WM and
WFM groups exhibited an increase in germane load in the training as compared to
in the pre-training. However, no statistically meaningful difference was observed in
the post-hoc analysis between the WM and WFM groups.

Self‑efficacy

The influence of the type of task in the pre-training and training and scaffolding
on self-efficacy was examined through a two-way repeated measures ANOVA. Sta-
tistically significant differences were observed among the three groups in terms of
student self-efficacy, contingent upon the type of task in the pre-training and train-
ing, F (2, 81) = 4.923, p < 0.01. The effect size was η2 = 0.10, which is considered a
small effect, approaching medium (Cohen, 1988), suggesting a substantial impact
of the type of task on student self-efficacy. In both the WM and FWM groups, self-
efficacy was observed to be higher in the training as compared to in the pre-training.
However, no statistically meaningful difference was identified in the post-hoc analy-
sis between the WM and FWM groups. In the WFM group, despite having higher
self-efficacy than the other two groups in the pre-training, the WFM group exhibited
lower self-efficacy in the training (see Table 7).

Problem‑solving skills

This study investigated the impact of scaffolding types on problem-solving ability,
with the problem-solving tests being differentiated into two levels of difficulty: low
and high. Considering pre-test scores, the results of the one-way ANCOVA for each
test are as follows (see Table 8).

For the low-difficulty condition, a test measured after pre-training revealed no
significant difference among the three groups, F (2, 80) = 0.063, p = 0.94. The
effect size was η2 = 0.002, indicating a very small effect, suggesting that the type
of scaffolding had negligible impact on problem-solving ability in the low-dif-
ficulty tasks (see Table 9). On the other hand, for the high-difficulty condition,
a test measured after training revealed significant differences among the three

Table 7 The Descriptive Statistics of Self-efficacy

Pre-training: Task 1, Training: Task 2

Self-efficacy WM (n = 27) FWM (n = 30) WFM (n = 27)

Pre-training Training Pre-training Training Pre-training Training

M 4.58 5.04 4.85 5.13 5.17 4.81
SD 1.08 1.00 1.33 1.26 1.05 1.19

 J. Jung et al.

1 3

groups, F (2, 80) = 3.327, p < 0.05. The effect size was η2 = 0.077, which is on
the upper end of what is typically considered a small effect, approaching medium
(Cohen, 1988), indicating that the type of scaffolding had a more pronounced
effect on the problem-solving ability in high-difficulty tasks (see Table 10) with
the WM group scoring the highest (AM = 7.02, SE = 0.72). Furthermore, post-hoc
analysis revealed a significant difference only between the WM and WFM groups
(p < 0.05).

Table 8 The descriptive statistics of problem-solving skills

AM: adjusted mean, Pre-training: Task 1, Training: Task 2

Problem-
Solving
Skills

WM (n = 27) FWM (n = 30) WFM (n = 27)

Pre-training Training Pre-training Training Pre-training Training

M 8.89 6.93 9.17 5.25 8.89 4.46
SD 2.89 3.57 1.90 3.95 3.20 3.75
AM 8.91 (SE: 0.52) 7.02 (SE: 0.72) 9.13 (SE: 0.50) 5.09 (SE: 0.52) 8.91 (SE: 0.52) 4.54 (SE:

0.72)

Table 9 Tests of between-subjects effects dependent variable: pre-training

*p < .05. **p < .01

Sum of square df Mean of square F p η2

Corrected model 4.171 3 1.390 0.190 .90 .007
Intercept 1175.019 1 1175.019 160.737 .00 .668
Pre-test 2.683 1 2.683 0.367 .55 .005
Group 0.917 2 0.458 0.063 .94 .002
Error 584.817 80 7.310
Total 7375.000 84
Corrected Total 588.988 83

Table 10 Tests of between-subjects effects dependent variable: training

*p < .05. **p < .01

Sum of square df Mean of square F p η2

Corrected model 134.126 3 44.709 3.249 .03 .109
Intercept 708.731 1 708.731 51.508 .00 .392
Pre-test 48.423 1 48.423 3.519 .06 .042
Group 91.556 2 45.778 3.327 .04* .077
Error 1100.767 80 13.760
Total 3809.000 84
Corrected Total 1234.893 83

1 3

The effects of pre‑training types on cognitive load,…

Discussion

The effects of three types of pre‑training on cognitive load

In this study, we provided cognitive scaffolding and metacognitive scaffolding
together, considering the importance of self-regulation skills, including cogni-
tive and metacognitive skills, to address complex tasks in programming education
(Loksa et al., 2016; Shin et al., 2023; Zimmerman & Schunk, 2011). Specifically,
our aim was to identify the most effective type of pre-training when providing
cognitive scaffolding and metacognitive scaffolding together, with the purpose
of optimizing cognitive load and promoting learning. During the training phase,
it was observed that the FWM type was the most effective in reducing intrin-
sic cognitive load and extraneous cognitive load and WFM type was the least
effective. Conversely, the WM type was found to be the second-most effective in
reducing intrinsic and extraneous cognitive load, following the FWM type, and it
was the most effective in promoting germane cognitive load. This indicates that
the WM type not only effectively minimized unnecessary cognitive load, securing
space for germane cognitive load, but also promoted germane cognitive load most
effectively. Based on findings, Hypothesis 1 was partially supported. Specifically,
Hypothesis 1a, 1b, and 1c were each partially supported. In addition, Hypothesis
2 was also partially supported. Hypothesis 1a and 2b were supported, but Hypoth-
esis 2c was unsupported. Faded WOE in a manner that does not match learners’
levels of prior knowledge can lead to cognitive overload (Hancock-Niemi et al.,
2016; Salleh et al., 2018). However, this study reveals that, for novice learners,
the most effective pre-training approach in reducing unnecessary cognitive load
involves providing faded WOE with core concepts eliminated, along with meta-
cognitive scaffolding, as was the case with the FWM pre-training type.

Cognitive load occurs due to the limited capacity of human working memory
to process a certain amount of information within a given time (Mayer & Moreno,
2003). Previous studies have aimed to reduce extraneous cognitive load and promote
germane cognitive load, which is beneficial for learning (Renkl & Atkinson, 2003).
In particular, pre-training can effectively reduce unnecessary cognitive load during
the problem-solving process of complex tasks by providing learners with prior expo-
sure to the core content. In this study, the FWM type exhibited the lowest intrinsic
and extraneous cognitive load and the highest germane load during the pre-training
phase. During the training phase, it showed the lowest intrinsic and extraneous cog-
nitive load and the second-highest germane load. This finding demonstrates that the
FWM type serves as an effective pre-training approach, not only in reducing unnec-
essary cognitive load but also in facilitating germane cognitive load, which benefits
learning. On the other hand, the WM type showed lower intrinsic cognitive load
and extraneous cognitive load during the training phase compared to the pre-training
phase, while germane cognitive load increased. Considering that the difficulty of
the learning tasks is higher during the training phase compared to the pre-training
phase, it is predicted that the WM type could be applied as an effective pre-training
approach for learning tasks with high difficulty.

 J. Jung et al.

1 3

The effects of three types of pre‑training on self‑efficacy

Self-efficacy is the degree of confidence that learners have in their abilities and
effectiveness (Bandura, 1977). Those with higher self-efficacy take a challenging
approach to tasks that are considered somewhat difficult and think that they can
control and handle them (Schunk & Pajares, 2002). Therefore, self-efficacy is an
important factor influencing learning. In training, self-efficacy was highest in the
FWM group with fading applied to cognitive scaffolding and lowest in the WFM
group. This suggests that providing the WM or FWM types in pre-training is effec-
tive in promoting self-efficacy in novice learners. Based on findings, Hypothesis 3
was partially supported. The WM type is more effective in enhancing self-efficacy
than the WFM type. In addition, Hypothesis 4 was supported. Considering previous
studies on self-efficacy, which showed that learners with higher self-regulatory abil-
ity had higher self-efficacy (Deweck & Leggett, 1988), the research results imply
that the FWM pre-training strategy, which applies fading to cognitive scaffolding, is
the most effective strategy for improving self-regulation skill.

When we examined changes in self-efficacy during the pre-training and train-
ing stages, self-efficacy increased in all groups except the WFM group. In the case
of the WFM group, which provided fading to the expert’s metacognitive strategy,
self-efficacy appeared to be high in pre-training with low task difficulty, but it was
confirmed that self-efficacy was the lowest in the training stage with high task diffi-
culty. This indicates that providing expert metacognitive strategies without fading to
pre-training is effective in improving self-efficacy for novice learners who lack self-
regulation ability. In other words, it can be suggested that providing both cognitive
and metacognitive scaffolding together, which includes all the metacognitive strate-
gies of experts required for each stage of problem-solving, is effective in promoting
self-efficacy.

The effects of three types of pre‑training on problem‑solving

Because prior research has shown that novice learners provided with metacognitive
scaffolding exhibited better programming performance than learners not provided
with metacognitive scaffolding (Mohd Rum & Ismail, 2017), we explored pre-train-
ing types that are effective for problem-solving by providing WOE and metacogni-
tive scaffolding together in training, the WM type was most effective in problem-
solving, and the FWM type was second-most effective in problem-solving. Based on
findings, Hypothesis 5 was unsupported, and Hypothesis 6 was supported. Although
WM was most effective in problem-solving, FWM was more effective than WFM
in problem-solving. Given that the level of prior knowledge in related areas affects
problem-solving skills (Sweller, 1988), it can be predicted that the FWM type,
which was the most effective in problem-solving in pre-training, had a positive
effect on problem-solving in training by facilitating learners’ prior knowledge. On
the other hand, the WM group showed lower problem-solving skills than the FWM
group in pre-training, but the highest problem-solving skills in training. This shows

1 3

The effects of pre‑training types on cognitive load,…

that providing WM-type pre-training without using a faded strategy to novice learn-
ers is effective in solving difficult programming problems. On the other hand, com-
paring the problem-solving scores of pre-training and training, the scores of the pre-
training tasks were higher than those of the training tasks. It can be inferred that this
is because the difficulty level of the pre-training tasks is relatively low compared to
the difficulty level of the training tasks.

In general, having a high level of prior knowledge indicates having numerous
schemas for learning content in related domains, and prior knowledge is widely rec-
ognized as a crucial element in enhancing problem-solving skills (Sweller, 1988).
In this study, we were able to confirm that providing cognitive scaffolding along
with metacognitive scaffolding in programming problem-solving for novice learners
is an effective pre-training approach that facilitates schema acquisition and enhance
problem-solving skills. Metacognitive scaffolding plays an important role in the
problem-solving process by helping learners check what and how much they know
and refer to expert metacognitive strategies to select appropriate problem-solving
strategies (Shin & Song, 2022). In this study, we aimed to utilize a faded metacogni-
tive scaffolding that partially erased the core concept within the expert’s metacogni-
tion strategy to help promote learners’ metacognition. However, the study provided
empirical evidence that providing non-faded metacognitive scaffolding together with
cognitive scaffolding such as WOE or faded WOE was the most effective approach
for problem-solving in novice learners.

On the other hand, the FWM type, which had the lowest intrinsic and extrane-
ous cognitive load and the highest germane cognitive load in pre-training, was the
most effective in solving pre-training problems. In addition, the WM type with
the second-lowest intrinsic and extraneous cognitive load and the highest germane
cognitive load in training was most effective in problem solving in training. These
findings support previous research (Sweller et al., 1998) that optimizing the cog-
nitive load during the problem-solving process enhances problem-solving skill and
results in successful problem-solving learning. In addition, the findings suggest that
when providing a scaffolding strategy to improve learning performance, instruc-
tional should be designed considering the optimization of cognitive load. On the
other hand, compared to pre-training, the WM and FWM groups, whose self-effi-
cacy improved in the training stage, also exhibited effective problem-solving in the
training stage, implying that self-efficacy is one of the important factors affecting
learning.

Conclusion

In this study, we tried to derive an effective pre-training type to support novice
learners’ problem-solving in programming. In particular, we explored which types
of scaffolding provision caused synergistic effects when providing cognitive and
metacognitive scaffolding together. As a result, although the effect size was statis-
tically small effect, approaching medium (Cohen, 1988), it was founded that it is
effective to provide both cognitive scaffolding such as WOE or faded WOE and non-
faded metacognitive scaffolding to novice learners. In other words, providing all the

 J. Jung et al.

1 3

core contents of the expert’s metacognitive strategy has a positive effect on novice
learners’ cognitive load control, self-efficacy improvement, and problem-solving in
programming. For cognitive scaffolding, providing WOE with fading was effective
in reducing unnecessary cognitive load, improving self-efficacy, and solving low-
difficulty problems. WOEs without fading strategies were effective in facilitating
germane cognitive load during the training phase and performing intermediate-level
learning tasks. So far, there have been many studies that have applied fading to cog-
nitive scaffolding, but it was difficult to find an attempt to apply fading to metacog-
nitive scaffolding. In this study, it is meaningful that we not only explored the effec-
tiveness of faded metacognitive scaffolding, but also obtained empirical results on
scaffolding types that can enhance the effect when cognitive scaffolding and meta-
cognitive scaffolding are provided together in pre-training. In addition, while pre-
training has been applied mainly in the fields of multimedia learning (Mayer et al.,
2002) and computer-supported collaborative learning (Jung et al., 2021), the present
study presents an empirical case of applying pre-training to programming problem-
solving for novice learners.

Despite these contributions, the present study has several limitations that must
be acknowledged. First, in this study, a strategy to erase core concepts was used
when developing faded WOE. Further studies should explore effective faded WOE
types in depth utilizing more diverse elimination strategies. Second, in this study,
a simplified form of WOE was utilized. However, depending on the task content,
WOE may be presented in more complex forms than those designed in this study.
Therefore, the results of this study conducted using these simplified forms of WOE
may not generalize to more complex WOE. Third, this study provided learners with
the problem-solving strategies of experts through cognitive and metacognitive scaf-
folding. However, in order to effectively facilitate problem-solving, it is essential
to further enhance and elaborate the integration between cognitive scaffolding and
metacognitive scaffolding. Future studies should focus on seamlessly incorporating
the contents of cognitive scaffolding and metacognitive scaffolding in the scaffold-
ing design process, considering the various stages of problem-solving. Despite these
limitations, the present paper goes some way in designing an effective cognitive
scaffolding and metacognitive scaffolding strategy for novice learners to support
programming problem-solving.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval All respondents of collected surveys were informed of their rights and participated vol-
untarily.

References

Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review,
84(2), 191. https:// doi. org/ 10. 1037/ 0033- 295X. 84.2. 191

https://doi.org/10.1037/0033-295X.84.2.191

1 3

The effects of pre‑training types on cognitive load,…

Berk, L. (2003). Child development. Pearson Higher Education AU. Retrieved from https:// www. pears
on. com/ en- au/ media/ yfcpe 1ax/ 97802 05149 766. pdf

Chao, P. Y. (2016). Exploring students’ computational practice, design and performance of problem-
solving through a visual programming environment. Computers & Education, 95, 202–215.
https:// doi. org/ 10. 1016/j. compe du. 2016. 01. 010

Chen, C. H., Liu, T. K., & Huang, K. (2023). Scaffolding vocational high school students’ computa-
tional thinking with cognitive and metacognitive prompts in learning about programmable logic
controllers. Journal of Research on Technology in Education, 55(3), 527–544.

Chi, M. T., Bassok, M., Lewis, M. W., Reimann, P., & Glaser, R. (1989). Self-explanations: How stu-
dents study and use examples in learning to solve problems. Cognitive Science, 13(2), 145–182.
https:// doi. org/ 10. 1016/ 0364- 0213(89) 90002-5

Clarke, T., Ayres, P., & Sweller, J. (2005). The Impact of sequencing and prior knowledge on learning
mathematics through spreadsheet applications. Educational Technology Research and Develop-
ment, 53(3), 15–24. https:// doi. org/ 10. 1007/ BF025 04794

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum
Associates.

de Jong, T. (2010). Cognitive load theory, educational research, and instructional design: Some food
for thought. Instructional Science, 38(2), 105–134. https:// doi. org/ 10. 1007/ s11251- 009- 9110-0

Dweck, C. S., & Leggett, E. L. (1988). A social-cognitive approach to motivation and personality.
Psychological Review, 95(2), 256. https:// doi. org/ 10. 1037/ 0033- 295X. 95.2. 256

Garner, S. (2001). A tool to support the use of part-complete solutions in the learning of program-
ming. In Proceedings of the 2001 Informing Science Conference (pp. 222–228). https:// doi. org/
10. 28945/ 2385

Garner, S. (2002). Reducing the Cognitive Load on Novice Programmers. In P. Barker & S. Rebel-
sky (Eds.), Proceedings of ED-MEDIA 2002--World Conference on Educational Multimedia,
Hypermedia & Telecommunications (pp. 578–583). Denver, Colorado, USA: Association for the
Advancement of Computing in Education (AACE). Retrieved October 6, 2022 from https:// www.
learn techl ib. org/ prima ry/p/ 10329/

Hancock-Niemic, M. A., Lin, L., Atkinson, R. K., Renkl, A., & Wittwer, J. (2016). Example-based
learning: Exploring the use of matrices and problem variability. Educational Technology
Research and Development, 64(1), 115–136. https:// doi. org/ 10. 1007/ s11423- 015- 9403-8

Hwang, Y. S., & Vrongistinos, K. (2002). Elementary In-Service Teachers’ Self-Regulated Learning
Strategies Related to Their Academic Achievements. Journal of Instructional Psychology, 29(3).
Retrieved from https:// www. proqu est. com/ schol arly- journ als/ eleme ntary- servi ce- teach ers- self-
regul ated/ docvi ew/ 14163 65195/ se-2

Jung, J., Shin, Y., & Zumbach, J. (2021). The effects of pre-training types on cognitive load, collabo-
rative knowledge construction and deep learning in a computer-supported collaborative learn-
ing environment. Interactive Learning Environments, 29(7), 1163–1175. https:// doi. org/ 10. 1080/
10494 820. 2019. 16195 92

Jung, J., Kim, D., & Na, C. (2016). Effects of WOE presentation types used in pre-training on the cog-
nitive load and comprehension of content in animation-based learning environments. Journal of
Educational Technology & Society, 19(4), 75–86.

Kalyuga, S., Chandler, P., Tuovinen, J., & Sweller, J. (2001). When problem solving is superior to
studying worked examples. Journal of Educational Psychology, 93(3), 579–588. https:// doi. org/
10. 1037/ 0022- 0663. 93.3. 579

Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does
not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and
inquiry-based teaching. Educational Psychologist, 41(2), 75–86. https:// doi. org/ 10. 1207/ s1532
6985e p4102_1

Lister, R., Simon, B., Thompson, E., Whalley, J. L., & Prasad, C. (2006). Not seeing the forest for the
trees: Novice programmers and the SOLO taxonomy. ACM SIGCSE Bulletin, 38(3), 118–122.
https:// doi. org/ 10. 1145/ 11401 24. 11401 57

Loksa, D., Ko, A. J., Jernigan, W., Oleson, A., Mendez, C. J., & Burnett, M. M. (2016, May). Pro-
gramming, problem-solving, and self-awareness: effects of explicit guidance. In Proceedings of
the 2016 CHI Conference on Human Factors in Computing. Systems (pp. 1449–1461). https://
doi. org/ 10. 1145/ 28580 36. 28582 52

https://www.pearson.com/en-au/media/yfcpe1ax/9780205149766.pdf
https://www.pearson.com/en-au/media/yfcpe1ax/9780205149766.pdf
https://doi.org/10.1016/j.compedu.2016.01.010
https://doi.org/10.1016/0364-0213(89)90002-5
https://doi.org/10.1007/BF02504794
https://doi.org/10.1007/s11251-009-9110-0
https://doi.org/10.1037/0033-295X.95.2.256
https://doi.org/10.28945/2385
https://doi.org/10.28945/2385
https://www.learntechlib.org/primary/p/10329/
https://www.learntechlib.org/primary/p/10329/
https://doi.org/10.1007/s11423-015-9403-8
https://www.proquest.com/scholarly-journals/elementary-service-teachers-self-regulated/docview/1416365195/se-2
https://www.proquest.com/scholarly-journals/elementary-service-teachers-self-regulated/docview/1416365195/se-2
https://doi.org/10.1080/10494820.2019.1619592
https://doi.org/10.1080/10494820.2019.1619592
https://doi.org/10.1037/0022-0663.93.3.579
https://doi.org/10.1037/0022-0663.93.3.579
https://doi.org/10.1207/s15326985ep4102_1
https://doi.org/10.1207/s15326985ep4102_1
https://doi.org/10.1145/1140124.1140157
https://doi.org/10.1145/2858036.2858252
https://doi.org/10.1145/2858036.2858252

 J. Jung et al.

1 3

Loksa, D., Xie, B., Kwik, H., & Ko, A. J. (2020, February). Investigating novices’ in situ reflections on
their programming process. In Proceedings of the 51st ACM Technical. Symposium on Computer
Science Education (pp. 149–155). https:// doi. org/ 10. 1145/ 33287 78. 33668 46

Magana, A. J., Fennell, H. W., Vieira, C., & Falk, M. L. (2019). Characterizing the interplay of cognitive
and metacognitive knowledge in computational modeling and simulation practices. Journal of Engi-
neering Education, 108(2), 276–303.

Mayer, R. E., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educa-
tional Psychologist, 38(1), 43–52. https:// doi. org/ 10. 1207/ S1532 6985E P3801_6

Mayer, R. E., Mathias, A., & Wetzell, K. (2002). Fostering understanding of multimedia messages
through pre-training: Evidence for a two-stage theory of mental model construction. Journal of
Experimental Psychology: Applied, 8(3), 147–154. https:// doi. org/ 10. 1037/ 1076- 898X.8. 3. 147

van Merriënboer, J. J., & de Croock, M. B. (1992). Strategies for computer-based programming instruc-
tion: Program completion vs. program generation. Journal of Educational Computing Research,
8(3), 365–394.

van Merriënboer, J. J., & Kirschner, P. (2012). Ten steps to complex learning: A systematic approach
to four-component instructional design (2nd ed.). New York: Routledge/Taylor & Francis Group.
https:// doi. org/ 10. 4324/ 97813 15113 210

Mohd Rum, S. N., & Ismail, M. A. (2017). Metacognitive support accelerates computer assisted learning
for novice programmers. Journal of Educational Technology & Society, 20(3), 170–181.

Molenaar, I., van Boxtel, C. A., & Sleegers, P. J. (2011). Metacognitive scaffolding in an innovative learn-
ing arrangement. Instructional Science, 39(6), 785–803. https:// doi. org/ 10. 1007/ s11251- 010- 9154-1

Paas, F., & Sweller, J. (2012). An Evolutionary upgrade of cognitive load theory: Using the human motor
system and collaboration to support the learning of complex cognitive tasks. Educational Psychol-
ogy Review, 24(1), 27–45. https:// doi. org/ 10. 1007/ s10648- 011- 9179-2

Pintrich, P. R., Smith, D. A. F., Garcia, T., & McKeachie, W. J. (1991). A manual for the use of the moti-
vated strategies for learning questionnaire (MSLQ). https:// eric. ed. gov/? id= ED338 122

Prather, J., Becker, B. A., Craig, M., Denny, P., Loksa, D., & Margulieux, L. (2020, August). What do we
think we think we are doing? Metacognition and self-regulation in programming. In Proceedings of
the 2020 ACM Conference on International Computing Education Research (pp. 2–13). https:// doi.
org/ 10. 1145/ 34870 50

Renkl, A. (2002). Worked-out examples: Instructional explanations support learning by self-explanations.
Learning and Instruction, 12(5), 529–556. https:// doi. org/ 10. 1016/ S0959- 4752(01) 00030-5

Renkl, A., & Atkinson, R. K. (2003). Structuring the transition from example study to problem solving
in cognitive skill acquisition: A cognitive load perspective. Educational Psychologist, 38(1), 15–22.
https:// doi. org/ 10. 1207/ S1532 6985E P3801_3

Renkl, A., Atkinson, R. K., Maier, U. H., & Staley, R. (2002). From example study to problem solving:
Smooth transitions help learning. The Journal of Experimental Education, 70(4), 293–315. https://
doi. org/ 10. 1080/ 00220 97020 95995 10

Renkl, A., Atkinson, R. K., & Maier, U. H. (2000, August). From studying examples to solving problems:
Fading worked-out solution steps helps learning. In L. Gleitman & A. K. Joshi (Eds.). In Proceeding
of the 22nd Annual Conference of the Cognitive Science Society (pp. 393–398). Mahwah, NJ: Law-
rence Erlbaum Associates, Inc. https:// doi. org/ 10. 1037/ 0022- 0663. 95.4. 774

Salleh, S. M., Shukur, Z., & Judi, H. M. (2018). Scaffolding model for efficient programming learning
based on cognitive load theory. International Journal of Pure and Applied Mathematics, 118(7),
77–83.

Schunk, D. H., & Pajares, F. (2002). The development of academic self-efficacy. In Development of
achievement motivation (pp. 15–31). Academic Press.

Seta, K., Satake, H., Umano, M., & Ikeda, M. (2007, September). Learning phase model based scaffold-
ing and its fading to facilitate collaborative learning of critical thinking. In International Conference
on Knowledge-Based and Intelligent Information and Engineering Systems (pp. 590–599). Berlin,
Heidelberg: Springer

Shell, D. F., Colvin, C., & Bruning, R. H. (1995). Self-efficacy, attribution, and outcome expectancy
mechanisms in reading and writing achievement: Grade-level and achievement-level differences.
Journal of Educational Psychology, 87(3), 386. https:// doi. org/ 10. 1037/ 0022- 0663. 87.3. 386

Shin, Y., & Song, D. (2022). The effects of self-regulated learning support on learners’. Task. perfor-
mance and cognitive load in computer programing. Journal of Educational Computing Research,
60(6), 1490–1513.

https://doi.org/10.1145/3328778.3366846
https://doi.org/10.1207/S15326985EP3801_6
https://doi.org/10.1037/1076-898X.8.3.147
https://doi.org/10.4324/9781315113210
https://doi.org/10.1007/s11251-010-9154-1
https://doi.org/10.1007/s10648-011-9179-2
https://eric.ed.gov/?id=ED338122
https://doi.org/10.1145/3487050
https://doi.org/10.1145/3487050
https://doi.org/10.1016/S0959-4752(01)00030-5
https://doi.org/10.1207/S15326985EP3801_3
https://doi.org/10.1080/00220970209599510
https://doi.org/10.1080/00220970209599510
https://doi.org/10.1037/0022-0663.95.4.774
https://doi.org/10.1037/0022-0663.87.3.386

1 3

The effects of pre‑training types on cognitive load,…

Shin, Y., Jung, J., Zumbach, J., & Yi, E. (2023). The Effects of worked-out example and metacognitive
scaffolding on problem-solving programming. Journal of Educational Computing Research. https://
doi. org/ 10. 1177/ 07356 33123 11744 54

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2),
257–285. https:// doi. org/ 10. 1207/ s1551 6709c og1202_4

Sweller, J. (2010). Element interactivity and intrinsic, extraneous, and germane cognitive load. Educa-
tional Psychology Review, 22(2), 123–138. https:// doi. org/ 10. 1007/ s10648- 010- 9128-5

Sweller, J., van Merriënboer, J. J., & Paas, F. G. (1998). Cognitive architecture and instructional design.
Educational Psychology Review, 10(3), 251–296. https:// doi. org/ 10. 1023/A: 10221 93728 205

van de Pol, J., Volman, M., & Beishuizen, J. (2010). Scaffolding in teacher–student interaction: A
decade of research. Educational Psychology Review, 22, 271–296. https:// doi. org/ 10. 1007/
s10648- 010- 9127-6

Wu, L., Looi, C. K., Multisilta, J., How, M. L., Choi, H., Hsu, T. C., & Tuomi, P. (2020). Teacher’s
perceptions and readiness to teach coding skills: A comparative study between Finland, Mainland
China, Singapore, Taiwan, and South Korea. The Asia-Pacific Education Researcher, 29(1), 21–34.
https:// doi. org/ 10. 1007/ s40299- 019- 00485-x

Xie, B., Loksa, D., Nelson, G. L., Davidson, M. J., Dong, D., Kwik, H., & Ko, A. J. (2019). A theory of
instruction for introductory programming skills. Computer Science Education, 29(2–3), 205–253.

Zheng, L., Zhen, Y., Niu, J., & Zhong, L. (2022). An exploratory study on fade-in versus fade-out scaf-
folding for novice programmers in online collaborative programming settings. Journal of Comput-
ing in Higher Education, 34(2), 489–516. https:// doi. org/ 10. 1007/ s12528- 021- 09307-w

Zimmerman, B. J., & Martinez-Pons, M. (1990). Student differences in self-regulated learning: Relat-
ing grade, sex, and giftedness to self-efficacy and strategy use. Journal of Educational Psychology,
82(1), 51. https:// doi. org/ 10. 1037/ 0022- 0663. 82.1. 51

Zimmerman, B., & Schunk, D. H. (2011). Handbook of self-regulation of learning and performance.
Taylor & Francis. https:// doi. org/ 10. 4324/ 97802 03839 010

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

Jaewon Jung is a research fellow of Office of Higher Education Research at Korean Educational Devel-
opment Institute, South Korea. She holds a Ph.D. in Educational Technology from Hanyang University,
South Korea. Her current research interests include exploring the educational issues such as multimedia
learning, computer-supported collaborative learning (CSCL), problem-based learning (PBL), and instruc-
tional design to provide effective learning strategies and enhance learning outcomes.

Yoonhee Shin is a professor in the Department of Educational Technology at Hanyang University. Pro-
fessor Shin’s research focus is on instructional design, learning analytics using multimodal data, com-
puter-supported collaborative learning (CSCL), and software education including AI for everyone. Her
work aims to enhance problem-solving skills, promote meaningful peer interaction, and foster computa-
tional thinking.

Haejin Chung is a professor in the Cha Mirisa College at Duksung women’s university, South Korea.
She holds a Ph.D. in Computer Science and Enginnering from Dankook University, South Korea. Her
research interests include big data, problem-based learning (PBL) and software education.

Mik Fanguy is an invited professor in the School of Digital Humanities and Computational Social Sci-
ences at the Korea Advanced Institute of Science and Technology (KAIST) in South Korea. His research
interests include online collaborative writing and note-taking.

https://doi.org/10.1177/07356331231174454
https://doi.org/10.1177/07356331231174454
https://doi.org/10.1207/s15516709cog1202_4
https://doi.org/10.1007/s10648-010-9128-5
https://doi.org/10.1023/A:1022193728205
https://doi.org/10.1007/s10648-010-9127-6
https://doi.org/10.1007/s10648-010-9127-6
https://doi.org/10.1007/s40299-019-00485-x
https://doi.org/10.1007/s12528-021-09307-w
https://doi.org/10.1037/0022-0663.82.1.51
https://doi.org/10.4324/9780203839010

 J. Jung et al.

1 3

Authors and Affiliations

Jaewon Jung1 · Yoonhee Shin2 · HaeJin Chung3 · Mik Fanguy4

 * Yoonhee Shin
 yoonheeshin@hanyang.ac.kr

 Jaewon Jung
 jjungj5@gmail.com

 HaeJin Chung
 hjchung@duksung.ac.kr

 Mik Fanguy
 mik@kaist.edu

1 Korean Educational Development Institute (KEDI), Jincheon-gun, Chungcheongbuk-Do,
Republic of Korea

2 Hanyang University, Seoul, Republic of Korea
3 Duksung Women’s University, Seoul, Republic of Korea
4 Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea

http://orcid.org/0000-0003-2282-0379
http://orcid.org/0000-0001-6684-3404
http://orcid.org/0009-0003-1499-4632
http://orcid.org/0000-0002-9383-1510

	The effects of pre-training types on cognitive load, self-efficacy, and problem-solving in computer programming
	Abstract
	Introduction
	Literature review
	Programming and pre-training
	Worked-out examples and cognitive load
	Metacognitive scaffolding in programming

	The present study
	Research questions and hypotheses

	Method
	Participants

	Experimental materials
	Three types of pre-training
	Worked-out example
	Metacognitive scaffolding
	Pre-test
	Cognitive load measures
	Measurement of level of self-efficacy
	Measurement of level of programming problem-solving

	Procedure
	Data collection and analysis
	Results
	Cognitive load
	Self-efficacy
	Problem-solving skills

	Discussion
	The effects of three types of pre-training on cognitive load
	The effects of three types of pre-training on self-efficacy
	The effects of three types of pre-training on problem-solving

	Conclusion
	References

