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Abstract
Engagement is critical in learning, including computer-supported collaborative 
learning (CSCL). Previous studies have mainly measured engagement using stu-
dents’ self-reports which usually do not capture the learning process or the inter-
actions between group members. Therefore, researchers advocated developing new 
and innovative engagement measurements to address these issues through employ-
ing learning analytics and educational data mining (e.g., Azevedo in Educ Psychol 
50(1):84–94, 2015; Henrie in Comput Educ 90:36–53, 2015). This study responded 
to this call by developing learning analytics to study the multifaceted aspects of 
engagement (i.e., group behavioral, social, cognitive, and metacognitive engage-
ment) and its impact on collaborative learning. The results show that group behavio-
ral engagement and group cognitive engagement have a significantly positive effect 
on group problem-solving performance; group social engagement has a significantly 
negative effect; the impact of group metacognitive engagement is not significant. 
Furthermore, group problem-solving performance has a significant positive effect 
on individual cognitive understanding, which partially mediates the impact of group 
behavioral engagement and fully mediates the impact of group social engagement 
on individual cognitive understanding. The findings have important implications for 
developing domain-specific learning analytics to measure students’ sub-constructs 
of engagement in CSCL.
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Introduction

Higher education has increasingly centered on cultivating students’ competencies 
in collaboration and preparing them for the technology-rich society, mindful that 
the job market will require students to work in interdisciplinary and cross-func-
tional teams and technology-rich environments to achieve cognitively challenging 
tasks (Griffin et  al., 2012). The effectiveness of Computer-Supported Collabora-
tive Learning (CSCL) is well documented in the literature (e.g., Popov et al., 2018; 
Chen et  al., 2018). In CSCL, small groups of learners usually collaborate via the 
computer to solve problems or co-construct knowledge; this entails the articulation 
and sharing of ideas to be built upon by the collaborating partners (Kollar et  al., 
2007; Weinberger et al., 2005). According to the perspectives of collaborative learn-
ing (King, 1997) and socio-constructivist learning theories (Duit & Treagust, 1998), 
knowledge is shared and co-created by a collaborative search for problem solutions. 
The engagement of all group members in socio-cognitive activities to work towards 
a common goal is a prerequisite for greater quality of learning (Csanadi et al., 2018; 
Dillenbourg, 1999). Given the increasing use of CSCL in higher education, it is 
imperative to develop an understanding of engagement in this environment, which 
can provide considerable insights into the effects of CSCL tasks on learning and 
teaching practices and how to better support students’ engagement in CSCL.

The multifaceted and dynamic nature of students’ engagement in CSCL settings 
remains a black box due to measurement challenges and relatively limited under-
standing of mutable collaborative learning practices. This study aimed to open this 
black box by applying novel data-driven assessment methods that could automati-
cally identify multifaceted forms of engagement and then examine their impacts 
on group performance and individual learning gains. Engagement is relatively ill-
defined in the literature and has been used to describe a wide range of things, such as 
students’ enactment of social, cognitive, metacognitive, motivational, and affective 
processes in the academic context (Azevedo, 2015). However, a literature review 
on students’ engagement in technology-mediated learning suggests that behavioral, 
cognitive, and emotional engagement are commonly included in surveys to measure 
engagement (Henrie et al., 2015). Self-reported surveys are most commonly used to 
measure engagement. Qualitative methods such as interviews, observations, and dis-
course analysis are also often used (e.g., Fredricks et al., 2004; Henrie et al., 2015). 
However, these methods have limitations, such as not being able to capture engage-
ment dynamics during the learning process, being time-consuming, or not being 
easy to scale up. Therefore, researchers (e.g., Azevedo, 2015; Henrie et al., 2015) 
have advocated augmenting these traditional measurement methods with recent 
approaches such as learning analytics to advance the definition and operational 
measurement of engagement. Learning analytics offers new promise in studying 
multifaceted forms of engagement in collaborative learning. In particular, learning 
analytics enable the analysis of low-level trace data regarding students’ interactions 
recorded in different learning platforms (Long & Siemens, 2011). From this low-
level structured data, it is possible to infer higher-level learning constructs, such as 
self-regulation learning and dropping-out risks (Zheng et al., 2020; Monllaó Olivé 
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et al., 2020; Ye & Pennisi, 2022). The automatic methods based on learning analyt-
ics can potentially analyze a large amount of data and provide timely feedback and 
scaffolding to users (Pardo et al., 2019).

In this study, we drew insights from learning sciences regarding the multifaceted 
nature of student engagement in a collaborative task with computational models that 
automatically capture the meaning of what occurs in a learning episode. Students’ 
log files and chat messages enabled us to analyze their group behavioral, social, 
cognitive, and metacognitive engagement. However, this study did not include emo-
tional engagement due to the constraints of the data. We used learning analytics to 
automatically identify multifaceted forms of engagement and then examined their 
impacts on group problem-solving performance and individual cognitive under-
standing. This study involved 99 students in 2-year colleges synchronously solving 
four Ohm’s Law-related series circuit problems online. Two questions guide this 
work:

1. How to build a learning analytics model to automatically detect multifaceted 
engagement in collaboration learning?

2. How do multifaceted forms of engagement influence group problem-solving per-
formance and individual cognitive understanding?

Literature review

Collaborative problem solving

Collaborative problem solving, meaning making, and the sharing and construction 
of knowledge among students, typically involve technological mediation, character-
izing CSCL (Gijlers & de Jong, 2009; Stegmann et al., 2007). CSCL is a pedagogi-
cal approach under the umbrella of social constructivism, which is strongly influ-
enced by Vygotsky’s (1978) work, especially by the zone of proximal development 
(ZPD). ZPD is “the distance between the actual developmental level as determined 
by independent problem solving and the level of potential development as deter-
mined through problem solving under adult guidance, or in collaboration with more 
capable peers” (Vygotsky, 1978, p. 86). Vygotsky (1978) suggest learning is moving 
towards a higher intellectual level in ZPD through social interactions, which provide 
scaffolding opportunities. In CSCL, group members with different levels of knowl-
edge can serve as scaffolding agents and provide learners with external guidelines 
and support, for example, in the form of clues, modelling, and explanations (Pifarre 
& Cobos, 2010).

In CSCL, small learner groups may search for information, form hypotheses, 
experiment, interpret, articulate, and share ideas (Stahl et al., 2006). Also, this field 
of research centers around high-level cognitive processes associated with peer inter-
action, for example, co-elaboration and negotiation of meaning, building on each 
other’s reasoning, argumentation, and knowledge sharing (King, 2002). Some 
studies have demonstrated that CSCL promotes students’ knowledge gains, skill 
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acquisition, group task performance, interactions, and student attitude toward online 
collaboration (Chen et al., 2018; Jeong et al., 2016; Richardson et al., 2017; Vogel 
et al., 2017). However, the degree to which students learn and develop knowledge 
in collaborative problem-solving largely depends on the quality of peer interaction 
(Hmelo-Silver, 2003).

Studies on CSCL over the past two decades provide important insights into the 
importance of teamwork and task work processes (Graesser et al., 2018). Teamwork 
processes require students to coordinate procedure-related issues such as commu-
nication, planning, and task division in order to ensure the consistency of the joint 
work product (Xing et al., 2015b; Erkens et al., 2005). Task work processes involve 
students taking appropriate actions to solve the problem by establishing and main-
taining cognitive shared understanding (Kirschner et  al., 2008). These teamwork 
and task work processes match group behavioral, social, cognitive, and metacogni-
tive engagement, such as managing time, building group relationships, contribut-
ing cognitive knowledge to solve problems, and monitoring problem solving. Effi-
cient and effective requires the engagement of all group members at these two levels 
over time. The multifaceted nature of engagement in the CSCL context is described 
below.

Multifaceted engagement

Although there are some inconsistencies concerning the operationalization of 
engagement (Sinatra et  al., 2015), there is an increasing tendency to understand 
engagement as a multifaceted, dynamic, and contextualized construct (Sinha et al., 
2015). Building on constructivist and problem-based learning approaches, Kearsley 
and Schneiderman (1999) developed Engagement Theory where they stressed the 
value of technology in fostering learning engagement. This theory provides a frame-
work for understanding the factors that promote students’ engagement in learning 
groups by highlighting  three components: relating, creating, and donating. Relat-
ing implies students verbalizing, sharing their ideas, and explaining the reasoning 
behind those ideas to themselves and others in group learning activities. The creat-
ing component means that students participate in a project or problem-based learn-
ing activity which  typically involves problem orientation, problem solution, and 
solution evaluation (Ploetzner et al., 1999). The donating component is about mak-
ing a valuable  contribution while learning and working on an authentic task. The 
three components guided the design of the group tasks that the participants worked 
on and suggested the importance of mining students’ chat messages and log data 
during their collaborative problem-solving process.

In line with Engagement Theory, we characterize engagement as one’s concentra-
tion, engagement, and persistence in completing academic tasks, including social 
interactions with a teacher and/or peers (Fredricks et al., 2004; Linnenbrink-Garcia 
et al., 2011). Within this construct, Fredricks et al. (2004) summarized the research 
literature on student engagement and defined three sub-constructs of engagement: 
behavioral, cognitive, and emotional engagement—all three support students to 
learn. Behavioral engagement consists of sustained on-task or off-task behaviors that 
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learners perform while participating in academic activities (Fredricks et al., 2004). 
Cognitive engagement is about students’ application of domain-specific knowledge, 
disciplinary practices, and investment of cognitive efforts to comprehend ideas, 
information and master skills involved in completing the task (Gresalfi & Barab, 
2010; Gresalfi et al., 2009). Emotional engagement describes students’ positive and 
high reactions towards their learning experiences, which influences their willingness 
to complete the task (Fredricks et al., 2004).

To cover the social interactions between students in collaborative learning, Sinha 
et al.’s (2015) definition of engagement includes behavioral, social, cognitive, and 
conceptual-to-consequential forms. Pekrun and Linnenbrink-Garcia (2012) pro-
posed a five-component engagement model, including the behavioral, social-behav-
ioral, cognitive, motivational, and cognitive-behavioral aspects. Social engagement 
refers to the quality of group interactions to complete a task (Sinha et al., 2015). The 
conceptual-to-consequential engagement (Sinha et al., 2015) and cognitive-behavio-
ral engagement (Pekrun & Linnenbrink-Garcia, 2012) are about the metacognitive 
aspect of engagement, which involves the planning, monitoring, and evaluating pro-
cesses to accomplish tasks (Zimmerman, 1990). The current study synthesized these 
definitions and explored how we can develop analytic models to automatically ana-
lyze different sub-constructs of engagement using log files and chat messages. The 
current study did not examine the emotional sub-construct of engagement (ideally 
captured through facial expressions, physiological sensors, and self-report question-
naires) due to the constraints of our data, although we consider it to be a sub-con-
struct of engagement. Therefore, this study focused on students’ group behavioral, 
social, cognitive, and metacognitive engagement. In the following paragraphs, we 
briefly reviewed the literature on these forms of engagement, especially studies con-
ducted in collaborative learning contexts.

Behavioral engagement is usually measured by students’ observable actions, such 
as participation, attendance, asking questions, and contributing to discussions (Fre-
dricks et  al., 2004; Henrie et  al., 2015). Cocea and Weibelzahl (2011) employed 
behavioral indicators such as the time spent on reading and the number of pages 
read to measure engagement. Given the challenges of defining and operationalizing 
engagement, Gobert et  al. (2015) analyzed students’ disengagement instead. They 
used features such as overall statistics for the clip and features related to pauses 
while running the simulation and time elapsed during experimentation to model 
disengagement detectors (Gobert et al., 2015). During collaborative learning, some 
behaviors may lead to disengagement, which may result in poor learning perfor-
mance and group problem-solving. For instance, ignoring a member of a group, 
individual withdrawal of participation from group discussion, and limited response 
to an individual’s contributed ideas may cause whole group disengagement or lost 
opportunities for collaboration, resulting in undermining of learning (Rogat & Lin-
nenbrink-Garcia, 2011; Van den Bossche et al., 2006).

Students’ social engagement plays an important role in influencing their collabo-
rative problem solving and knowledge construction. Kwon et al. (2014) compared 
the social-emotional interactions between good collaborators and poor collabo-
rators in an undergraduate clinical ethics online course. They found that the good 
collaborators engaged in intensive interactions among group members in the early 
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collaboration phases and showed positive socio-emotional interactions continuously. 
Sinha et  al. (2015) found that low-engagement groups used words that indicate a 
focus on individual thinking and activity, such as “I think”, “I am going to”, and 
“my turn”, while high-engagement groups used words that refer to the collective 
(e.g., we). Rogat and Adams-Wiggins (2015) developed a positive and negative 
socio-emotional interaction coding scheme. The positive interactions include active 
listening and respect, inclusion and encouraging participation of a group member 
or the whole group, group cohesion, discouraging marginalization, appealing to 
disciplinary norms, and mistakes as informational gaps (Rogat & Adams-Wiggins, 
2015). In contrast, the negative interactions consist of disrespect, actively discourag-
ing a group member’s participation and contributions to the shared task, low group 
cohesion, treating mistakes as incompetence, targeted ignoring/rejection, and social 
comparison (Rogat & Adams-Wiggins, 2015).

Students need to direct their attention to meaningfully process the information 
pertinent for task completion and apply domain-specific knowledge related to the 
tasks, which lays the basis for their cognitive engagement. Cognitive engagement is 
usually measured using think-aloud, log files, self-report questionnaires, classroom 
discourse, and tests (Azevedo, 2015). In the CSCL environment, individual domain-
specific knowledge can be externalized and shared in groups via oral or written mes-
sages and manifested in their use of formulas and operations of simulations. The 
group members can elaborate on their domain-specific knowledge and build on each 
other’s ideas and reasoning to help the community better understand knowledge 
related to the problems they seek to solve. Furthermore, valuing student-contributed 
ideas and knowledge may motivate them to engage in a learning activity (Mullins 
et al., 2011).

In collaborative learning, mega-cognitive engagement is critical to ensure that 
group members are aware of their group goals; collaboratively develop and adjust 
plans to move towards goals; monitor the execution of the plans, development of 
understanding and progress towards goals; and eventually evaluate and reflect on 
understanding and task performance (Sinha et al., 2015). Sinha et al. (2015) found 
that the low-engagement group showed characteristics of ineffective initial planning, 
a decision to work on the task individually, members’ disengagement in terms of 
time, and task monitoring focusing on the spelling of components rather than the 
content. In contrast, the high-engagement group shared on-task activity and exhib-
ited high-quality planning and task monitoring.

A few studies have explored the relationships between multifaceted forms of 
engagement and other related factors in collaborative learning. For instance, Jung 
and Lee (2018) examined the structural relationships between behavioral, emotional, 
and cognitive forms of learning engagement, learning persistence, academic self-
efficacy, teaching presence, perceived usefulness, and perceived ease of use with 
306 MOOC learners as subjects. Arguedas et  al. (2016) measured 12 high school 
students’ motivation, engagement, self-regulation, and learning outcomes as well 
as teachers’ affective feedback information using questionnaires. They found a sig-
nificant positive correlation between emotional awareness and students’ motivation, 
engagement, self-regulation, and learning outcomes. Sinha et al. (2015) developed a 
rating coding scheme describing low, moderate, or high engagement in behavioral, 
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social, cognitive, and conceptual-to-consequential dimensions. Correction analysis 
between the different forms of engagement suggests that behavioral engagement and 
social engagement are highly correlated; behavioral, social, and cognitive engage-
ment all impact conceptual-to-consequential engagement.

Engagement and learning analytics

Studies have examined engagement from various aspects in technology-mediated 
learning environments. A comprehensive review of engagement studies in technol-
ogy-mediated learning (Henrie et al., 2015) suggests that about 21% of the reviewed 
113 articles included behavioral, cognitive, and emotional indicators when meas-
uring engagement. However, very few studies have labeled indicators for each of 
the sub-construct (Henrie et al., 2015). Furthermore, most of these studies adopted 
quantitative self-report, quantitative observational measures, qualitative meas-
ures, and even physiological sensors to measure engagement. However, measuring 
engagement using traditional methods is not only time-consuming but also delayed: 
the measurement usually takes place after finishing the learning task, which impedes 
the possibility of providing timely feedback and support to students.

The emerging scholarship of learning analytics provides new ways to measure stu-
dents’ engagement while they are on task. Some studies have used log files to auto-
matically gauge students’ engagement in massive open online courses (MOOCs). 
For example, Khalil and Ebner (2017) clustered MOOCs learners based on the 
level of engagement measured by their reading frequency, writing frequency, videos 
watched, and quiz attempts. Similarly, Phan et al. (2016) used learning analytics to 
examine students’ engagement patterns in a MOOC course and further explored its 
relationship with their course performance. Guo et al. (2014) studied how video pro-
duction affects students’ engagement in a MOOCs course. A few studies have also 
investigated students’ engagement in a collaborative learning context using learn-
ing analytics. For example, Lu et  al. (2017) applied learning analytics to monitor 
students’ engagement in order to improve their learning outcomes in a collabora-
tive programming environment. We (Xing et al., 2015a, b) used learning analytics to 
measure students’ behavioral participation in order to predict group and individual 
group members’ achievement in a team-based math learning environment. Zhang 
et al. (2019) examined how mutual trust, social influence, and reward valence influ-
ence teamwork engagement in a collaborative learning environment supported by 
Slack. However, they measured engagement using scales and suggested leveraging 
data mining to detect engagement levels from Slack (Zhang et al., 2019).

To summarize, while learning analytics have been used in various ways to meas-
ure students’ engagement, most studies have focused only on one aspect of engage-
ment, which limits the aspects of engagement that can be studied. No studies so far, 
to our best knowledge, attempted to detect multifaceted engagement using learning 
analytics in a collaborative learning situation using both quantitative (i.e., behavioral 
logs) and qualitative (i.e., chat message) data.

To address this research gap, we integrated both qualitative and quantitative 
methods by first manually coding students’ group behavioral, social, cognitive, 



640 W. Xing et al.

1 3

and metacognitive engagement using their behavioral log data and chat message 
and then developing machine learning models to automatically detect these forms 
of engagement. This study joined in the conversation of employing machine 
learning and data mining techniques (Baker & Siemens, 2014) in measuring and 
predicting engagement from trace/process data such as log files.

Research model

Groups must engage in multifaceted forms of engagement to solve tasks in the 
CSCL context, and group members may improve their related domain-specific 
knowledge by engaging in collaborative problem-solving processes. To solve a 
group task, all group members need to communicate with each other to under-
stand the task and plan how to solve the task. In this process, domain-specific 
knowledge related to the task is crucial. For example, to figure out the resistance 
of different resistors in a series circuit, the group members need to understand 
Ohm’s Law. They may need to articulate their plans to solve the task and elabo-
rate on the relationship between different variables (e.g., resistance and voltage) 
or just ask the other group members to follow his/her instructions on how to con-
duct an experiment or how to do a sub-task. In the process, the group members 
need to monitor their progress and evaluate how close they are to solving the 
group task. The group task may be solved, or the group members may need to 
adjust their plan until they solve their task or run out of time. In the problem-solv-
ing process, individuals may improve their domain-specific knowledge related to 
the task, especially when they engage in group articulation and elaboration of the 
relationships between variables and mechanisms of how things work. All forms 
of engagement may work together to help the groups solve the task.

Therefore, as shown in Fig.  1, we hypothesize that multifaceted forms of 
engagement positively correlate with problem-solving performance, and problem-
solving performance may mediate individual cognitive understanding of domain-
specific knowledge. The followings are our detailed hypotheses:

Fig. 1  Hypothesized research model: H1a–H2 are the research hypotheses
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H1 Group multifaceted forms of engagement in teamwork are positively correlated 
with problem-solving performance.

H1a Group behavioral engagement in teamwork is positively correlated with group 
problem-solving performance.

H1b Group social engagement in teamwork is positively correlated with group 
problem-solving performance.

H1c Group cognitive engagement in teamwork is positively correlated with group 
problem-solving performance.

H1d Group metacognitive engagement in teamwork is positively correlated with 
group problem-solving performance.

H2 Group multifaceted forms of engagement (especially cognitive engagement) in 
teamwork correlates positively with an individual’s cognitive understanding of the 
domain-specific knowledge, and group problem-solving performance mediates it.

Methods

Participants

The participants in this study were 144 students (23 females) attending five 2-year 
colleges in the northeastern United States. A convenience sampling method was 
employed to recruit the samples in local colleges, considering the complexity of 
working with students and teachers in multiple colleges. Among all the participants, 
31 were Hispanic; 45 were eligible for free lunch; 64 students’ mothers had a college 
degree or above. Their average years at school were 13.2  years. Participants who 
did not engage in solving tasks or complete the post-survey were dropped from the 
analysis. Finally, 99 students in 38 groups were included in the study because, in 
some groups, only one or two students completed the post-survey.

Research context

The students worked in their original classes and were instructed by their teachers 
from respective institutions. Each student was first instructed to sit one per computer 
and then randomly assigned to groups of three. A class code was given to each stu-
dent so that students from the same class could enter the same online space in the 
teaching teamwork platform (Zhu et al., 2019). The students engaged in a 90-min 
learning session in which they got familiar with the platform, attempted to solve 
four tasks related to Ohm’s Law with increasing complexity, and completed a post-
survey on their cognitive understanding of Ohm’s Law. Such a topic was chosen 
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because of the good match between students’ learning objectives and our developed 
curriculum and platform.

The group members could only communicate via the chatting box on the plat-
form to best record their collaborative problem solving. A fake name was assigned 
to each student on the online platform to avoid the possibility that group members 
in the same classroom would orally discuss their problem solving. As shown in 
Fig. 2, in a series circuit, the voltage across the resistor controlled by the student 
Tiger is influenced by the voltage across the resistors controlled by the other two 
members in Group Animals. To achieve the goal of making the voltage 1.9 V and 
calculating the unknown E (i.e., electromotive force), Tiger must chat with the other 
two members to figure out their respective goals and the resistance of their resis-
tors. Only when all group members report the resistance simultaneously and meas-
ure the current, can Tiger or other group members calculate E using Ohm’s Law 
E = I*(R0 +  R1 +  R2 +  R3). Only when E becomes known, can Tiger and other group 
members negotiate how they should adjust their resistance based on their respective 
goals of achieving a specific voltage using the formulas R1 = V1/[(E −  V1 −  V2 −  V3)/

Fig. 2  The interface of the teaming teamwork platform (Level 3 task as an example)
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R0], R2 = V2/[(E −  V1 −  V2 −  V3)/R0], and R3 = V3/[(E −  V1 −  V2 −  V3)/R0]. There-
fore, an individual group member cannot solve the task even if they have a good 
understanding of Ohm’s Law.

Instruments and data collections

The data sources for this study mainly include: (1) all the behavior data by each 
group member in each group, such as changing circuits, adjusting resistance, using 
the digital multimeter, and performing calculations; (2) chat messages by group 
members; (3) the timestamp of the behaviors and chat messages were recorded using 
the teaching teamwork platform; (4) group problem-solving performance for each 
task; and (5) post-survey on students’ cognitive understanding of Ohm’s Law.

The group problem-solving performance for each task was measured by the 
teaching teamwork platform based on whether a task was solved—if correct resist-
ance and supply voltage (for level 3 and level 4 tasks) were figured out and submit-
ted. If a task was solved, we coded the group’s problem-solving performance for this 
task as “1”; otherwise, it was coded as “0”. The individual cognitive understanding 
in a group was measured using the mean of group members’ performance on the 
six-item post-survey on Ohm’s Law. Cronbach’s alpha of the survey items reached 
0.72, which is acceptable (van Zyl et al., 2000). There were five radio-button ques-
tions and one multiple-choice question. The evaluation of the items was straightfor-
ward—the students would get one point for selecting the correct answer for each of 
the radio-button questions and two points for selecting both of the correct answers to 
the multiple-choice question. Some examples are as follows:

A circuit contains two resistors, R1 and R2, in series. The resistance of R1 is 
greater than the resistance of R2. Check all of the following true statements.
Use the schematic below to answer this question. Select the formula that gives 
the total resistance of this circuit.

Learning analytics for multifaceted engagement detection

To identify the multifaceted engagement in a large number of groups and provide 
timely feedback to students, we employed learning analytics to automate the engage-
ment detection process. We implemented four steps for such automatic detection. 
First, based on the definitions of various forms of engagement as described in the 
“Multifaceted Engagement” section, various features that correspond to each facet 
of engagement were calculated from the log data. Table 1 shows the detailed indica-
tors of how we detected multifaceted engagement in the log data. Group behavio-
ral engagement is mainly about on-task behaviors (Fredricks et al., 2004). Accord-
ingly, we extracted relevant on-task indicators such as the number of chat messages, 
the number of performed calculations, and the number of times a group member 
adjusted the resistance. Group social engagement was measured based on the inter-
action levels and quality (Sinha et al., 2015) between group members, using indi-
cators of the time delay between sending messages and the number of reciprocal 
interactions in a group. The group cognitive engagement was about students using 
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domain-specific knowledge to solve a group task (Gresalfi & Barab, 2010; Gresalfi 
et al., 2009). Therefore, students’ elaboration on the relationships between variables 
in chat messages and the formulas input in calculators were used as indicators of 
their group cognitive engagement. We extracted the formulas used in the log data 
and transformed related chat messages into formulas. Then we understood the vari-
ables and values in the formulas by matching them with the column titles (repre-
senting variables) and values in certain columns. The formulas were then compared 
to various forms of Ohm’s Law to understand their scientific accuracy. The group 
metacognitive engagement refers to students’ planning, monitoring, and evaluat-
ing processes when accomplishing tasks (Zimmerman, 1990). Therefore, whether 
groups discussed the goal, developed a plan, elaborated on the plan, and reported 
and monitored the status in the chat were used as indicators of group metacognitive 
engagement.

Second, two researchers with an extensive background in collaborative learning 
and were familiar with the log data developed a rating scheme, as shown in Table 2. 
In the rating scheme, all the indicators of the four forms of engagement were cat-
egorized into the low, medium, and high levels; Table 2 shows the detailed criteria 
used to classify each indicator. We randomly selected the log data of 31 tasks out of 
100 tasks. Then based on the indicators of each form of engagement described in 
Table 1, two researchers independently rated the selected tasks into low, moderate, or 
high levels of each form of engagement using the rating scheme. The inter-reliability 

Table 1  Coding scheme for multifaceted engagement and related indicators

Form of engagement Indicators

Group behavioral engagement Number of chat messages (Chat message)
Number of performed calculations (Behavioral log data)
Number of times a group adjusted the resistance (Behavioral log 

data)
Time difference between each student’s adjustment of their resistance 

(Behavioral log data)
Group social engagement The time delay between sending messages by different group mem-

bers (Chat message)
Difference between the number of pieces of messages sent by the 

students in the same group (Chat message)
Number of reciprocal interactions of the three students (Chat mes-

sage)
Group cognitive engagement How scientific the formula used in the log data is (Behavioral log 

data)
How scientifically do students use Ohm’s law in their chat messages 

(Chat message)
Patterns in adjusting the resistance (Behavioral log data)

Group metacognitive engagement Discussing the goals (Chat message)
Reporting and monitoring the status (Chat message)
Developing a plan for solving the problem (Chat message)
Elaborating on the plan (Chat message)
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of the rating between the two researchers was substantial (Kappa = 0.74, Landis & 
Koch, 1977). All the disagreements between the two researchers were discussed and 
resolved. This manual coding along with the constructed measures in the first step 
served as the training data. Third, using the training data as input, a variety of super-
vised machine learning algorithms, including Decision Tree (DT), Random Forest 
(RF), K-Nearest Neighbors (KNN), and Support Vector Machines (SVM) were used 
to build automatic detection models. All these machine learning algorithms have 
been widely used in learning analytics for prediction and have yielded promising 
results (Hasan et  al., 2020; Wiyono et  al., 2020). RF was selected because of its 
ensemble feature that crowdsources intelligence from numerous decision trees, the 
mechanism of which can effectively boost its predictive performance (Kovanović 
et al., 2016). While RF is usually hypothesized to have superior performance, con-
flicting results have been identified (e.g., Murugan et al., 2019; Shah et al., 2020). 
Therefore, we also selected three other algorithms commonly used in education to 
benchmark with RF to fully understand the affordances of these algorithms. Details 
of these models can be found in Table 3. Specifically, for each form of engagement, 
an independent supervised machine learning model was built. Fourth, after the auto-
matic engagement detection models were built and their performance was validated, 
we applied the models to the rest of the dataset so that every task had an associated 
low, medium, and high engagement rating for each form of engagement.

Path modeling and mediation analysis

Path analysis is a multivariate statistical modeling method used to investigate the 
relationship between a set of independent and dependent variables (Alwin & Hauser, 
1975). It is a straightforward extension of multiple regression (Garson, 2013). Path 
models were proposed as a way of decomposing correlations into various pieces of 
interpreting effects. This study uses a special case of structural equation modeling 
using only one indicator for each variable in the analysis. As a result, path modeling 
has a structure to test but does not require a measurement model. Path modeling 
usually generates two types of effects, direct and indirect/mediating effects. There-
fore, path modeling analysis can deal with the causal order between the variables. 
As in Fig. 1, the engagement indicators are computed as a group, and so does the 
group performance. Cognitive understanding is calculated individually.

To further reveal the influencing process of the proposed structure, Baron and 
Kenny’s (1986) three-step method was applied to examine the mediating effects in 
this study. For a mediating effect to occur, first, an independent variable must influ-
ence the mediating variable significantly and the independent variable must also 
affect the dependent variable significantly. Then, both the independent variable and 
the mediating variable are employed to predict the dependent variable: if both of 
the variables significantly affect the dependent variable, then the mediating vari-
able partially mediates the influence of the independent variable on the dependent 
variable; if the influence of the mediating variable is significant, but the effect of the 
independent variable is not, the mediating variable fully mediates the influence of 
the independent variable on the dependent variable.
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Results

Learning analytics results for RQ1

The features and the manually coded categories were inputted into various super-
vised machine learning algorithms to optimize engagement detection performance. 
Table 4 presents the performance results for specific models for each facet of engage-
ment. This table demonstrated that four learning analytics models were constructed 
to automatically detect the four kinds of engagement respectively. Generally, the 
DT and SVM models performed better than the other models for this engagement 
detection purpose. That is, SVM performed best when detecting group behavio-
ral engagement. It can reach a 76.7% precision rate and 83.3% recall rate. The DT 
model outperformed others in group cognitive engagement (precision 78.3%, recall 
69.0%), group metacognitive engagement (precision 83.3%, recall 93.3%) and group 
social engagement detection (precision 86.7%, recall 66.7%). The general perfor-
mance range for supervised machine learning models in the learning analytics litera-
ture is between 60 and 85% (Dalal & Zaveri, 2011). Therefore, the automatic detec-
tion models of multifaceted engagement using learning analytics were considered 
excellent detection models. We then applied the learning analytics models to the rest 
of the data to identify their multifaceted engagement. Table 5 presents the results, 
along with group-level performance and individual cognitive understanding results. 
The groups had relatively high group behavioral and group cognitive engagement 
when working on the tasks, while they had a relatively low group social and group 
metacognitive engagement.

Path modeling and mediation analysis results for RQ2

The path modeling results are presented in Fig. 3 and Table 6. Figure 3 shows the 
graphical representation with path coefficients. Table  6 presents the hypotheses, 
path coefficient (β), and the p values. As demonstrated in Table 6, H1a, H1c, and H2 
are supported, while H1b and H1b are rejected. H1a posits that the group behavioral 

Table 4  Learning analytics for automatic detection of multifaceted engagement results

Group behavioral 
engagement (%)

Group social 
engagement (%)

Group cognitive 
engagement (%)

Group metacogni-
tive engagement 
(%)

KNN Precision 43.3 50.0 23.3 33.3
Recall 66.7 55.6 33.3 33.3

DT Precision 36.7 86.7 78.3 83.3
Recall 58.3 66.7 69.0 93.3

RF Precision 83.3 46.7 23.3 66.7
Recall 75.0 38.9 33.3 66.7

SVM Precision 76.7 44.4 25.9 27.8
Recall 83.3 44.4 33.3 33.3
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engagement of group members positively influences their group problem-solving 
performance. Students’ group behavioral engagement has a statistically positive 
effect on group problem-solving performance (0.34, p < 0.01). Therefore, H1a is 
supported. H1b is rejected since group social engagement negatively affects group 
problem-solving performance (− 0.49, p < 0.001) rather than the hypothesized posi-
tive effect. H1c is confirmed since the group cognitive engagement positively affects 
the group problem-solving performance (0.33, p < 0.05). H1d is not supported; 
that is, group metacognitive engagement has no statistically significant influence 
on group problem-solving performance. H2 is confirmed: the group problem-solv-
ing performance has a statistically positive effect on individual students’ cognitive 
understanding. 

Overall, group behavioral engagement has a larger positive effect on group prob-
lem-solving performance than group cognitive engagement. Group social engage-
ment has the largest effect, even though it negatively influences group problem-
solving performance. Group problem-solving performance can influence individual 
cognitive understanding, even though the effect is relatively small. The path mod-
eling results showed that multifaceted engagement alone explains 17.5% variance of 
the group problem-solving performance and 10.7% variance of the individual cogni-
tive understanding.

We further investigated the mediating effects in the path model using Baron and 
Kenny’s (1986) three-step method. The results appear in Table  7. The direct link 

Table 5  Depictive statistics of group-level engagement and performance and individual cognitive under-
standing

Average SD Min Max

Group behavioral engagement (GBE) 2.22 0.88 1 3
Group social engagement (GSE) 1.57 0.81 1 3
Group cognitive engagement (GCE) 2.42 0.61 1 3
Group metacognitive engagement (GME) 1.53 0.73 1 3
Group problem-solving performance (GP) 0.58 0.50 0 1
Individual cognitive understanding (IU) 4.42 1.16 1 7

Fig. 3  Path modelling results. *p < .05, **p < .01, ***p < .001
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between group behavioral engagement and individual cognitive understanding is 
significant (0.08, p < 0.01), satisfying the first criterion. Group behavioral engage-
ment is also significantly correlated with the mediating variable, group problem-
solving performance (0.25, p < 0.05), meeting the second criterion. When we put the 
group behavioral engagement and group problem-solving performance in the same 
model, they both have a significant influence on the individual cognitive understand-
ing (0.06, p < 0.05; 0.08, p < 0.01). Therefore, group problem-solving performance 
partially mediates the influence of group behavioral engagement on individual cog-
nitive understanding.

The direct link between group social engagement and individual cognitive under-
standing is significant (− 0.08, p < 0.05), satisfying the first criterion. Group social 
engagement is also significantly correlated with the mediating variable, group prob-
lem-solving performance (−  0.34, p < 0.01), meeting the second criterion. When 
we put the group social engagement and group problem-solving performance in the 
same model, group problem-solving performance has a statistically significant influ-
ence on individual understanding (0.09, p < 0.05). However, group social engage-
ment does not significantly affect individual cognitive understanding. Therefore, 
the group problem-solving performance fully mediated the impact of group social 
engagement on individual cognitive understanding. Since group cognitive engage-
ment is not significantly related to group problem-solving performance and individ-
ual understanding, group cognitive engagement performance has no mediation effect 
on individual understanding.

Discussions

In the present research, we examined the multifaceted engagement, group problem-
solving performance, and individual cognitive understanding of 99 college students 
working in a CSCL environment. We first built a learning analytics model using 
supervised machine learning to analyze log data and chat messages to account for 
the multifaceted forms of engagement. Second, path modeling and mediation analy-
sis were performed to reveal the intertwined relationship between various aspects 
of engagement with group problem-solving performance and individual cognitive 
understanding.

Table 7  Mediating effect results

* p < .05, **p < .01, ***p < .001

IV M DV IV-> M IV-> DV IV + M-> DV Mediating effect

IV M

GBE GP IU 0.25* 0.08** 0.06* 0.08** Partially mediated
GSE GP IU − 0.34** − 0.08* − 0.05 0.09** Fully mediated
GCE GP IU 0.22 − 0.01 − 0.03 0.10*** No mediation
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The results support the hypothesis that group behavioral and cognitive engage-
ment positively affected group problem-solving performance. To solve the tasks, 
the students needed to apply Ohm’s Law-related knowledge to propose possible 
solutions, communicate with peers, make plans, experiment, monitor their experi-
mentation, and refine plans if necessary. These processes involved group behavio-
ral and cognitive engagement. Behavioral engagement, or on-task participation, is 
necessary for high-quality collaborative engagement (Sinha et al., 2015) because 
the individual withdrawal of participation usually results in losing collaborative 
opportunities and whole group disengagement (Van den Bossche et  al., 2006). 
However, behavioral engagement only is not sufficient for high-quality collabo-
ration because students who are not cognitively engaged are not likely to solve 
problems or learn (Engle & Conant, 2002). Similarly, Barron’s study (2003) sug-
gested how students responded to ideas differentiated successful and less suc-
cessful groups: successful groups accepted or further discussed proposals and 
documented them, while less successful groups responded to ideas with silence 
or rejections without rationale. In this study, using formulas to calculate, using 
Ohm’s law for reasoning, or strategically adjusting the resistance represent stu-
dents’ efforts to adopt their Ohm’s Law-related knowledge to solve the tasks. 
Among these cognitive practices, some of the participants tried strategically by 
measuring the voltage, increasing the resistance if the measured voltage across 
the resistor was lower than the goal voltage, and lowering the resistance if the 
measured voltage across the resistor was higher than the goal voltage, indicating 
their understanding of the relationship between the resistance and voltage across 
a resistor, maybe in a simpler form. This phenomenon also helps explain why 
group social and cognitive engagement positively impacts group problem-solving 
performance.

Surprisingly, the results showed that group social engagement negatively affected 
group problem-solving performance. A possible reason may be that we measured 
group social engagement using time delay between messages, the different num-
ber of messages each group member sent, and the number of reciprocal messages 
between group members. However, we did not check the content of the messages, 
such as whether the students were on task, discussed how to solve the problems, 
or just chatted for fun. Off-topic discussion or other forms of social interaction do 
not significantly impact problem-solving results (Kapur, 2008). Even if the students 
frequently reported the voltage across their resistors to each other, which indicates 
their good group social engagement, they might still fail to solve the tasks if they did 
not discuss strategies or use content knowledge. Our previous studies (Popov et al., 
2018; Zhu et al., 2019) on the same dataset showed that more than 60% of group 
chat messages were about understanding the tasks and monitoring group progress, 
suggesting that group social engagement may not necessarily contribute to knowl-
edge construction or problem-solving regarding the tasks. From the perspective 
of Vygotsky’s (1978) ZDP, there may not be “more capable peers” (p. 86) in each 
group or an ideal social space for the “more capable peers” to contribute cognitive 
knowledge to scaffold the potential development of other group members at their 
ZDP. Further research is needed to create ideal social and cognitive environments 
for optimal collaborative problem solving.



655

1 3

Using learning analytics to explore the multifaceted engagement…

Another surprising result was that the effect of group metacognitive engage-
ment on group problem-solving performance is insignificant. This result may relate 
to the low proportion of group metacognitive engagement relevant messages in our 
data, as suggested by the relatively low mean value of group metacognitive engage-
ment. Another possible explanation is that the group members did not co-construct 
plans, but rather one group member proposed a plan and monitored the problem-
solving process. Then the other group members did not understand the plan and 
could not execute the plan appropriately to solve the task as a group. Or as Popov 
et  al. (2017) suggested, students might reason based on misconceptions and false 
beliefs. In this way, group mega-cognitive engagement would not lead to successful 
problem-solving.

The result shows that individual cognitive understanding can be influenced by 
group problem-solving performance in a positive way, suggesting whether a group 
could solve tasks successfully impacts an individual’s cognitive understanding. The 
reason may be that successful problem solving requires each group members’ col-
laboration in adjusting their resistors. In order to persuade the other group members 
to execute a plan, a student might elaborate on his/her proposal using content knowl-
edge. In this way, the other group members got chances to learn domain-specific 
knowledge in the application context, which enhanced their cognitive understanding. 
The reason why the effect of group problem-solving performance on individual cog-
nitive understanding is relatively small may be that the students did not frequently 
elaborate on proposals in groups (Xing et al., 2019), and sometimes, students could 
successfully solve tasks by following other group members’ proposals without 
achieving an understanding of the reasons. Furthermore, students’ prior cognitive 
understanding, which was not measured in this study, might play a more important 
role in determining individual cognitive understanding after the tasks.

The impact of group social engagement on individual cognitive understanding is 
fully mediated by group problem-solving performance, while the impact of group 
behavioral engagement on individual cognitive understanding is partially medi-
ated by group problem-solving performance. Group problem-solving performance 
fully mediating the impact of group social engagement on individual cognitive 
understanding suggests that only when students’ communication was about solv-
ing the tasks and they could solve the tasks successfully, could the communication 
between students benefit individual cognitive understanding. Differently, the litera-
ture on productive failure in problem-solving demonstrates that when student groups 
engaged in ill-structured and well-structured problem-solving tasks, complex and 
divergent group discussions that result in failure can still foster individual cogni-
tive understanding and a potential transfer of problem-solving skills (Kapur, 2008). 
The reason why group problem-solving performance partially mediates the impact 
of group behavioral engagement may be that as discussed above, through adjusting 
the resistors and measuring the voltage across the resistors, students might achieve 
a better understanding of the relationship between resistance and voltage in a series 
circuit. In this way, students might not solve group tasks. Therefore, the group prob-
lem-solving process provided one way for the students to improve their cognitive 
understanding, and the students could also improve their understanding by experi-
menting with the platform individually.
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This study has theoretical, methodological, and instructional implications for 
measuring and fostering multifaceted engagement using learning analytics. Theo-
retically, this research employed both behavioral logs and chat messages collected 
during the collaborative learning process, deconstructed engagement into sub-con-
structs including group behavioral, social, cognitive, and metacognitive engage-
ment, and detected engagement in a much more granular format using learning 
analytics. This study contributes to the literature concerning measuring students’ 
engagement in collaborative learning. Methodologically, most of the previous stud-
ies for measuring engagement used traditional social science methods, such as self-
reported questionnaires, interviews, and reflection, often in a post-hoc manner (Fre-
dricks et al., 2004; Henrie et al., 2015). That is, they examined students’ engagement 
after students finished the learning tasks (Guertin et al., 2007; Sun & Rueda, 2012). 
In this study, we showed that it is possible to automatically detect students’ engage-
ment using log data and chat messages. Such automatic detection using the log data 
and chat messages builds the foundation to monitor students’ engagement in real-
time and in a more comprehensive manner rather than only measuring one aspect 
of engagement. From the instructional and practical perspectives, educators and 
researchers must understand that the implementation of CSCL requires a consider-
able amount of preparation. Simply sending students off to work in CSCL groups 
does not guarantee productive engagement and successful collaboration. As an auto-
mated help for teachers, the detection results can be incorporated into an automatic 
agent and serve as timely feedback to support potential interventions. The interven-
tions can either be delivered through instructors or learning platforms embedded 
with the automatic agent. For instance, prompts can be provided to remind students 
that they need to engage in their tasks behaviorally and cognitively if mainly a high 
level of group social engagement is detected. The detection results may also inform 
instructors on how to adjust their classroom instruction and activities. For instance, 
if most groups have relatively low levels of group cognitive engagement, it may be 
because of their lack of relevant domain-specific knowledge and disciplinary prac-
tices or failure to build a safe environment for group members to elaborate on their 
ideas. Strategies should be developed to solve these issues.

This study has several limitations. First, the tasks that the groups worked on were 
not open-ended problems but were fixed tasks that had correct answers. Although 
the tasks require students to communicate and collaborate, a group may solve the 
tasks if one group member knows how to and the others follow this student’s instruc-
tions. These weaken the participants’ need to behaviorally, socially, cognitively and 
metacognitively engage in the group problem-solving process. Second, students’ 
prior knowledge of Ohm’s law was not tested or controlled in this study. Although 
this limitation may not matter significantly in a study that focused on students’ group 
problem-solving process that randomly assigned students into small groups, future 
research can address this issue. Third, this exploratory study represents an ambi-
tious effort to study the possibility of modelling students’ multifaceted engagement 
using log and chat data and uncovering the relationships between different types of 
group engagement, group problem-solving, and individual cognitive understand-
ing. Accordingly, different concepts and analyses (e.g., multifaceted engagement, 
group problem-solving, individual cognitive understanding, learning analytics, and 
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path modelling) were included in the study. Future research can extend the current 
study by collecting and labelling more data to improve the accuracies of multifac-
eted engagement detection models and verify the relationships between multifac-
eted forms of engagement, group problem-solving processes, and individual cogni-
tive understanding. Future studies can replicate this study in other content areas and 
collaborative learning environments to examine the generalizability of the findings. 
Finally, the learning analytics models we developed suggest the possibility of devel-
oping a learning analytics agent to detect students’ multifaceted engagement in real 
time and provide students with timely feedback. It is worth examining how to work 
with such an agent to promote student learning. A starting point might be studying 
how to improve detection accuracy and present feedback to students and teachers for 
optimal collaborative experiences and learning outcomes.

Conclusions

This study explores the use of learning analytics to understand the role of multifac-
eted engagement in collaborative learning. We found that group behavioral and cog-
nitive engagement have significantly positive effects on group problem-solving per-
formance, while group social engagement has a significantly negative effect; and the 
group problem-solving performance has a significant, positive effect on individual 
cognitive understanding, which partially mediates the impact of group behavioral 
engagement and fully mediates the impact of group social engagement on individual 
cognitive understanding. This study bridges CSCL and learning analytics and con-
tributes to a priority of CSCL research concerning using computational approaches 
(Wise & Schwarz, 2017). It not only methodologically contributes to the engage-
ment research and learning analytics communities but also generates new under-
standings of the interplay between the different aspects of engagement with collabo-
rative learning processes.
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