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Abstract

In this paper, we explore spatial patterns of shallow-water sea anemones in the Southwest Atlantic (SWA). The following
hypotheses were tested: (1) the distribution of sea anemones (Actiniaria and Corallimorpharia) corroborates SWA biogeographic
provinces, (2) their distribution presents a richness peak at mid-latitudes, and (3) temperature is the main abiotic driver that
structures their species composition. Occurrences/registries were obtained mainly from published sources. We adopted Serensen
dissimilarity and cluster analyses to compare fauna compositions. To verify latitudinal richness patterns, we used a Hill’s
numbers approach through rarefaction and extrapolation techniques. Partial redundancy analysis was performed to identify
which drivers contribute more to the distribution. The sea anemone faunas are congruent with the following SWA provinces:
Brazilian province (BP, 0 to 33° S), Argentinian province (36 to 43° S), and Patagonian province (43 to 56° S), and all differ from
the Caribbean province (CP). Although there is a high similarity among the BP and the CP, they form significant clusters with
well-supported endemism levels (> 19%). An elevated richness was found at 19-23° S, in the BP southeast (34 spp. and 13% of
endemism), supporting an SWA biodiversity center. Temperature explained 64% of the distribution, and the Amazonas-Orinoco
and La Plata estuaries act as soft barriers. The sea anemone distribution can be explained by features of the local current systems,
combined with isolation through barriers and different ecological tolerances. Furthermore, the patterns reported herein (unprec-
edented for the group) are similar to those of other marine taxa. A transition zone between tropical and subtropical waters
indicates diversity and species accumulation in the SWA.
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Introduction

The central focus of biogeography is to understand distri-
bution patterns observed in nature, examining organisms
in space and time, which is mostly done by establishing
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endemic areas, biogeographic sectors, and centers of ori-
gin (Proches 2005; Posadas et al. 2006; Juarez-Barrera
et al. 2018). Such knowledge is fundamental for biodiver-
sity conservation (Dittus 2017), at both local and global
scales. The marine environment challenges biogeographic
studies on account of its size, three-dimensionality (depth
fashions an important gradient), and gaps in ecological
and taxonomic data for several taxa and geographic re-
gions (Miloslavich et al. 2011; Appeltans et al. 2012;
Bentlage et al. 2013; Costello et al. 2017). In recent de-
cades, information has advanced, allowing identifying and
assessing areas of endemism, centers of origin, and
hotspots for many marine taxa (Briggs 2003; Costello
et al. 2012, 2017). Examples are the identification of a
marine invertebrate hotspot in southern Chile (Fernandez
et al. 2000), a biodiversity center based on reef fish in
Brazil (Pinheiro et al. 2018), patterns of endemism for
reef fauna (DiBattista et al. 2016), and more (see
Hoeksema 2007; Cowman and Bellwood 2013; Cowman
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et al. 2017). All this information contributes to the under-
standing of marine biota and their conservation.

The Southwest Atlantic (SWA) has historically been divid-
ed into three provinces, i.e., the Brazilian province, the
Argentinian province (including Uruguay), and the
Patagonian province (Miloslavich et al. 2011; Briggs and
Bowen 2012, 2013). Among these provinces, two main bar-
riers were identified: (1) the Amazonas-Orinoco estuary on
the northernmost limit of the Brazilian province and (2) the
La Plata River further south on the continent and west from
the Mid-Atlantic Ridge. Both are categorized as soft barriers
for some taxa, such as coral and reef fishes (Fortes and
Absaldao 2004; Cordeiro et al. 2015; Toonen et al. 2016;
Moura et al. 2016). Currents and water bodies contribute to
the division between those provinces, whereas isolated ocean-
ic islands also have a major role in this separation concerning
endemism and species composition (Fortes and Absalao 2004;
Pinheiro et al. 2018).

However, contrary to what is found in terrestrial environ-
ments, the latitudinal pattern of diversity (with a reduction of
diversity towards the poles) was not confirmed for several
marine taxa, such as sea anemones, foraminifera, and oceanic
sharks (Tittensor et al. 2010; Miloslavich et al. 2011; Fautin
et al. 2013; Chaudhary et al. 2016). This was also observed in
the SWA for reef fishes and benthic organisms for which a
higher diversity at intermediate latitudes was found (Gappa
2000; De Léo and Pires-Vanin 2006; Pinheiro et al. 2018).
As for the Brazilian coast, Aued et al. (2018) found a lower
diversity in the tropics for the shallow-water benthic commu-
nity (ranging from cyanobacteria, turf algae to coral, and other
invertebrates) with a peak at mid-latitudes (between 20 and
23° S). On the other hand, sub-province delimitation, fauna
composition, and relationships in SWA and neighboring re-
gions are still the focus of several debates and studies (see
Andrades et al. 2018).

It is still unclear how the SWA biota has been influenced
by the Caribbean province, which is recognized as the main
marine biodiversity center of the Atlantic Ocean (Joyeux et al.
2001; Briggs and Bowen 2013). Nonetheless, the endemism
found in SWA shows that oceanic island isolation, locally
limited patterns, alterations in landmasses (e.g., the rise of
Panama isthmus), ocean currents, and water masses had a
key role in the diversification of biota (Pinheiro et al. 2018).
Despite various studies, there is still a gap in our knowledge
regarding the distribution patterns of several taxa in the SWA,
as well as in identifying which drivers shape the distributions
and historical relations with other provinces.

Sea anemones sensu lato (orders Actiniaria and
Corallimorpharia) (Acufia et al. 2013) and other members of
the anthozoan subclass Hexacorallia are important to the ben-
thic community, being dominant or abundant in many habitats
(Daly et al. 2007; Selander et al. 2010; Gomes et al. 2016).
Besides, populations of sea anemones endure little variation in
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the face of short climate changes (Haussermann and Forsterra
2005); have a wide latitudinal, longitudinal, and bathymetric
distribution; and occur in all oceans and marine habitats (Daly
et al. 2008; Fautin et al. 2013; Rodriguez et al. 2014). This
makes sea anemones a suitable model group to study zoogeo-
graphic patterns and trend analyses (Riemann-Ziirneck 1986).
Chaudhary et al. (2017) suggest that temperature has a strong
influence on the latitudinal gradient in species richness, as a
predictor of biogeographic distributions, particularly because
it has a fundamental role in several aspects of animal biology.
Aspects of sea anemone biology and ecology, such as physi-
ology, reproduction, and dispersal, are strongly linked to tem-
perature tolerance and gradients, while other factors, such as
substrate and salinity, also could play a role in the occurrence
of sea anemones (Whalan et al. 2015; Ryan 2017; Gambill
et al. 2018; Watson et al. 2018; Glon et al. 2019).

Although sea anemones have been studied in the SWA
since the nineteenth century, with an intensification of taxo-
nomic studies in the 1960s/1970s, this group still lacks a broad
biogeographic analysis. Considering only taxonomic compo-
sition, the SWA sea anemone faunas seem more similar to
those of the Caribbean region (Zamponi et al. 1998a), but
comprehensive approaches, including environmental drivers
that condition their species ranges, were never evaluated.

Here, we present a biogeographic analysis of the distribu-
tion of shallow-water sea anemones in the SWA and also
access abiotic drivers that shape this pattern. The following
hypotheses were tested: (1) the distribution of sea anemones
corroborates SWA biogeographic provinces; (2) their distri-
bution is not homogeneous, presenting a richness peak at mid-
latitudes (as in other taxa); and (3) temperature is the main
abiotic driver that structures their species composition.

Material and methods
Data matrices

Our data covers the entire SWA: Brazilian province (BP, 0 to
33° S) (Miloslavich et al. 2011), Argentinian province (AP,
including Uruguay, 36 to 43° S), and Patagonian province
(PP, 43 to 56° S) (Miloslavich et al. 2011; Briggs and Bowen
2012, 2013). To compare fauna composition and similarity, we
included the Caribbean province (CP), delimited according to
Petuch (2013), which includes Antilles, South America, Central
America country coasts and South Florida.

The presence points of all valid sea anemone species occur-
ring at depths down to 50 m were considered in this study. This
bathymetric limit was chosen because detailed and precise ma-
rine invertebrate data is mostly available for this range
(Scarabino 2006). Records and occurrences were obtained from
open access and georeferenced database such as Ocean
Biogeographic Information System (OBIS; https://obis.org/)
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and mainly from Hexacorallians of the world (Fautin 2013)
available at http://hercules.kgs.ku.edu/hexacoral/anemone2/
index.cfm. The latter is maintained and revised by sea
anemone taxonomists, and its data is derived from published
research. We also used online catalogs of museum collections:
National Museum of Natural History-Smithsonian Institution
(USA), Museo de La Plata (Argentina), and Museo Argentino
de Ciencias Naturales Bernardino Rivadavia (Argentina).
Literature records that include species records in SWA and
the Caribbean province (checklists, inventories, research pa-
pers) were included. We analyzed material from museum col-
lections of the Museu de Zoologia da Universidade de Sao
Paulo (MZUSP; Brazil) and the Museu Nacional from
Universidade Federal do Rio de Janeiro (MNRJ) (Latin
America’s largest Cnidarian collection), and unidentified re-
cords with reference material were assessed and compared.
The collection from the Anthozoarian Research Group (GPA-
UFRPE) was also revised. In all cases, to ensure data reliability,
only material recorded, confirmed, or identified by taxonomists
was used. In addition, the current classification of sea anem-
ones, synonymy, and the taxonomic status were cross-checked
with their names in the electronic databases HoW (Fautin 2013)
and World Register of Marine Species (WoRMS Editorial
Board 2020). All identifications followed Carlgren (1949) and
published articles about genera and species cited in this work.
We considered data published and available in databases until
June 2018. These references are found in Tables S1, S2, and S3,
as well as the cited online databases.

All georeferenced records were plotted in maps made in
QGIS 3.6 (Fig. 1). Onward, a 5° longitude-by-5° latitude cell
grid was placed on the study area and a binary (presence-only)
matrix was generated to be used in statistical analyses. In this
way, 16 grid cells were obtained for the Brazilian province, 17
for the Caribbean province, five for the Argentinian province,
and five for the Patagonian province (Fig. 1), which were treat-
ed as sample units. As the provinces had a different number of
grid cells, we calculated the weighted richness (species divided
by the number of grid cells) for comparisons across provinces.

To assess the main drivers that influence sea anemone dis-
tribution, we gathered abiotic data: temperature, salinity, and
substrate type. Data were obtained from the National Oceanic
and Atmospheric Administration (NOAA) database (at
https://www.nodc.noaa.gov/access/index.html), sampling
cruises recorded temperature, and salinity in the water
column in 5-m isobath intervals, date, and precise coordinates
were also available with each abiotic record. This was crossed
with each species occurrence; so, the same date, depth, and
location sampling were used to complete the matrix. For the
substrate, we only considered two categories: unconsolidated
and consolidate. This data is widely available in sampling
records. We only used abiotic records where all data were
complete. In this regard, due to data reliability and access,
only Brazilian province records were used for this aspect.

Brazilian province matrix data resulted in 262 records
(Table S1). Of these records, 134 (50.5%) are from research
papers and HoW. Additionally, data from museums corre-
sponds to 128 records (48.3%). In the Caribbean province,
453 records (Table S2) were obtained, 88% (401 records)
from research papers and HoW. In the Argentinian and
Patagonian provinces, 100 records were obtained (Table S3),
mostly from HoW, OBIS, and research papers, and only five
records were from museums.

Statistical analysis

We used species grid cells to create a binary matrix and evaluate
SWA province fauna composition differences (comparing also
with the Caribbean) (Fig. 1). From the province matrices, an-
other matrix was generated using the Serensen dissimilarity
coefficient (distance), based on working with incidence
(presence-only) data. Unweighted pair group method using ar-
ithmetic mean (UPGMA) analyses were performed, and subse-
quently, a non-metric multidimensional scaling (nMDS) was
performed. Similarity profile (SIMPROF) analysis (Clarke
et al. 2008) was employed to test if the groups found in the
cluster were significantly different. These analyses were per-
formed in PRIMER v7 software (Clarke et al. 2014). To esti-
mate sea anemone fauna richness in the SWA and the
Caribbean, we used Chao2 using the software EstimateS 9.

We applied sample-based rarefaction and extrapolation
using Hill’s diversity to assess if there is a peak in SWA rich-
ness in mid-latitudes. We created a matrix of species incidence
using the SWA grid cells that contained occurrence records for
each species and associated each grid cell with the number of
research work (only published data, excluding museum re-
cords), thus representing the sampling effort. To get more reli-
able occurrence data, grids with less than three species and less
than four research works were excluded (B1 and B14). As our
data had presence-only occurrences, we used ¢ =0 as Hill’s
order. Then, we performed an extrapolation, doubling the sam-
ple sizes (n = 64), to estimate richness in the SWA related to the
latitudinal gradient. The same method was applied when inter-
polating, estimating richness in the SWA, using the lowest
sampling effort (n =4). This method allows us to standardize
and bootstrap the sampling efforts for all SWA, thus reducing
the bias, with a 95% confidence interval. These analyses were
executed through the “iNext” package (Hsieh et al. 2016) in R
3.4 software (R Core Team 2016).

To understand which drivers contribute more to the spatial
distribution of sea anemones, the partial redundancy analysis
(RDA) was used. Grid cells Bl and B6 in the Brazilian coast
had few or none abiotic data available and, thus, were removed
from the analysis as well as some species with incomplete re-
cords (Table 1). The test identifies relations between response
variables (species presence/absence) which are explained by a
set of explanatory variables (temperature, salinity, and
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Fig. 1 Map of shallow-water sea
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substrate). Since natural variation can exist in the latitudinal and
longitudinal gradients, the exclusion of spatial variation in the
analysis was necessary. Thus, a principal coordinates of neigh-
bor matrices (PCNM) approach was performed to treat the co-
ordinates and then extract the variable “distance” in partial
RDA. Later, anova.cca (999 permutations and p < 0.05) was
used to analyze the significance of environmental axes. These
analyses were carried out using the “vegan” package (Oksanen
et al. 2013) in R 3.4 software (R Core Team 2016).

Results
SWA composition and relationship with the Caribbean
We recorded 130 valid species occurring in SWA and the

Caribbean (Table 1). The SWA sea anemone distribution anal-
ysis revealed nine clusters distributed over the three provinces:
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BP (4 clusters), AP (1 cluster), and PP (1 cluster). All prov-
inces are distinct from each other and are well supported by
high endemism levels. The CP was also distinct (3 clusters)
(Table 2, Fig. 2). The PP contained the most distinct groups,
sharing species only with the AP (Table 1). However, the AP
showed a high dissimilarity with the BP and the CP. In con-
trast, the CP and the BP showed the lowest dissimilarity and
most shared species (Table 1). Despite this, all four provinces
are distinguishable and different from each other (Fig. 3).
The Brazilian province showed 46 species distributed
along 14 families (including incertae sedis) (Table 1) with
19% of endemism (9 species). Inside the BP, we found four
significant clusters (Fig. 2). The first cluster (1B) contains
most grids from northeast and southeast (with one from the
Caribbean province, C14), and it is the richest group with 54
species in total (9 from CP) and 10% of endemism. The sec-
ond cluster (2B) comprises A1 (corresponds to Uruguay), B2,
B3, and B6, with 17 species and 4% of endemism. Lastly,
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Table 1 List of shallow-water sea anemone species used in this work

Species

BP

AP PP

CP

Order Actiniaria

Family Acontiophoridae Carlgren, 1938
Ramirezia balsae Zamponi, 1980 <«

Family Actiniidae Rafinesque, 1815
Actinia bermudensis (McMurrich, 1889)
Actinia grobbeni Watzl, 1922 4
Actinostella correae (Schlenz & Belém, 1992) «
Actinostella digitata (McMurrich, 1893) «
Actinostella flosculifera (Le Sueur, 1817)
Actinostella radiata (Duchassaing & Michelotti, 1860)
Anemonia antillensis Pax, 1924
Anemonia chubutensis Zamponi & Acufia, 1992
Anemonia depressa Duchassaing & Michelotti, 1860 <«
Anemonia melanaster (Verrill, 1901)
Anemonia sargassensis Hargitt, 1908
Anemonia sulcata (Pennant, 1777)
Anthopleura cascaia Corréa, 1964 in Dube 1981 «
Anthopleura krebsi Duchassaing & Michelotti, 1860
Anthopleura pallida Duchassaing & Michelotti, 1864
Anthopleura texaensis (Carlgren and Hedgpeth, 1952)
Anthopleura varioarmata Watzl, 1922
Aulactinia marplatensis Zamponi, 1977
Bolocera kerguelensis Studer, 1879
Bunodactis curacaoensis Pax, 1924 4
Bunodactis octoradiata (Carlgren, 1899)
Bunodactis patagoniensis (Carlgren, 1899) «
Bunodactis reynaudi (Milne Edwards, 1857)
Bunodosoma caissarum Corréa in Belém 1987 €
Bunodosoma cangicum Belém & Preslercravo, 1973
Bunodosoma cavernatum (Bosc, 1802)
Bunodosoma granuliferum (Le Sueur, 1817)
Bunodosoma kuekenthali Pax, 1910
Bunodosoma zamponii Gomes, Schama & Solé-Cava, 2011 <«
Condylactis gigantea (Weinland, 1860)
Entacmaea quadricolor (Leuckart in Riippell and Leuckart 1828)
Epiactis georgiana Carlgren, 1927
Gyrostoma sanctithomae Pax, 1910 <«
Isoaulactinia stelloides (McMurrich, 1889)
Isotealia antarctica Carlgren, 1899
Neoparacondylactis haraldoi Zamponi, 1974
Oulactis muscosa (Drayton in Dana 1846)
Parabunodactis imperfecta Zamponi & Acuiia, 1992
Parabunodactis inflexibilis (Carlgren, 1928)
Paracondylactis hertwigi (Wassilieff, 1908)
Parantheopsis cruentata (Couthouy in Dana 1846)
Phlyctenanthus australis Carlgren, 1950
Phlyctenanthus regularis Zamponi & Acuiia, 1992 <«
Phyllactis conquilega (Duchassaing & Michelotti, 1860) <
Phyllactis formosa (Duchassaing, 1850) <

> >

> > > >
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Table 1 (continued)

Species BP AP PP CP
Phyllactis praetexta (Couthouy in Dana 1846) ° A
Phymactis pustulata (Couthouy in Dana 1846) °
Pseudactinia infecunda (McMurrich, 1893) °
Urticina macloviana (Lesson, 1830) < u}

Family Actinostolidae Carlgren, 1932

Actinostola callosa (Verrill, 1882)

Actinostola crassicornis (Hertwig, 1882)

Antholoba achates (Drayton in Dana 1846) [ ]

Paranthus niveus (Lesson, 1830) A
Paranthus rapiformis (Le Sueur, 1817) °

Pseudoparactis tenuicollis (McMurrich, 1904) [ ]
Family Aiptasiidae Carlgren, 1924

Aiptasia prima (Stephenson, 1918) ° [ ]
Bartholomea annulata (Le Sueur, 1817)

Bartholomea pseudotagetes Pax, 1924 4

Bartholomea werneri Watzl, 1922 «

Bellactis ilkalyseae Dube, 1983 °

Exaiptasia brasiliensis Grajales & Rodriguez, 2016 °

Exaiptasia pallida (Agassiz in Verrill 1864) °

Laviactis lucida (Duchassaing & Michelotti, 1860)
Family Aiptasiomorphidae Carlgren, 1949

> > > > > > >

>

Aiptasiomorpha texaensis Carlgren & Hedgpeth, 1952
Family Aliciidae Duerden, 1895

Alicia mirabilis Johnson, 1861 °

> >

Lebrunia coralligens (Wilson, 1890) °

>

Lebrunia neglecta Duchassaing & Michelotti, 1860 °
Family Andvakiidae Danielssen, 1890

Isophellia madrynensis Zamponi & Acuiia, 1992 ]
Telmatactis cricoides (Duchassaing, 1850) °

Telmatactis roseni (Watzl, 1922) °

Telmatactis rufa (Verrill, 1900) °

Telmatactis solidago (Duchassaing & Michelotti, 1864)

> > > > >

Telmatactis vernonia (Duchassaing & Michelotti, 1864)

Family Bathyphelliidae Carlgren, 1932

Phelliogeton falklandicus Carlgren, 1927 < u]
Family Boloceroididae Carlgren, 1924

Boloceroides memurrichi (Kwietniewski, 1898) [ ]

Bunodeopsis antilliensis Duerden, 1897 < A
Bunodeopsis globulifera (Duchassaing, 1850) A
Family Capneidae Gosse, 1860

Actinoporus elegans Duchassaing, 1850 ° A
Family Condylanthidae Stephenson, 1922

Condylanthus magellanicus Carlgren, 1899 ] m]
Family Diadumenidae Stephenson, 1920

Diadumene leucolena (Verrill, 1866) °

Diadumene lineata (Verrill, 1869) ° n

Diadumene paranaensis Beneti et al., 2015 < °

Tricnidactis errans Pires, 1988 ° ]
Family Edwardsiidae Andres, 1881
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Table 1 (continued)

Species BP AP PP CP

Edwardsia migottoi Gusméao & Branddo, 2016 <« °

Nematostella vectensis (Stephenson, 1935) °

Scolanthus curacaoensis (Pax, 1924) < A
Family Halcampidae Andres, 1883

Parahalcampa antarctica Carlgren, 1927 m]
Family Haloclavidae Verrill, 1899

Harenactis argentina Lauretta et al., 2011 n

Metapeachia schlenzae Gusmao, 2016 < °

Peachia hastata Gosse, 1855 ] o

Peachia koreni McMurrich, 1893 «
Family Homostichanthidae Carlgren, 1900

Homostichanthus duerdeni Carlgren, 1900 ° A
Family Hormathiidae Carlgren, 1932

Calliactis androgyna Riemann-Ziirneck, 1975 « rda °

Calliactis polypus (Forskal, 1775) A
Calliactis tricolor (Le Sueur, 1817) ° A
Hormathia pectinata (Hertwig, 1882) ]
Family Isanthidae Carlgren, 1938

Austroneophellia luciae Zamponi, 1978 < ]

Isoparactis fionae Lauretta et al., 2014 < u]
Family Metridiidae Carlgren, 1893

Metridium senile (Linnaeus, 1761) [ ]
Family Phelliidae Verrill, 1868

Phellia coreopsis (Duchassaing & Michelotti, 1864) < A
Family Phymanthidae Andres, 1883

Phymanthus crucifer (Le Sueur, 1817) A
Family Sagartiidae Gosse, 1858

Actinothoe paradoxa (McMurrich, 1893) <

Actinothoe patagonica (Carlgren, 1899)

Actinothoe sanmatiensis (McMurrich, 1893) «

Anthothoe chilensis (Lesson, 1830) °
Anthothoe stimpsonii (Verril, 1869) °
Botryon lisandroi Laureta & Penchaszadeh, 2016 n

Carcinactis dolosa Riemann-Ziirneck, 1975 °

Sagartia troglodytes (Price in Johnston, 1847)
Sagartianthus fasciarum Zamponi, 1980 <« [ ]
Family Stichodactylidae Andres, 1883
Stichodactyla helianthus (Ellis, 1768) A
Order Corallimorpharia
Family Corallimorphidae Hertwig, 1882
Corynactis caribbeorum (den Hartog, 1980) A
Corynactis carnea Studer, 1879 n
Corynactis denticulosa (Le Sueur, 1817) A
Corynactis parvula Duchassaing & Michelotti, 1860 ° A
Corynactis sanmatiensis (Zamponi, 1976) ]
Corynactis viridis Allman, 1846 rda °
Family Discosomidae Verrill, 1869
Discosoma carlgreni (Watzl, 1922) ° A
Discosoma neglecta (Duchassaing & Michelotti, 1860) A
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Table 1 (continued)

Species BP AP PP CP
Rhodactis osculifera (Le Sueur, 1817) ° A
Family Ricordeidae Watzl, 1922
Ricordea florida Duchassaing & Michelotti, 1860 A
Actiniaria Incertae Sedis
Actinodactylus boscii Duchassaing, 1850 < A
Cystiactis eugenia Duchassaing & Michelotti, 1864 < A
Cystiactis gaudichaudi Milne-Edwards, 1857 « rda °
Cystiactis koellikeri Pax, 1910 < A
Paractis dietzii Duchassaing & Michelotti, 1864 <« A
Paractis laevis (Carlgren, 1899) u]
Paractis sanctaecatherinae (Lesson, 1830) < °
Petalactis calendula (Hughes in Ellis and Solander 1786) < A

Black left-pointing arrows indicate endemic species (exclusive to the respective province); rda means that the species was not used in RDA as data was

incomplete/species complex

BP Brazilian province (filled circles), AP Argentinian province (filled squares), PP Patagonian province (hollow squares), CP Caribbean province (filled

triangles)

there are two small clusters: the first one (3B) is located in the
north of Brazil (B1 and B4), and the second one (4B) corre-
sponds with the extreme south and Trindade and Martim Vaz
islands (B13 and B14). Both clusters account for a low rich-
ness and endemicity: 0% endemism and three species for the
former and 2% endemism and five species. This means that
except for the edges in the BP (coinciding with the river’s
proximity, La Plata River, and Amazon-Orinoco plume,
Fig. 1) and one of the oceanic islands (Trindade and Martim
Vaz), the remaining area is homogeneous in sea anemone
fauna composition. Inside the BP, the most represented fam-
ilies are Actiniidac and Diadumenidae with 15 and 4 species,
respectively.

The Argentinian province had 41 species distributed over
14 families with 24% of endemism (10 species). Families with
the majority of species are Actiniidae (16 spp.) and
Sagartiidae (7 species) (Table 1). In the Patagonian province,
13 species in eight families were recorded (including incertae
sedis) with 23% endemism (3 spp.). The most representative
families were Actiniidae (4 spp.) and Actinostolidae (3 spp.).

Table2 Levels of Serensen dissimilarity (upper part) and the number of
shared species (lower part) between the Caribbean province (CP),
Brazilian province (BP), Argentinian province (AP), and Patagonian
province (PP) and the total number of species in each province (richness)

CP BP AP PP
CP - 0.58 0.96 1
BP 22 - 0.90 1
AP 2 6 - 0.8
PP 0 0 4 -
Richness 63 46 41 13
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The AP and PP did not present subgroups, and these provinces
are more homogeneous in composition.

The Caribbean province had 63 species recorded with 26%
endemism (17 spp.) and a weighted richness of 3.7 species per
grid cell. Grid cell C14 (Antilles) appears inside the Brazilian
cluster (Fig. 2a), implying that the faunal composition of this
cell is more similar to that of the Brazilian fauna than of the
Caribbean province.

We estimated that 180 species could be found in total and
124 considering only the SWA (Chao2 SWA + Caribbean
province mean = 179.8, SD = 18.8; SWA mean = 123.8,
SD = 14.7). Our inventory represents almost 72% of the total
estimated species for the SWA and Caribbean provinces.

Richness patterns and biodiversity centers

In the SWA, the highest species per grid cell value was found
in the AP (8.2) followed by the BP (3) and the PP (2.6).
However, the richest grid cell in SWA is located in the south-
east region of Brazil, B10 (32 species and 13% of endemism),
followed by B11 (18 spp.), showing that the richness pattern
in the BP follows a tendency of species accumulation in the
southeast region (Fig. 3). The lowest richness in the BP be-
longs to B1 (1 species) followed by B4 (2 species). In the AP,
the richest grid cell was A2 with 25 species.

Estimates of latitudinal diversity using species occurrence
data clearly show a tendency of decreasing richness towards
the equator (Fig. 4). When doubling our current sampling
efforts, the estimated latitudinal diversity shows a peak in
richness in mid-latitudes, around 19-23° S (Fig. 4a).
However, with a low sampling effort estimation, this pattern
became non-distinct (Fig. 4b).
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Community drivers

RDA showed which drivers contribute more to sea anemone
distribution in the BP. Between temperature, salinity, and sub-
strate type, temperature is most responsible for the sea anem-
one composition and distribution in the country (64%,
p<0.001), followed by salinity (22%, p <0.001) and sub-
strate type (13%, p=0.01) (Fig. 5). The whole model with
the three variables together was also significant (p < 0.001),
showing an explanation for the total variation of 43%.

Discussion

In exploring the biogeographical and ecological patterns of the
Southwest Atlantic provinces, we also compared these with
those of the Caribbean provinces to better understand the pro-
cesses that shape shallow-water sea anemone biodiversity and
distribution. The sea anemone fauna supports the distinction
of three provinces in the SWA, Brazilian, Argentinian, and
Patagonian provinces as separate from the Caribbean

province. In the SWA, a richness peak was observed in the
southeast of Brazil and temperature was the most important
abiotic driver to explain species distribution.

In the Brazilian province, the majority of the species be-
longs to the family Actiniidae. This family is the largest of the
Actiniaria with more than 200 species (Daly et al. 2007;
Fautin et al. 2013). It is also a common family in shallow-
water habitats (McCommas 1991). In Argentinian and
Patagonian provinces, we found a higher frequency and a
predominance of families common to colder and deeper wa-
ters such as Actinostolidae, Bathyphelliidae, Isanthidae, and
Halcampidae, with the latter known for its burrowing species
(Daly et al. 2007; Castorani 2008). Of particular interest is that
of the 13 species in the PP, only one was described in the last
century. All other ones were described in the eighteenth and
first half of the nineteenth century, when most data resulted
from large oceanographic expeditions. This temporal hiatus
could reflect a low sampling in the region and explain, in part,
the low richness. The Argentinian province has the highest
richness/grid cell and endemism. This region includes the
Buenos Aires coast, the most studied region of this province.

@ Springer
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Beyond Actiniidae, this province is also characterized by
Sagartiidae, which is the second largest actiniarian family with
approximately 85 valid species in 14 genera. Such a hetero-
geneous family (Daly et al. 2007) is expected to be well
represented.

The results show a marked faunal similarity between the
BP and the CP, as previously noted by Zamponi et al.
(1998a) and observed for other taxa such as fishes and
azooxanthellate corals (Rocha 2003; Kitahara 2007,
Cordeiro et al. 2015). However, the BP and the CP share
less than 50% of shallow-water sea anemones and each
province has more than 20% of endemism. This high en-
demism level supports the designated provinces. Toonen
et al. (2016) stated that biogeographic provinces should
present at least 10% of species endemism, even when pub-
lished inventories are used to measure it. In our clustering,
the provinces appear as different groups, supporting the
hypothesis of distinct fauna composition.

@ Springer

The CP and the BP are separated by the Amazonas-
Orinoco estuary (Fig. 1), a biogeographic barrier that is re-
sponsible for almost 20% of the global fluvial discharge (da
Silva et al. 2005), which could explain the high degree of
endemism in Brazil for several marine taxa, like fish and
corals (Cox and Moore 2000; Joyeux et al. 2001). However,
the possibility of migration routes in deeper waters, below the
plume, and the permeability shifting during the seasons may
explain the shared species between Brazil and the Caribbean
province (Rocha 2003; Cordeiro et al. 2015; de Oliveira
Soares et al. 2018). For example, Venezuela, on the other side
of'the estuary, shares about 30% of shallow-water species with
Brazil (based on an extensive survey of sea anemone fauna
performed by Gonzélez-Muioz et al. (2016)). The presence of
freshwater inflow is usually responsible for a lower coral di-
versity and reef habitats (see Hoeksema 2015). The
mesophotic reefs in the Amazonas-Orinoco region could also
contribute, serving as a stepping stone to species dispersion
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(Luiz et al. 2012; Cordeiro et al. 2015; Moura et al. 2016).
Thus, the estuarine plume seems to act as a soft barrier,
allowing passage for some species and preventing others, es-
pecially those generally restricted to shallow waters, with re-
production periods when the barrier is more effective, or fur-
ther, species with a smaller dispersion and/or tolerance range.
Therefore, added to local selective aspects, it could explain
why despite the Brazil and Caribbean provinces shared spe-
cies, there is a biota differentiation with a high endemism
level, which justifies the provinces’ distinction.

The provinces Argentinian and Patagonian were the most
differentiated, with higher homogeneity in their composition.

The PP was the most singular, with zero species shared with
the BP and the CP and only four with the AP. This particular
fauna pattern was observed in fish groups (Pinheiro et al.
2018) and related to the temperature and marine currents.
Argentina is under the influence of the cold and nutrient-rich
Malvinas Current (MC), which reaches the south of Brazil
(Miloslavich et al. 2011). The confluence zone (30-—46° S)
(Fig. 1), where the MC meets the Brazil Current (BC), has
particular oceanographic characteristics (Acha et al. 2004).
The nearby La Plata River is the largest freshwater flow of
the region and an important biogeographic barrier (Zamponi
et al. 1998a; Ferretti et al. 2018). The MC, with opposite

Fig. 5 Partial redundancy e
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characteristics to the BC, together with the freshwater stream,
could explain the fauna disparity between Brazil and
Argentina. More locally, differences in the habitat strengthen
fauna dissimilarity. Along the Argentinian coast, consolidated
substrate is less available and its waters are colder and more
turbid when compared with most parts of Brazil (Zamponi
et al. 1998b; Gallardo and Penchaszadeh 2001; Lutz et al.
2003). Indeed, the distribution of the majority of Argentinian
sea anemones is restricted to colder waters.

Uruguay grouped with the BP (grid cell Al, Fig. 2a), a
pattern also found by Costello et al. (2017) when studying
several benthic and pelagic taxa. However, some authors sug-
gest that Uruguay should be inside the AP (Briggs 1974;
Briggs and Bowen 2012), and Lutz et al. (2003) classify the
Argentinian province ranging from Peninsula Valdés through
the north, including Uruguay and the south of Brazil. Deserti
et al. (2012) found six species of sea anemones shared among
Uruguay and Argentina and then concluded that the La Plata
River does not represent an important barrier to sea anemone
dispersion. Our data does not fully support this idea, but this
could be the effect of analyzing only shallow-water fauna.
Deserti et al. (2012) described mostly deep- and cold-water
fauna. Spalding et al. (2007) proposed a warm temperate
Southwestern Atlantic province, where southeastern Brazil,
Uruguay, and north of Argentina appear to group together.
When taking a closer look into smaller biogeographic units,
the La Plata River appears as an ecoregion (see Spalding et al.
2007), and Uruguay groups with Brazil, which is consistent
with our data. However, even grouping together the dissimi-
larity from A1 to other BP grid cells is almost 80%, suggesting
a transition in the fauna.

For the SWA and the Caribbean, almost 70% of the sea
anemone fauna is known, and in the BP, this is 80%. This
correlates well with the world sea anemone knowledge
prediction (73% according to Fautin et al. (2013)).
Efforts have been increased in the last 10 years to incor-
porate marine species records and data to open source
databases. However, even the most studied region in the
SWA has much to discover (Miloslavich et al. 2011;
Longo and Amado Filho 2014). Despite current efforts,
some regions at the edges of the BP (cluster 4B) have
remained underexplored, while there are potential loca-
tions for new species and records. Naturally, oceanic
islands tend to have fewer species than localities along
the continental coastline, where more environmental gra-
dients can be found (e.g., Cleary et al. 2008, 2016). The
Brazilian northern oceanic islands have 20% endemism,
which is very high and can be explained due to their
isolation (Costello et al. 2017). The Trindade and
Martim Vaz islands (grid cell B13) show a low species
richness, which was expected as the marine biodiversity
of the archipelago is regarded as one of the lowest in the
world (Floeter et al. 2008). This is probably related to its
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distance from the coast, a small shallow coastline, and
harsher oceanographic conditions than those of the other
islands (Aued et al. 2018).

In the BP, cluster 1B comprises a great portion of the coast
(approximately 3.400 km) and two oceanic islands. This “sub-
province” (with the most species-rich cells B5, B7, B8, B9,
B10, B11, and B12) has well-supported endemism (almost
18% and 39 spp. in total), and it includes a diversity center
in the SWA. Southward, we found lower temperatures and a
higher influence of the Malvinas Current and the La Plata
River, whereas further northward, the proximity of the
Amazonas-Orinoco with low levels of salinity could also ex-
plain the composition in clusters 2B and 3B. Extreme envi-
ronmental factors such as sedimentation and salinity from
freshwater flows in the extremes of BP (in addition to more
wind exposure and narrower and shallower shelf in the north)
could affect the fauna composition since benthic taxa are
strongly influenced by these coastal conditions (Macpherson
2002; Barros and Rocha-Barreira 2014; Pinheiro et al. 2018).
Since these areas and the Trindade and Martim Vaz islands
have a research deficiency, with further exploration and as-
sessment, a more extensive panorama of sea anemone distri-
bution in the BP could be pictured and relations among re-
gions in the north and south of Brazil could become clarified.

Marine currents have an important role in regional connec-
tivity and can act as a way of distribution, especially to oce-
anic islands (Spalding et al. 2007). The South Equatorial
Current bifurcates between 10 and 14° S in Brazil, becoming
the North Brazilian Current (NBC) and the BC (Fig. 1). The
NBC flows between north Brazilian oceanic islands until it
reaches the Caribbean (Stampar et al. 2012). Many species
shared between Brazil and the Caribbean (e.g., Telmatactis
cricoides) occur only in the northern oceanic islands of both
provinces, as grid cell C14 (with almost 80% dissimilarity)
has several species shared with the BP. Sea anemones have
complex life histories, and the dispersion through a planktonic
larval phase is one of the most common means of reproduction
and dispersal in the group. In general, sea anemone larvae can
survive 26-35 days after release, while some species can even
remain in the water column for 59 days (Scott and Harrison
2007; Larson 2017). This could explain the connectivity be-
tween grid cell C14 and oceanic islands and the coast of
Brazil. This similarity could also be due to ecological, envi-
ronmental, and stochastic factors. Caribbean and Brazilian
islands have extremely similar conditions with respect to tem-
perature, local water dynamics, and turbidity (Rocha 2003).
Therefore, oceanic islands could promote connectivity and
population persistence, particularly in species that cannot re-
main on the continental shelf (Pinheiro et al. 2018).

Traditionally, it was believed that the southeast region of
Brazil had a higher concentration of researchers and thus a
higher sampling effort than other SWA regions (see Amaral
and Jablonski 2005) and this could affect latitudinal richness
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gradient evaluations. However, we found that shallow-water
sea anemones follow a tendency of a higher diversity at 19—
23° S, which is independent of sampling effort (Fig. 4a), re-
inforcing the idea of a biodiversity center in the SWA, previ-
ously discussed for reef fishes by Pinheiro et al. (2018). This
region has particular features that constitute a transition zone
between tropical and subtropical reefs. These reefs harbor the
majority of species (mostly consolidated substrate species)
and could also support a higher richness as species from both
zones coexists. Furthermore, the Brazil Current flows towards
south and can restrict movement in the opposite flows
(Pinheiro et al. 2018). This richness peak in Brazil’s southeast
was also observed for azooxanthellate scleractinians (Kitahara
2007), gastropods (Barroso et al. 2016), algae, fish, and inver-
tebrates (Miloslavich et al. 2011), and recently, a study ob-
serving benthic communities (several taxa belonging to
Anthozoa, Demospongiae, Ascidiacea, and other inverte-
brates; also Cyanobacteria, Chlorophyta, and other algae) in
Brazil also observed this tendency (Aued et al. 2018).

We observed that temperature was the strongest explanato-
ry driver for sea anemone distribution in the BP. However,
only three drivers could be selected reliably, which is a limi-
tation of this work. Several physiological and ecological pro-
cesses of sea anemones are linked to temperature tolerance:
reproductive seasonality, asexual reproduction, development,
larval survival, growth, and settlement (Chomsky et al. 2004;
Scott and Harrison 2007; Koldewey and Martin-Smith 2010;
Ryan 2017; Gambill et al. 2018). Furthermore, zooxanthellate
sea anemones are sensitive to environmental variations, such
as elevated sea water temperature (Hobbs et al. 2013). Several
other species are sensitive to salinity and temperature, such as,
for example, Bunodosoma caissarum (Scremin et al. 2013).
Water masses, thermohaline conditions, and habitat availabil-
ity could, in part, be responsible for the distribution of sea
anemones. For some coral groups, a lower availability of reef
habitats, deeper sea floor, and soft substrate is linked with a
decline in species diversity and, consequently, composition
(Hoeksema 2015). Some sea anemones species are restricted
to temperate or tropical waters, such as Carcinactis dolosa
and Actinoporus elegans, ranging from southeast to the south
of Brazil (19 to 24 °C). Temperature also interacts with other
factors, such as salinity and oxygen availability, directly af-
fecting the life history of sea anemones. Overall, temperature
appears to be one of the most decisive factors in the delimita-
tion of SWA provinces.

Salinity and substrate have smaller contributions to sea
anemone distribution but should not be ignored. Habitat
availability to larvae settlement is decisive for cnidarians
(Whalan et al. 2015). In general, sea anemones can be
divided into two main morphological groups regarding
the type of the substrate: burrowing in unconsolidated
substrate (sand, mud) and adherent to consolidated sub-
strate (rock) (Rodriguez et al. 2014). The majority of BP

sea anemones live in a consolidated substrate. This kind
of substrate is available in most parts along the coast, but
it becomes scarce in the south region (Ferreira et al.
2004), until reaching Argentinian waters (Zamponi et al.
1998b). Additionally, coral reefs, which represent a con-
solidated and diverse substrate, have a southernmost dis-
tribution in the Atlantic at 24° S and this could also im-
pact sea anemone distribution in SWA (Pereira-Filho
et al. 2019). The extreme north of Brazil is characterized
by sandy beaches with scattered beachrock of recent for-
mation (see Miloslavich et al. 2016). Furthermore, be-
tween north and southeast of BP, there is a variation in
reefs and rocky habitats present (Floeter et al. 2001).
Salinity is stable along the coast, 36 on average, except
in river estuaries as the Amazonas-Orinoco plume in the
north of Brazil where salinity fluctuates between < 20 at
superficial depths and then return to around 36 near
depths of 20 m (Moura et al. 2016), and this may explain,
more locally, the low species occurrence in this region.
Our three variables, together, explain 43% of sea anemone
distribution along and off the Brazilian coastline. This
suggests the presence of a complex environmental driver
system, while interactions among abiotic and biotic fac-
tors are not assessed in this study. Mechanisms that drive
biodiversity are not always clear; in the marine environ-
ment, physical isolation is not the only (or the strongest)
speciation driver, and several species have diverged
through ecological barriers (or filters as currents, sub-
strate) that create opportunities for speciation (Bowen
et al. 2013).

The new data input will allow a better understanding of
the shallow-water sea anemone composition and impor-
tant drivers. With the current data, we can observe that
the distribution of sea anemones corresponds with previ-
ously proposed biogeographic provinces. A richness peak
in the mid-latitudes of the SWA was found, with a species
peak at 19-23° S. Among three selected drivers, temper-
ature is the most responsible for the sea anemone distri-
bution in the SWA. This work reveals unprecedented pat-
terns and answers to important questions about the sea
anemone distribution in the SWA.
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