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Abstract
Upwelling strongly influences the composition and dynamics of coastal communities by affecting species abundances, recruit-
ment, dispersal and distribution. Coastal upwelling areas are key model regions to study the responses of coastal species to
climate change because they are characterized by cooler water conditions and experience lower warming rates than adjacent
regions, making them effective ‘control’ or refuge sites. This is particularly true for the benthic species of rocky shores in
upwelling areas because they are sedentary, inhabit the interface between marine and terrestrial habitats, are exposed to extremely
severe and variable environmental conditions and often live near their tolerance limits. We sampled roughly 2000 km of the
Atlantic coast ofMorocco andWestern Sahara to assess the influence of upwelling cells on patterns of diversity and abundance of
northern African rocky shore species. We recorded 186 taxa, providing clarification of the distribution of 141 algae and
documenting nine new species records for Morocco and Western Sahara. The results emphasize the influence of upwelling on
the abundance and distribution of these organisms. The contrast between non-upwelling and upwelling areas highlights the direct
and indirect importance of water temperature in shaping these communities, pointing to the consequences of large-scale warming.
Such warming is likely to threaten intertidal species that already live close to their thermal tolerance limits and are not buffered by
the effects of upwelling.
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Introduction

Species distributions are shifting globally in response to cli-
mate change, with large variability in responses among taxa
and regions (Lourenço et al. 2016). Therefore, describing and

reporting changes in species ranges are necessary for the suc-
cessful assessment of the impact of contemporary climate var-
iability on species distributions (Johnson et al. 2011). Among
the drivers of coastal species, abundances and distributions
that are likely to undergo dramatic change is upwelling.
Upwelling has important effects on the distribution of coastal
marine organisms (Fenberg et al. 2015; Reddin et al. 2015;
Cefalì et al. 2016) through several mechanisms. These include
the enhancement of primary production by bringing cold,
nutrient-rich water to the surface, an influence on local/
regional recruitment of larvae through the advection of near-
shore waters (e.g. Barshis et al. 2011; Moyano et al. 2014;
Fenberg et al. 2015), and providing cooler areas that allow
species persistence (e.g. Hu and Guillemin 2016; Lima et al.
2006; Lima et al. 2007; Lourenço et al. 2016).

Upwelling is spatially and temporally heterogeneous while
its strength is site-specific (e.g. Wang et al. 2015; Sousa et al.
2017), so that its effects on intertidal assemblages differ and
can be community-specific, for instance by causing cascading
effects on the composition of the intertidal biota (Nielsen and
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Navarrete 2004; Guerry andMenge 2017). Consequently, var-
iations in the frequency and intensity of upwelling can deter-
mine the functional and trophic structure of intertidal commu-
nities (Bosman et al. 1987; Broitman et al. 2001; Blanchette
et al. 2009; Reddin et al. 2015 but see Kelaher and Castilla
2005; Puccinelli et al. 2016a; Puccinelli et al. 2016b).

The Benguela (Bustamante and Branch 1996a), Humboldt
and California Current (e.g. Broitman et al. 2001; Blanchette
et al. 2008, Blanchette et al. 2009) upwelling systems are
major upwelling systems that have long been the focus of
studies aimed at describing and comparing the biological
and environmental structure of intertidal rocky shore commu-
nities. In contrast, the Canary Current upwelling system, an-
other major eastern boundary upwelling system, remains
largely unexplored. Geographic data on current species distri-
butions along northern African shores are so limited and out-
dated (e.g. Fischer-Piette 1957; Fischer-Piette and Prenant
1957) that the Census of Marine Life (http://comlmaps.org/
mcintyre) describes this coastline as a major biodiversity gap
requiring improved taxonomy and an improved understanding
of the scales of temporal and spatial variability in nearshore
habitats (Stuart-Smith et al. 2015). At the same time, analysis
of the vulnerability of the world’s shallow marine fauna based
on their thermal preferences indicates that this region is among
the most sensitive to long-term climate warming. Despite nu-
merous studies of the oceanography and upwelling dynamics
of the system (e.g. Marcello et al. 2011; Benazzouz et al.
2014; Cropper et al. 2014; Sousa et al. 2017) and focussed
studies on groups of species (e.g. algae, Benhissoune et al.
2001, Benhissoune et al. 2002b, Benhissoune et al. 2002a,
Benhissoune et al. 2003), we are aware of no large scale in-
vestigation linking environmental conditions and biological
gradients among intertidal communities along this coast.
Furthermore, the region includes an important biogeographic
transition. The Iberian and north African shores are influenced
by the Canary Current upwelling system and represent a bio-
geographic transition where warm- and cold-water species
reach their northern and southern distributional limits, respec-
tively (e.g. Smale et al. 2013; Neiva et al. 2015; Assis et al.
2017). Not only is the region strongly affected by ongoing
climate change (Belkin 2009; Lima and Wethey 2012), with
marked shifts in the ranges of ecosystem-structuring species in
response to warming conditions (e.g. the macroalga Fucus
vesiculosus, Nicastro et al. 2013), but reports of new species
from Morocco (e.g. Hassoun et al. 2014; Belattmania et al.
2017) suggest that it may harbour higher levels of biodiversity
than recognized.

Here, we describe patterns of diversity and abundance of
intertidal rocky shore species along c. 2000 km of the Atlantic
coast of Morocco andWestern Sahara and identify upwelling-
based drivers that influence to these patterns. Specifically, we:
(a) create a baseline for future studies investigating climate-
driven shifts in the distribution of intertidal rocky shore

species along the north African Atlantic coast and (b) assess
and relate biological (intertidal community) and environmen-
tal (upwelling) structure along the Canary Current system.

Material and methods

Study region

Qualitative and quantitative field surveys were conducted at
12 intertidal rocky shore sites in the Canary Current upwelling
system (CCS) along the Atlantic shores of Morocco and
Western Sahara (Marcello et al. 2011; Benazzouz et al.
2014; Table S1 supplementary material). Sites were sampled
between September 2013 and October 2014. Sites were
roughly equidistantly distributed along the region and selected
based on similarity in wave exposure, habitat type, topogra-
phy and proximity to upwelling cells. Due to the inaccessibil-
ity of Nouifed (24°54′30.29″N; 14°49′45.36″W) during the
second survey, the closest accessible rocky shore, Hassi El
Kraa (24°41′06.18″N; 14°54′08.87″W), was selected as its
repl ica te (approx. dis tance 22 km; Table S1 in
supplementary material; Fig. 1).

The CCS comprises multiple upwelling cells that vary in
timing and intensity (Marcello et al. 2011; Benazzouz et al.
2014). Three main centres of upwelling can be detected
through low sea surface temperatures (SST) or upwelling in-
dices along this stretch of coast: the first at 31–32°N (north of
Cap Ghir), a second at 26.5–28°N (south of Cap Juby) and a
third at 21–25°N (north of Cap Blanc; Marcello et al. 2011;
Benazzouz et al. 2014). Adjacent surrounding areas are inter-
mittently affected by upwelling, the effects of which decrease
as the distance from the upwelling centres increases (Marcello
et al. 2011; Benazzouz et al. 2014). Northern Morocco (33–
36°N) shows low seasonality and weak upwelling indices,
central and south Morocco and northern Western Sahara
(26–33°N) show the strongest seasonality and the highest up-
welling indices (peak during late summer, August–
September; (Marcello et al. 2011; Benazzouz et al. 2014),
while central and southern Western Sahara (21–26°N) show
high upwelling indices and very little seasonality (Benazzouz
et al. 2014).

Environmental variables

Site-specific monthly sea surface temperature (SST) data with
a 4-km resolution were retrieved from the Moderate
Resolution Imaging Spectroradiometer-Aqua (MODIS-
Aqua) dataset available from the National Aeronautics Space
Administration (NASA) Goddard Earth Sciences (GES) Data
and Information Services Center (DISC) for the period from
January 2010 to December 2014 using Giovanni, a web-based
application developed by the NASA GES DISC. An area of
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25 km2 situated 5 km offshore of each sampling site was
selected to investigate annual minimum and maximum SST
and SST variation (maximum SST–minimum SST). Annual
minimum and maximum SST were obtained by selecting the
lowest and highest monthly SST over each year, respectively.
Annual minimum and maximum SST and SST variation
values were then averaged over the 5-year period considered.

The wind-based upwelling index cross-shore Ekman trans-
port (CSET) was used to estimate upwelling intensity during
the period 2010–2014 following (Krug et al. 2017). Daily sea
surface wind fields (speed and direction) at a spatial resolution
of 0.25o were obtained from the Blended Sea Winds dataset
(National Climatic Data Centre—National Oceanic and
Atmospheric Administration, NCFC-NOAA, http://www.
ncdc.noaa.gov/oa/rsad/air-sea/seawinds.html). The Blended
Sea Winds dataset combines multiple scatterometers
standardized across platforms, resulting in high-quality tem-
poral and spatial coverage of ocean wind vectors (Zhang
2006). CSET values were estimated for 13 locations along
the meridionally oriented Atlantic coast of northern Africa
(Table S1 in supplementary material). For each location,
CSET values represented the average of a 0.75 × 0.75o box
centred on the target location.

The zonal component of the Ekman transport (CSETx),
induced by the meridional component of wind-stress (τy),

was used as an upwelling index for each station. CSETx

(m3 s−1 km−1 coastline) was calculated following Bakun
(1973), as modified by Alvarez et al. (2011):

CSETx ¼ 1000 Ty

ρw f
¼ ρa Cd

ρw f
W2

x þW2
y

� �1=2
1000W y

where W represents wind velocity (m s−1), ρw is seawater
density (1025 kg m−3), ρa is air density (1.22 kg m−3), Cd is
the drag coefficient (1.4× 10−3) and f is the Coriolis parame-
ter, estimated as 2 Ω sin(θ) where Ω and θ represent the ver-
tical component of the Earth’s angular velocity and local lat-
itude, respectively. Negative CSETx values indicate
upwelling-favourable periods with offshore Ekman transport
and conversely, positive values indicate downwelling-
favourable periods and onshore Ekman transport.

Daily CSET data were first monthly averaged to reduce the
influence of daily anomalies. Over each year, the lowest
CSET monthly average was identified to obtain the annual
minimum. The overall minimum (UImin) and mean
(UImean) upwelling indices for the 5-year period (2010–
2014) were estimated for each site and used in statistical anal-
yses. The UImin was obtained by selecting the lowest upwell-
ing index of the 5-year period, while the overall UImean was
obtained by averaging the five minimum annual CSET (i.e.

Fig. 1 Study site and species richness. Sites sampled and species richness at 12 sites along the coasts of Morocco and Western Sahara, categorized by
functional group
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one value per year). Annual probability of upwelling (UIp in
%) was calculated as the average of the monthly frequency of
upwelling favourable days (CSET values < 0). The overall
UIp was the average over the 5-year period.

Biological sampling design

A point-intercept sampling method was used to quantify rela-
tive abundance (% cover) of sessile invertebrates, macro-
phytes and lichen species at each site (adapted from
Blanchette et al. 2008). A representative shore section was
designated at each site and a measuring tape was laid out from
the upper edge of the highest intertidal barnacle zone, perpen-
dicular to the shore, to the lowest level of the low tide. Vertical
point-intercept transects (n = 2 each site) were divided into 50
equidistant points. Intervals between points were adjusted at
each site and depended on the width of the shore. The five
species under each point, including layering and epibionts, or
closest to the point directly attached to the substratum were
recorded. Tide pools and gulleys were not sampled to avoid a
misrepresentation of the intertidal height. If an intercept point
fell on a tide pool or gulley, the closest horizontal non-tide
pool/inundated area was sampled instead.

When species identification was not possible in the field,
specimens were collected for identification in the laboratory.
Algae and lichen specimens were preserved in KEW solution
(40% ethanol (70%), 40% seawater, 10% glycerine and 10%
formaldehyde (4%)) and sessile invertebrates were preserved
in 96% ethanol. A random search of 15 min at each site was
performed to include species that did not comprise one of the
five taxa at each point but which were present along the tran-
sect. Species were identified and accounted for in the overall
qualitative description of the site’s community composition,
but that were not considered in the statistical analyses.

The abundances of mobile species were determined using
30 × 30 cm quadrats placed along the transect following
(Engle 2008). Specifically, three quadrats were placed haphaz-
ardly on the substratum in each of the low, mid and high shore
and the macroinvertebrate target taxa (limpets, gastropods and
pulmonate species) > 5 mm found within the quadrat were
identified and counted. The abundance of littorinids (mostly
< 5mm) was only determined in the high zone and this species
were sub-sampled in a 7.5 × 10 cm section of the quadrat due
to their high densities. When species identification was not
possible in the field, specimens were collected and preserved
in 96% ethanol for further morphological or genetic identifi-
cation in the laboratory. Again, tide pools and gulleys were not
sampled to avoid a misrepresentation of the intertidal height.

Main sources for identification were: Sansón and Carrillo
1999, Gómez-Garreta 2002, Brodie et al. 2007, Cabioc’h et al.
2006, Rodríguez Prieto et al. 2013, Fish and Fish 2011,
Preston-Mafham 2010, taxonomic notes and references from
Algaebase (http://www.algaebase.org/).

Historical data on the distributions of algae in northern
Africa described in the literature and in Algaebase (http://
www.algaebase.org/) were used as a baseline for the
distributional patterns of the species identified in this work.
Published literature was screened up until January 2017 using
Google Scholar and the ISI Web of Knowledge by using the
names of the species identified in the present study in
combination with the following keywords: Morocco, Maroc,
Western Sahara, Spanish Sahara. New local records depicted
novel descriptions of a species at a site, despite its confirmed
presence in the country. A new southern limit recorded a
species farther south than its previous historical limit. A new
record was defined as the first record of a species from
Moroccan or Western Saharan shores.

Data analyses

Site-specific species richness was estimated by summing the
total number of taxa identified at each site from both transect
and quadrat surveys. Species were categorized into functional
groups based on their feeding guilds (macrophytes, filter-
feeders, herbivores and lichens (as in Blanchette et al. 2009).

To examine similarity of spatial patterns in the biological
and environmental data along the study area and to understand
if the composition of intertidal communities was influenced
by upwelling-related variables, the multivariate methods of
Clarke (Clarke 1993) in PRIMER 6.1.3 (Plymouth Routines
in Multivariate Ecological Research) software package were
used. Abundances of sessile and sedentary species on tran-
sects were calculated by determining the total percentage
(%) of species presence detected along the 50 points of each
transect. Abundances of mobile species in quadrats were de-
termined by estimating species density in each quadrat. Taxon
abundance was averaged across sampling replicates (transects
or quadrats) for each site. The data matrix of taxon abun-
dances was fourth-root transformed to reduce the contribution
of very abundant species and increase that of rare species (as
in Blanchette et al. 2009). A biological similarity matrix was
constructed using the Bray–Curtis similarity coefficient and
cluster analysis was performed using a hierarchical method
with group-average linking. Environmental data were normal-
ized after fourth-root transformation and a similarity matrix
was constructed using Euclidean distance. A SIMPROF test
was run for the biological and environmental dendrograms
separately using 9999 permutations to indicate group structure
at a significance level of 5%.

The SIMPER routine was performed to identify the taxa of
each group that were most responsible for the differences
among groupings, with a cut-off of 25% contribution. Sites
were assigned to groups defined a priori based on SIMPROF
analyses of the biological dendrogram.

Two-dimensional, non-metric multidimensional scaling
(nMDS) was performed on the environmental variables to
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examine regional segregation among sites (Kruskal and Wish
1978).

The RELATE routine was used in PRIMER to match the
environmental resemblance matrices with the resemblance
matrices of taxon richness, abundance of functional groups,
taxon abundance based on transects (TAT) and based on quad-
rats (TAQ) separately, running 9999 permutations under the
Spearman rank correlation method at a significance level of
5%.

Distance-based linear models (DistLM) were carried out to
determine the contribution of the environmental variables to
the variability in community composition. DistLM analyses
were performed through a dissimilarity matrix, using the ‘all
specified’ selection procedure under the Akaike Information
Criterion (AIC), performing 9999 permutations for taxon rich-
ness, abundance of functional groups, TAT, TAQ, and
presence/absence for the taxa identified in transects, separate-
ly. The environmental variables were analysed individually
(marginal tests) and a sequential test was employed to evaluate
the cumulative effect of each variable once the previous var-
iable(s) had been accounted for.

Results

Environmental data

The environmental variables were averaged over the 5-year
period (2010–2014) for each site (Table 1) and analysed to
detect geographical clustering of sites. The minimum (UImin)
and mean (UImean) values of wind-based upwelling indices
ranged from − 1723.51 m3 s−1 km−1 coastline (at Imsouane,
site S6) to − 418.99 m3 s−1 km−1 coastline (at Rabat, site S2)

and − 1543.06 m3 s−1 km−1 coastline (at Imsouane) and −
312.55 m3 s−1 km−1 coastline (at Rabat, site S2), respectively.
Favourable wind-conditions for upwelling phenomena oc-
curred between 68.9% (at Rabat) and 95.73% (at Dakhla, site
S12) of the time over the 5-year period. Maximum and min-
imum sea surface temperature (SSTmax and SSTmin) ranged
between 20.41 °C (at Essaouira, site S5) and 23.33 °C (at
Rabat) and between 16.08 °C (at Imsouane) and 17.12 °C
(at Tarfaya, site S9), respectively. SST variation (SSTv)
ranged from 4.05 °C (at SNouifed/Hassi El Kraa, site 11) to
6.94 °C (at Rabat).

Hierarchical cluster analysis based on the six environmen-
tal variables revealed significant geographical structure
(Fig. 2). The SIMPROF test identified three significant groups
(E1, E2 and E3). Group E1 contained Imsouane (site S6) only.
Group E2 comprised sites Larache (site S1), Rabat (site S2),
Sidi Bouzid (site S3) and El Beddouza (site S4; the four north-
ernmost sites). Group E3 comprised sites Essaouira (site S5)
and Mirleft (site S7), El Ouatia (site 8), Tarfaya (site S9),
Boujdour (site S10), Nouifed/Hassi EL Kraa (site S11) and
Dakhla (site S12; central and southern sites).

Biological sampling

A total of 186 taxa (26 Ochrophyta, 107 Rhodophyta, 26
Chlorophyta, 2 Ascomycota, 3 Cnidaria, 16 Mollusca, 1
Annelida, 4 Arthropoda, 1 Chordata) inhabiting the intertidal
shores of Atlantic Morocco and Western Sahara were identi-
fied (Table 2). A considerably greater number of algal taxa
were identified in comparison with lichens or animals. Algae
constituted 85.5% of the identified taxa, while animals and
lichens constituted 13.4% and 1.1%, respectively. The surveys
reported 376 new local records of algae; new overall southern

Table 1 Summary of the environmental variables analysed at each sampling site

Sites UImin (m3 s−1 km−1) UImean (m3 s−1 km−1) UIp (%) SSTmax (°C) SSTmin (°C) SSTv (°C)

S1 − 430.19 − 340.36 70.52 22.53 16.17 6.37

S2 − 418.99 − 312.55 68.94 23.33 16.39 6.94

S3 − 820.64 − 702.49 77.97 22.76 16.38 6.38

S4 − 1077.05 − 909.97 80.93 22.23 16.54 5.69

S5 − 1611.04 − 1441.31 83.24 20.41 16.15 4.26

S6 − 1723.51 − 1543.06 84.22 20.80 16.08 4.72

S7 − 1704.03 − 1263.98 83.98 22.16 16.62 5.55

S8 − 1140.94 − 1014.64 88.16 21.88 16.77 5.11

S9 − 1330.26 − 1050.61 90.28 21.79 17.12 4.67

S10 − 1301.84 − 1209.70 92.66 22.62 16.76 5.86

S11 − 1058.47 − 953.61 93.26 20.48 16.43 4.05

S12 − 1072.76 − 924.01 95.73 21.15 16.98 4.17

UImin minimum Upwelling Index, UImean mean Upwelling Index, UIp probability of upwelling events, SSTmax maximum sea surface temperature,
SSTmin minimum sea surface temperature; SSTv variation of sea surface temperature (maximum-minimum SST)

Sampling sites are coded as in Table S1 in supplementary material
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limits were detected for 25 algal species and nine algal species
were recorded for the first time from the study area. Overall,
distribution novelties or changes were described for 89% (141
species) of the algal taxa identified.

Taxon richness varied along the study area, but did not
follow a clear latitudinal gradient (Fig. 1). However, the four
southernmost sites showed a trend of decreasing taxon richness
towards the south. Average taxon richness across all sites was
46, but some sites had particularly low (29 taxa, Mirleft and El
Ouatia) or high (62 taxa, Tarfaya) richness. Macrophyte, filter-
feeder, herbivore and lichen taxa ranged between 15 and 49, 4–
8, 6–10 and 0–2 taxa per site, respectively.

Hierarchical cluster analyses based on taxon abundance
from the transect (TAT)matrix revealed significant geographic
structure that was not related to latitude, while no significant
structure was detected for taxon abundance from quadrats
(TAQ; Fig. 3). The SIMPROF test performed on TAT data
identified three significantly different clusters (groups B1,
B2 and B3). Group B1 included only Imsouane. Group B2
comprised sites Larache, Rabat, Mirleft and El Ouatia at a
Bray-Curtis similarity of around 64%. Groups B1 and B2
showed significant similarity of around 55%. Group B3 com-
prised sites Sidi Bouzid, El Beddouza and Essaouira and
Tarfaya, Boujdour, Nouifed/Hassi El Kraa and Dakhla at a
similarity level of 53%.

The SIMPER results showed that a total of 19 algae, two
animal taxa and one lichen contributed the most to the dissim-
ilarities among the three groups (B1B2, B1B3 and B2B3,
Table 2). While seven taxa contributed the most to differences
between groups B1 and B2 (dissimilarity of 45.04%), 11 and
12 taxa contributed the most to differences between groups B1
and B3 (dissimilarity of 51.01%) and B2 and B3 (dissimilarity
of 50.82%), respectively (Table 3). SIMPER contributions
based on TAT per site highlighted dissimilar distributional
arrangements and changes in species abundance among and
within groups (Fig. 4). Species that most contributed to dis-
similarities among groups were sessile species, namely the
algae species Bifurcaria bifurcata, Ulva clathrata,
Osmundea pinnatifida, Padina pavonica, Codium adhaerens,
Jania rubens and Fucus guiryi. Abundance of B. bifurcata
gradually increased from group B3 (Sidi Bouzid) to its max-
imum abundance in group B1 (Imsouane; Fig. 4) and was
absent south of Imsouane. Ulva clathrata was exclusive to
Imsouane (group B1), where it was the most abundant, and
Boujdour (groupB3).Osmundea pinnatifidawas present at all
sites of group B3, but absent from the remaining two groups.
Padina pavonica, C. adhaerens and J. rubens were relatively
abundant in group B1 (Imsouane), but absent or extremely
rare in the other two groups. Finally, F. guiryi was abundant
at most sites of group B3, with a gradual increase of abun-
dance from Sidi Bouzid to Essaouira, but it was absent from
groups B1 and B2.

Abundances of macrophytes, filter feeders and lichens dif-
fered among the study sites, but did not follow a latitudinal
gradient (Fig. 5). Macrophytes were the only functional group
present at all sites. Lichens were the least abundant. The
highest abundance for filter feeders was observed at
Imsouane, Mirleft and El Ouatia.

Biological-environmental comparison

The RELATE routine did not identify significant similarity
between the environmental variables and taxon richness
(Rho = − 0.163, p = 0.086), abundance of functional groups
(Rho = − 0.079, p = 0.262), TAT (Rho = 0.121, p = 0.795),
TAQ (Rho = 0.022, p = 0.584) or presence/absence data from
taxa identified on transects (Rho = 0.098, p = 0.762).
However, both biological (transect based) and environmental
hierarchical cluster analyses showed similar clustering struc-
ture. Site S6 (Imsouane) was depicted as an outlier group in
both cluster analyses. Additionally, both cluster analyses
grouped sites Larache and Rabat in B2/E2 and Essaouira
and Tarfaya, Boujdour, Nouifed/Hassi El Kraa and Dakhla
in B3/E3.

DistLM mostly retrieved non-significant contributions of
the environmental variables to the variability of taxon rich-
ness, abundance of functional groups, TAT, TAQ and
presence/absence data from taxa identified in transects (most

Fig. 2 Dendrogram based on environmental variables. Euclidean
distance dendrogram of the similarity of sites based on environmental
variables. Labelled nodes depict significant clustering (p < 0.05)
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marginal and sequential tests on environmental variables
p > 0.05, Table S2 in supplementary material). Although
marginal tests on the individual environmental variables
explaining TAQ were all non-significant (all p > 0.05,
Table S2 in supplementary material), sequential tests
showed that UImin, UImean, UIp and SSTmax together
explained 47% of the variation (p = 0.0426, Table S2 in
supplementary material). Additionally, a DistLM analysis
retrieved a significant contribution of UIp (marginal tests,
p = 0.0357) to the variability of presence/absence data
from taxa identified in transects, explaining ~ 16% of the
variation (Table S2 in supplementary material).

Discussion

The results of this study suggest that strong upwelling condi-
tions influence community structure of intertidal benthic biota
of Atlantic Moroccan and Western Sahara shores. Here, we
further discuss the intertidal biodiversity of the region and the
importance of upwelling as a thermal buffer in the context of
climate change.

Upwelling influence on intertidal benthic
communities

The distribution and abundance of coastal marine species are
strongly influenced by large-scale oceanographic processes
(Bosman et al. 1987; Broitman et al. 2001; Blanchette et al.
2008).The environmental analysis structured our study area
into three groups: an outlier location (site Imsouane, group
E1, western Morocco), a northern region (Larache, Rabat,
Sidi Bouzid and El Beddouza, group E2, northern Morocco)
and a southern region (Essaouira and Mirleft, El Ouatia,
Tarfaya, Boujdour, Nouifed/Hassi El Kraa and Dakhla, group
E3, southern Morocco and Western Sahara). Imsouane was
most likely identified as an independent group due to the
combined effects of the strongest upwelling indices (UI),
some of the lowest maximum sea surface temperature
(SSTmax) and the lowest minimum SST (SSTmin), highlight-
ing a location characterized by the coldest water conditions
and most intense upwelling of the entire study area. In sharp
contrast, E2 combined the weakest UI with the lowest proba-
bility of upwelling (UIp) and the greatest SST variation, which
matches previous studies describing northern Morocco as a
region characterized by weak upwelling indices (Marcello
et al. 2011; Benazzouz et al. 2014; Cropper et al. 2014). In
agreement with the described intense upwelling events and the
lack of seasonality along southern Morocco and Western
Sahara due to conditions that are favourable to year-round
upwelling (Marcello et al. 2011; Benazzouz et al. 2014), E3
revealed strong upwelling indices and the greatest probability
of upwelling.T
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Because they can interrupt the general pattern of warmer
SST towards the equator, oceanographic features such as
fronts, currents or upwelling cells cause latitudinal thermal
discontinuities that influence the distribution of intertidal as-
semblages (e.g. Blanchette et al. 2008; Ling et al. 2009).
Latitudinal discontinuities associated with upwelling are key
elements in explaining the community structure of benthic
intertidal biota (e.g. Humboldt Current system: Broitman
et al. 2001; Tapia et al. 2014; California Current system:
Blanchette et al. 2008). For example, upwelling conditions
were proposed as major drivers of biogeographic variation
of the intertidal fauna and flora in South Africa (Bustamante
and Branch 1996b; Xavier et al. 2007). In this study, we dem-
onstrate that strong upwelling-related conditions (i.e. the
strongest upwelling indices coupled to the lowest SST) drive
changes in species abundance and community composition, as
suggested by DistLM analyses of species abundances in quad-
rats and of presence/absence data, and by the agreement be-
tween environmental and biological dendrograms for
Imsouane. This influence seems to be exclusive to the site
where environmental variables were particularly different from
the surrounding locations. Specifically, the strongest upwelling
indices and the lowest SST displayed by Imsouane most likely
drive an effect on the abundance of the intertidal biota,
primarily algae, at this location. In fact, the community
patterns described largely reflect variations in the relative
abundances of taxa rather than changes in species

composition. This pattern has been previously described by
Blanchette et al. (2008) from the intertidal shores of the
California Current system. In the present study, many of the
species that contributed most to differences between groups
did not show large scale presence/absence patterns, but rather
had striking differences in abundances, with particular expres-
sion where upwelling was stronger. For example, Bifurcaria
bifurcata, Padina pavonica andUlva chlathratawere relative-
ly abundant in group B1/E1 (i.e. Imsouane) but extremely rare
in the other groups. Bifurcaria bifurcata is a warm temperate
species distributed from the British Isles to Morocco, on
moderately exposed rocky shores in the mid/low intertidal
and in rock-pools (e.g. Boaventura et al. 2002; Cires
Rodríguez and Cuesta Moliner 2009; Neiva et al. 2015).
Group B1/E1 most likely provides optimum conditions as
a thermal refugium for the persistence of this brown alga.
For example, cover and abundance of B. bifurcata were
particularly high at Imsouane, where upwelling indices
were the greatest, while minimum and maximum SSTwere
the lowest. This is in line with recent evidence highlighting
the role of upwelling cells as contemporary refugia for
marine species in a context of warming climate (Riegl
and Piller 2003; Hu and Guillemin 2016; Lourenço et al.
2016), by delivering cold upwelled waters that counter the
effect of warming SST, allowing the long-term persistence
of species and relatively high within-species genetic diver-
sity (Lourenço et al. 2016).

Fig. 3 Dendrograms based on community composition. Bray-Curtis sim-
ilarity dendrograms based on the community composition of a taxon
abundance from transect data and b taxon abundance from quadrat data.

Labelled nodes depict significant clustering (p < 0.05). B1–B3 refers to
the clustering groups
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Upwelled waters also enhance algal growth as a result of
increased nutrient supply (Bosman et al. 1987; Ormond and
Banaimoon 1994). Ulva chlathrata, an opportunistic foliose
algae characterized by fast growth (Gaspar et al. 2017),
reached its greatest relative abundance at Imsouane. This sug-
gests a bottom-up effect of increased nutrient supply through
upwelling (Bustamante et al. 1995; Head et al. 1996).
Importantly, as our biological dataset was dominated by algae,
the patterns observed in dendrogram analyses may largely
reflect the influence of nutrients. While the key role of
nutrient-rich upwelling waters in structuring assemblage com-
position across the Canary Current upwelling system (CCS)
has been recently demonstrated for pelagic communities
(Anabalón et al. 2014), the drivers of community structure
of intertidal benthic biota along Moroccan and Western
Sahara shores still warrant further investigation.

Importantly, local and meso scale features, not directly
linked to larger environmental gradients, can be key drivers
of intertidal community composition and abundance
(Hawkins et al. 1992; Helmuth et al. 2006b; Raffaelli and
Hawkins 2012). At small spatial scales, topographic and hy-
drodynamic features such as shore elevation and wave expo-
sure play an important role in the trophic structure and

diversity in rocky intertidal habitats (Blanchette et al. 2008;
Nicastro et al. 2010; Zardi et al. 2006a; Waters et al. 2014).
For example, experimental manipulation of hydrodynamics at
cm-scales significantly laters mussel growth rates (McQuaid
and Mostert 2010), while small scale thermal heterogeneity
can exceed large-scale variability (Helmuth et al. 2006a). At
meso scales both physical factors and biological interactions
affect the biotic landscape of intertidal rocky shores. For ex-
ample, coastal topography and habitat continuity are critical in
shaping species richness gradients, boundaries and genetic
structure (Fenberg and Rivadeneira 2019; Nicastro et al.
2008). In addition, periodic phenomena such as sand inunda-
tion have large effects on species richness, composition and
competitive interactions (e.g. Zardi et al. 2008; Zardi et al.
2006b). Pollution has also been identified as a determinant
of alterations of macrofaunal intertidal communities with sig-
nificant repercussions for the functioning of ecosystems (e.g.
Leopardas et al. 2016; Sabri et al. 2017), however, except after
acute oils spills, its influence on more exposed rocky shores is
limited compared to other anthropogenic stressors (Thompson
et al. 2002). In the case of intertidal benthic animals with
planktonic larvae, the processes of larval supply (influenced
by coastal geomorphology and nearshore hydrodynamic fea-
tures) and settlement from the water column into the benthos
are key to population regulation (e.g. Poloczanska et al. 2008;
Porri et al. 2007).

Intertidal biodiversity along the Atlantic shores
of Morocco and Western Sahara in the context
of climate change

In spite of the multiple expeditions performed within the CCS
since the 19th century (reviewed in Ramos et al. 2015), ben-
thic communities in the northwest African region are among
the least known globally (Decker et al. 2003; Brito et al. 2014;
Ramos et al. 2015), with most studies being limited to the
Atlantic coast of northwest Morocco or Mediterranean
Moroccan shores, and little sampling effort in southern
Morocco or the Western Sahara (Franchimont and Saadaoui
2001).

While we omitted many small taxa such as crustaceans, our
data clarify the ranges of 141 algal species, particularly along
the southern region, and add nine novel records for Morocco
and Western Sahara, highlighting the gaps in our knowledge
of the composition and distribution of intertidal algal species
in northern Africa (Franchimont and Saadaoui 2001; Ramos
et al. 2015). These gaps also extend to macroinvertebrates
from Moroccan shores (Franchimont and Saadaoui 2001).
For example, the sandworm Sabellaria alveolata has been
described in multiple studies as being distributed from
Scotland to southern Morocco (e.g. Mieszkowska et al.
2006; Dubois et al. 2007; Plicanti et al. 2016). While its dis-
tribution is well described from the northern part of the range

Table 3 Results of Simper analysis

Taxon B1B2 B1B3 B2B3

Ellisolandia elongata 2.78 – –

Verrucaria maura 2.9 – –

Jania rubens 3.2 2.11 –

Codium adhaerens 3.55 2.72 –

Padina pavonica 3.81 2.86 –

Ulva clathrata 4.21 2.69 –

Bifurcaria bifurcata 4.72 2.68 –

Colpomenia peregrina – 2.23 –

Pyura herdmani – 1.88 –

Sphacelaria fusca – 1.88 –

Perforatus perforatus – 2.08 1.72

Fucus guiriy – 2.18 2.86

Osmundea pinnatifida – 2.96 3.86

Osmundea sp – – 1.67

Ralfsia verrucosa – – 1.69

Hypoglossum hypoglossoides – – 1.78

Lithophyllum byssoides – – 1.91

Ulva compressa – – 1.92

Neosiphonia collabens – – 1.94

Chondracanthus acicularis – – 1.95

Plocamium cartilagineum – – 2.23

Osmundea osmunda – – 2.36

Results of similarities percentages (SIMPER) analyses showing the per-
centage contributions of the species that contributed the most to dissim-
ilarity between groups
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(e.g. Dubois et al. 2007; Mieszkowska et al. 2013; Firth et al.
2015), few studies refer to specific locations along the south-
ern range (Ocaña et al. 2005; Rouhi et al. 2007; Muir et al.
2016). Here, we showed that S. alveolata extends towards the
Western Sahara, at least as far south as Dakhla (site S12),
approximately 24oS.

Importantly, the region is experiencing variable, severe and
rapid climatic change, particularly in terms of warming (Lima
and Wethey 2012). Climate change is expected to further alter
species richness and community composition worldwide
(Molinos et al. 2016; Woodworth-Jefcoats et al. 2016). The
CCS is a temperate zone bordered by the Mediterranean Sea,
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Fig. 4 SIMPER results. Geographic pattern of distribution and
abundance for the species that contributed most to the dissimilarity
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Fig. 5 Cover abundance.
Abundance by cover of sessile or
sedentary species at 12 sites along
the coasts of Morocco and
Western Sahara, for functional
groups that contributed most to
the dissimilarity between groups
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the shores of tropical West Africa and the cool temperate
northeastern Atlantic (Spalding et al. 2007), representing a
biogeographical transition where several warm and cold water
species meet and reach their northern or southern range limits
(e.g. Lima et al. 2007; Lourenço et al. 2012; Nicastro et al.
2013; Neiva et al. 2015). In particular, Moroccan and Western
Saharan shores have experienced warming of sea surface tem-
perature of 0.02–0.30 and − 0.02–0.29 °C decade−1 over the
last 30 years, respectively (Lima and Wethey 2012), and are
characterized by distributional shifts linked to climatic chang-
es (Nicastro et al. 2013; Lourenço et al. 2016). Recent studies
have focused on understanding how upwelling intensity is
changing and will change worldwide as a consequence of
climate change (McGregor et al. 2007; Bakun et al. 2010;
Wang et al. 2015; Sousa et al. 2017). Regardless of the ex-
pected increase in upwelling intensity in northern Africa
(Wang et al. 2015 but see also Sousa et al. 2017), which could
mitigate the negative effects of climate change, warming is
expected to continue to increase (Collins et al. 2013; IPCC
2014), threatening intertidal species that already live close to
their thermal tolerance limits. This study provides a baseline
for studies investigating how intertidal benthic communities
shift in a globally important upwelling systems.
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