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Abstract
Sponge grounds are complex three-dimensional benthic habitats dominated by sponges. These sponge-dominated assemblages
have been reported worldwide, from the intertidal zone to the deep sea. In shallow euphotic waters, dense sponge aggregations
have been mainly found in tropical areas, and their presence is in some cases related to environmental degradation and coral
decline. The Mediterranean Sea is globally recognised as a biodiversity hotspot, where light-exposed rocky reefs are typically
dominated by photophilous algae. However, high local anthropogenic pressures, coupled with climate change, are leading to the
reorganisation of benthic communities and the occurrence of regime shifts in several areas. Here we report the first description of
unusual, shallow-water sponge grounds in Mediterranean light-exposed rocky reefs, in an area previously impacted by the
destructive date-mussel fishery. These assemblages, found along the Apulian coast (central Mediterranean Sea), are now
(2017) characterised by a mean coverage of sponges ranging between 3% and 33%, with maximum values up to 85%.
Variation in the structure of assemblages and in the abundance of individual taxa between depths has been tested by multivariate
and univariate techniques. The spatial characterisation has been complemented with the taxonomic analysis of the sponge
assemblages, which resulted in the identification of 14 sponge taxa. These findings are comparedwith results of previous research
in the same area and discussed with particular reference to the potential variables involved in sponge dominance and spatial
distribution in the present system and elsewhere.
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Introduction

Sponges diverged from other metazoans over 600 million
years ago and are now common sessile organisms in tropical,
temperate, and polar benthic ecosystems (Brien et al. 1973;
Srivastava et al. 2010; Bell et al. 2015). Sponges are consid-
ered important members of benthic marine ecosystems, as a
result of their extensive distribution, large biomass in many
habitats, and the number of ecological roles that they play
(Bell 2008; Heip et al. 2009).

Sponge aggregations may create complex three-
dimensional habitats, which, when characterised by large
sponge biomass and space occupancy, are described as
‘sponge grounds’ (Heyward et al. 2010; Hogg et al. 2010;
Bo et al. 2012; Murillo et al. 2012; Beazley et al., 2013;
Maldonado et al. 2017). Sponge grounds are found in a variety
of habitats, from the intertidal to the deep-sea environment
(Maldonado et al. 2017).

In shallow waters, dense sponge aggregations have been
reported in polar, temperate, and tropical ecosystems, and
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mainly in shaded or dark habitats such as caves, mesophotic
reefs, and understoreys (Dayton et al. 1974; Bell and Barnes
2000; Corriero et al. 2000; Aronson et al. 2002; Bell 2002;
Heyward et al. 2010; Gerovasileiou and Voultsiadou 2012).

However, in shallow light-exposed reefs, sponge-
dominated communities have been only described in tropical
regions, including Indo-Pacific, Central Pacific, Caribbean,
and Brazilian coasts (Maldonado et al. 2017). In these areas,
sponges may have become dominant on shallow rocky sub-
strates because of environmental degradation responsible for
mass mortality of corals (Aronson et al. 2002; Kelmo et al.
2013; Farnham and Bell 2018). Furthermore, there is evidence
that, as a result of extreme thermal events, some sponge spe-
cies can proliferate extensively, becoming dominant in the
marine environment (Aronson et al. 2002; Kelmo et al.
2013). In Brazilian and Belizean reefs, for example, the El
Niño-Southern Oscillation event in 1998 had devastating ef-
fects on hermatypic corals, while sponge abundance increased
(Aronson et al. 2002; Kelmo et al. 2013), probably due to the
higher tolerance of sponges to rapid temperature variations
compared with other sessile taxa (Bell et al. 2013).
Similarly, in both the Indonesian Wakatobi Marine National
Park and the Palmyra Atoll in the Central Pacific reef, degra-
dation led to a drastic reduction of corals as the dominant
organisms, and their replacement by sponges (Bell and
Smith 2004; Knapp et al. 2013).

More recently, the wider accessibility of ROV technology
has led to the discovery of sponge-dominated habitats in the
deep seas of all the oceans (Krautter et al. 2001; Klitgaard and
Tendal 2004; Bo et al. 2012; Göcke and Janussen 2013;
Bertolino et al. 2015; Howell et al. 2016; Mcintyre et al.
2016). These habitats are now recognised as reservoirs of
biodiversity by the United Nations Environment Programme
(UNEP) (Hogg et al. 2010). The development of such sponge
aggregations is typically shaped by geological, hydrological,
and biological gradients, and they may be important to the
nutrient circulation in abyssal environments (Hogg et al.
2010; Kutti et al. 2013; Cathalot et al. 2015; Goodwin et al.
2017; Maldonado et al. 2017).

The Mediterranean Sea is a temperate basin with a rich
biota that includes cold-temperate and subtropical species
(Bianchi et al. 2012). Despite the small size, it has a very high
number of species and degree of endemism, and is globally
recognised as a hotspot of biodiversity (Coll et al. 2010).
Mediterranean light-exposed rocky reefs of the open coast
are typically dominated by photophilous algae, while shaded
or dark reefs can be dominated by sciaphilous algae or inver-
tebrates (Pérès and Picard 1964; Ballesteros 2006; Danovaro
2013). However, due to severe demographic, urban, and in-
dustrial pressures, combined with global climate change,
Mediterranean biodiversity has been changing at an unprece-
dented rate in recent years, with the occurrence of several
shifts in its biological settings (Bianchi and Morri 2000;

Cuttelod et al. 2009; Lejeusne et al., 2010; Claudet and
Fraschetti 2010; Coll et al. 2010; Bianchi et al. 2014).

In the last decades of the past century, some areas of the
Mediterranean Sea, including the Apulian coasts, have been
greatly affected by the date-mussel Lithophaga lithophaga
fishery (Fanelli et al. 1994). This heavily destructive practice
involves the demolition of the rocky substrate using SCUBA,
sledgehammers and underwater vehicles to collect the living
molluscs (Guidetti et al. 2003). It was documented that, after
the destruction of the rock and the consequent elimination of
all the sessile organisms, the substrata have been quickly
colonised by the sea urchins Arbacia lixula and
Paracentrotus lividus. Sea urchins, through unselective graz-
ing, prevented the recolonisation by perennial macroalgae
(Russo and Cicogna 1991; Bonaviri et al. 2011; Guidetti
2011).

Here we report the first quantitative and taxonomic charac-
terisation of an unusual shallow-water (3–7 m of depth)
sponge ground from a light-exposed rocky reef of the
Mediterranean Sea. Possible biotic and abiotic factors trigger-
ing sponge dominance in this area are discussed.

Materials and methods

The study area

This study was carried out in August 2017, by SCUBA div-
ing, along the south-western coast of the Salento Peninsula
(Fig. 1). Sampling was performed in the framework of the
project Biodiversity MARE Tricase (Micaroni et al. 2018a,
2018b). The estimated area characterised by the presence of
extensive sponge assemblages corresponds to ~ 26 km2.
Sampling was conducted at the two sites where the shallow-
water sponge grounds were present according to previous ob-
servations: site 1 (~ 1 km long), located at Santa Caterina,
Nardò, Lecce, and site 2 (~ 6 km long), located at Porto
Cesareo, Lecce. The two sites are ~ 13 km apart (Fig. 1),
and site 2 is within the marine protected area of Porto Cesareo.

The coastline at the study area shows an alternation of
sandy beaches and rocky shores, while the sampled shallow
subtidal rocky habitat is characterised by well-illuminated and
moderately exposed calcareous plateaus. Detailed information
on the hydrological regime of the study area can be found in
Parenzan (1983) and Rivaro et al. (2004). The benthic assem-
blages are typical of Mediterranean barrens, with a few erect
macroalgae, including articulated corallines Amphiroa sp.,
sheet-like brown algae of the genus Dictyota, and the ‘pea-
cock’s tail’ brown alga Padina pavonica (Linnaeus) Thivy,
1960; main invertebrates include the sea urchins
Paracentrotus lividus (Lamarck, 1816) and Arbacia lixula
(Linnaeus, 1758), the endolithic bivalve Lithophaga
lithophaga (Linnaeus, 1758), encrusting bryozoans, and
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sponges (Guidetti et al. 2003). Among the most common
sponge species reported in the area there are Crambe crambe
(Schmidt, 1862), Phorbas sp., Chondrilla nucula Schmidt,
1862, Sarcotragus spp., Ircinia spp., and Cliona spp.
(Guidetti et al. 2003).

Sampling design and collection of data

Data were collected at three depths (3 m, 5 m, and 7 m) along
two belt transects (50 m long) in each of the two study sites.
Within each transect, 10 photo-quadrats (0.25 m2, a few me-
ters apart) were taken at random using a Nikon AW130 cam-
era. The Image-J software package was used to estimate the
percentage cover of all sessile species present. Samples of
sponges were collected for taxonomic identification and fixed
in 80% ethanol. Skeleton and spicule preparations were made
using standard methods (Rützler 1978). The taxonomic iden-
tification was based on Systema Porifera (Hooper and Van
Soest 2002), Fauna d’Italia (Pansini et al. 2011), and the
World Porifera Database (WPD) (Van Soest et al. 2019).

Due to the indistinguishable external morphology of some
specimens, it was necessary to combine some species into
operational taxonomic units (OTUs), such as ‘black massive
sponges’ (BMS), which included Spongia officinalis,
Sarcotragus spinosulus, and Ircinia variabilis; the ‘encrusting
red sponges’ morphological group (ERS) counted Crambe

crambe, Phorbas fictitius (Bowerbank, 1866), Clathria
(Microciona) sp., Hymeniacidon perlevis (Montagu, 1814),
and Hemimycale columella (Bowerbank, 1874). OTUs as
morphospecies are known to be generally effective for the
identification of patterns of distribution of benthic inverte-
brates (Brind’Amour et al. 2014), marine sponges in particular
(De Voogd and Cleary 2008; Schlacher et al. 2010; Downey
et al. 2018), at the same time avoiding the need for destructive
sampling in concerned habitats.

Statistical analysis

Permutat ional mul t ivar ia te analys is of var iance
(PERMANOVA, Anderson 2001) based on Bray-Curtis un-
transformed dissimilarities was used to examine differences in
assemblage structure among depths and transects, separately
for each site. The analysis was based on a two-way model
including the crossed factors ‘Depth’ (fixed, three levels:
3 m, 5 m, 7 m) and ‘Transect’ (random with two levels), with
the ten photo-quadrats sampled in each transect providing the
replicates. When relevant, paired t tests were done for post-
hoc comparisons of significant multivariate differences be-
tween depths.

Multivariate patterns of ‘average’ assemblages in each
combination of transect and depth, separately for each site,
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were visualised by non-metric multidimensional scaling
(nMDS) based on Bray-Curtis untransformed dissimilarities.
The SIMPER procedure (Clarke 1993) was used to quantify
the absolute (δi) and the percent (δi %) contribution of each
taxon to the total dissimilarity between depths, using a cut-off
of 90% of cumulative dissimilarity for excluding low
contributions.

Data on the percentage cover of each sessile taxon identi-
fied as relevant by SIMPER were analysed with analysis of
variance (ANOVA) based on the same model as that used for
PERMANOVA. When relevant, the ‘Depth x Transect’ term
was eliminated from the linear model to test for the effect of
‘Depth’, according to Winer et al. (1991) and Underwood
(1997). Before each ANOVA, the assumption of homogeneity
of variances was checked with Cochran’s C test. Log transfor-
mation of the data was performed when necessary. When het-
erogeneity of variances could not be removed by transforma-
tion, untransformed data were analysed and non-significant
results (at p > 0.05) were considered robust as the probability

of Type II error is not affected by heterogeneity of variances
(Underwood 1997). The Student-Newman-Keuls test was
used for post-hoc comparisons between depths, when
relevant.

Results

Assemblage description

The benthic assemblages at both sites were characterised by a
large abundance of sponges and ephemeral algae (see
Appendix 1). Site 1 had the highest abundance of sponges
over the barren substrate, with a mean cover ranging from
11% to 33% and maximum values in some quadrats up to
85%. In site 2, the abundance of sponges was slightly lower,
with mean cover of 3–30%, although patches with a high
sponge density (up to 78%) were found. The taxonomic sur-
vey resulted in the identification of 14 sponge taxa, 12

Table 1 Summary of the
taxonomic analysis of the sponges
recorded during the study (* red
encrusting sponges; ** black
massive sponges)

Class Subclass Order Species

Demospongiae Heteroscleromorpha Clionaida Cliona schmidtii (Ridley, 1881)

Cliona viridis (Schmidt, 1862)

Poecilosclerida Crambe crambe (Schmidt, 1862) *

Hemimycale columella (Bowerbank, 1874) *

Phorbas fictitius (Bowerbank, 1866) *

Clathria (Microciona) sp. Schmidt, 1862 *

Suberitida Hymeniacidon perlevis (Montagu, 1814) *

Verongimorpha Chondrillida Chondrilla nucula Schmidt, 1862

Chondrosida Chondrosia reniformis Nardo, 1847

Verongiida Aplysina aerophoba (Nardo, 1833)

Keratosa Dictyoceratida Ircinia variabilis (Schmidt, 1862) **

Ircinia sp. Nardo, 1833 **

Sarcotragus spinosulus Schmidt, 1862 **

Spongia officinalis Linnaeus, 1759 **

Fig. 2 Photographs of the benthic
assemblages. a General view of
the sponge ground at site 1 Santa
Caterina, transect 2 at 5 m of
depth; b close-up of some of the
most abundant species found in
this study, such as cn Chondrilla
nucula, ss Sarcotragus spinosulus
and aa Aplysina aerophoba

7 Page 4 of 12 Mar. Biodivers. (2020) 50: 7



identified at the species level and 2 at the genus level
(Table 1). The most abundant sponge species was C. nucula,
which accounted for 26–96% and 0–76% of the total sponge
cover in site 1 and site 2, respectively. The second most abun-
dant sponge taxon was the BMS, which reached cover values
of 0.04–3.9% and 0–5.9% in site 1 and site 2, respectively. At
site 1, none of the other sponge species exceeded 1% of cover,
while at site 2 a considerable cover contribution was provided
by Aplysina aerophoba (mean cover: 0.02–3.9%), Cliona
viridis (mean cover: 0.09–2.0%), and Ircinia variabilis (mean
cover: 0–1.3%).

Among algae, the most abundant were the filamentous turf-
forming green algae (hereafter indicated just as turf), with a
mean cover of 5–76%, followed by Padina pavonica (0.2–
44%) and Amphiroa sp. (0.02–10%). A considerable propor-
tion of the substrate, however, was characterised by bare rock
(2–58%). Sea urchins did not generally exceed 10 individuals/
m2. The only exception was transect 2 of site 1 at 3 m depth,
where the abundance of urchins reached 19 individuals/m2

(see Appendix 3). It is worth noting that sponges and algae
appeared patchily and inversely distributed: areas with high
coverage of sponges alternated with areas characterised by
relatively more abundant algae (Fig. 2).

Multivariate structure of assemblages

At both sites, the structure of sponge assemblages (combining
both the identity and the relative abundance of constituent
taxa) varied depending on the combination of depths and tran-
sects (Table 2). At site 1 (Santa Caterina), assemblages

differed between 3 and 7 m depth in transect 2 and between
5 and 7 m depth in both transects. At site 2 (Porto Cesareo),
they differed between 3 and 5 m depth in transect 1, between 3
and 7 m depth in both transects, and between 5 and 7 m depth
in transect 2. No significant differences were found in all other
combinations of depths and transects (Table 2). These multi-
variate patterns were graphically evident in terms of both a
spatial separation and a different dispersion of centroids cor-
responding to the different combination of levels of the exam-
ined factors in the nMDS plots (Fig. 3a, b).

Abundance of individual taxa

Overall, five sessile taxa were identified as contributing most
to differences between depths at each site. These included the
sponges C. nucula and BMS, the brown alga P. pavonica,
algal turf, and the calcareous red alga Amphiroa sp. (see
Appendix 2).

At Santa Caterina (site 1), in particular, the abundance of
both C. nucula and P. pavonica did not vary among depths,
although the first species was heterogeneously distributed be-
tween transects independently of depth (Table 3 and
Fig. 4a, b). Both P. pavonica and turf were affected by the
combination of depths and transects (Table 3), although with
contrasting patterns. Along transect 1, P. pavonica was com-
parably abundant at all depths, while along transect 2, it pro-
gressively decreased with the reduction of depth (Fig. 4c). The
cover of turf, instead, was larger at 7 m than at 5 m depth along
transect 1, and larger at 3 m compared with 7 m depth along
transect 2, with the third examined depth being inconsistently

Table 2 Permutational
multivariate analysis of variance
(PERMANOVA) and pairwise
tests comparing shallow subtidal
sponge-dominated assemblages
among three depths (3 m, 5 m,
and 7 m) in each of two transects
from two sites along the Apulian
coast. Significant effects are indi-
cated in italics

Source of variation df MS pseudo-F p

Site 1

Depth = De 2 2285.1 1.69 0.129

Transect = Tr 1 35,281.0 26.05 0.001

De × Tr 2 8939.3 6.60 0.001

Residual 54 1354.5

Pairwise tests for De × Tr: Transect 1 Transect 2

3 m = 5 m (t = 1.45, p = 0.072) 3 m = 5 m (t = 1.44, p = 0.071)

3 m = 7 m (t = 1.28, p = 0.188) 3 m ≠ 7 m (t = 3.17, p = 0.002)

5 m ≠ 7 m (t = 1.75, p = 0.021) 5 m ≠ 7 m (t = 2.32, p = 0.020)

Site 2

Depth = De 2 12,213.0 6.99 0.001

Transect = Tr 1 5324.0 3.05 0.028

De × Tr 2 5073.6 2.90 0.007

Residual 54 1746.8

Pairwise tests for De × Tr: Transect 1 Transect 2

3 m ≠ 5 m (t = 2.02, p = 0.005) 3 m = 5 m (t = 1.81, p = 0.052)

3 m ≠ 7 m (t = 2.88, p = 0.001) 3 m ≠ 7 m (t = 2.63, p = 0.001)

5 m = 7 m (t = 0.94, p = 0.425) 5 m ≠ 7 m (t = 2.89, p = 0.002)
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ranked between the other two in both transects (Fig. 4d).
Finally, a main effect of ‘Depth’ was detected for Amphiroa
sp., which showed consistently larger abundance at 5 m com-
pared with 3 m and 7 m depth. This result should be
interpreted with caution due to a significant violation of the
assumption of homogeneity of variances (Table 3). The
graphs, however, confirmed that the pattern was not critically
biased by heteroscedasticity (Fig. 4e).

At Porto Cesareo (site 2), almost all relevant sessile taxa
(Chondrilla nucula, BMS, turf, and Amphiroa sp.) varied in-
teractively with depths and transects, with the only exception
beingP. pavonica that did not show any significant differences
between depths or transects (Table 4 and Fig. 5a–e).
Specifically, C. nucula was more abundant at 3 m than at
5 m and 7 m depth along transect 1, while it did not vary with
depth along transect 2 (Fig. 5a). The BMS were similarly
abundant across depths in transect 1, while the cover of this
taxon was larger at 5 m compared with the two other sampled
depths along transect 2 (Fig. 5b). Comparable abundance
among depths was shown by turf and Amphiroa sp. along
transect 1 and transect 2, respectively. Along transect 2, the
cover of turf was larger at 5 m compared with 7 m depth (with
no alternative hypothesis for 3 m depth: Fig. 5d), while
Amphiroa sp. was more abundant at 3 m compared with both
the other depths (Fig. 5e).

Discussion

This study represents the first taxonomic and quantitative
characterisation of a shallow-water light-exposed sponge
ground in the Mediterranean Sea. The faunal lists available
for the western coast of the Salento Peninsula indicate that
the structure of the present sponge ground matches to a large
degree the typical species composition of Mediterranean
rocky subtidal and barren habitats (Corriero et al. 1984;
Parenzan 1984; Corriero et al. 2004; Costa et al. 2018;
Longo et al. 2018).

The distinctiveness of the present assemblages is represent-
ed by the spatial dominance of sponges that were observed to
occupy up to 85% of the substratum, with a mean percentage
cover up to 33% along 50 m transects. This abundance is very
unusual for the Mediterranean Sea, where shallow and rela-
tively sheltered rocky shores are commonly dominated by
macroalgae (Pérès and Picard 1964; McQuaid and Branch
1985; Kraufvelin et al. 2010). At both study sites, sponge
aggregations were grouped between 3 and 7 m depth and were
mainly constituted byC. nucula and “blackmassive sponges”.

The dominant sponge species within the examined assem-
blages, however, was C. nucula. This photophilous species
hosts photosynthetic cyanobacteria and contains toxic chemi-
cal compounds that make it a strong competitor for space,
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without reported predators in the Mediterranean Sea (Vicente
1990; Arillo et al. 1993; Milanese et al. 2003). In general,
C. nucula was patchily distributed on the seafloor. This
sponge, however, had a similar distribution across depths
and transects at site 1, while it was relatively more abundant
at 3 m depth at site 2, but only along transect 2. These results
agree with previously reported evidence that composition of
sponge assemblages is shaped by factors acting at small scales
(Bell 2007). Wave exposure is another factor that can affect
the composition of benthic communities (Sebens 1991). In
Santa Caterina (site 1), in particular, transect 2 was located
northward of transect 1. Here, transect 2 showed a larger abun-

dance of both the seasonal alga P. pavonica and the BMS
compared to transect 1. This pattern could be driven by the
effect of the prevalent coastal winds that, in the Salento
Peninsula, blow from north-east (Mangia et al. 2004), poten-
tially making the two transects subject to different hydrody-
namic and sedimentation regimes. Such environmental factors
are known drivers of variation of benthic assemblages in gen-
eral (Rosenberg 1995; Guichard and Bourget 1998; Airoldi
2003), and sponge assemblages in particular (Sebens 1991;
Bell and Barnes 2000).

In tropical areas, the occurrence of shallow-water sponge
grounds has been mainly associated with environmental deg-

Fig. 4 Mean (+ SE, n = 10) abundance of individual taxa, illustrating
differences between depths and transects at site 1. Different letters
above bars represent means differing significantly at p < 0.05 (SNK

tests). Only comparisons within each transect are appropriate in c and d.
Note that different graphs are on different scales

Table 3 Results of analysis of variance (ANOVA) on the abundance (percentage cover) of single taxa from shallow subtidal assemblages from site 1
along the Apulian coast

Source of variation df Chondrilla nucula Black massive sponges Padina pavonica Turf Amphiroa sp.

MS F MS F MS F MS F MS F

Depth 2 134.5 0.19 37.86 5.45 6.55 0.44 1316.1 0.25 19.33 3.79*a

Transect 1 1920.4 4.54* 22.18 2.56 5.94 3.63 20,214.7 32.73*** 5.07 0.99

Depth × Transect 2 709.5 1.68 6.95 0.80 14.92 9.11*** 5332.1 8.63*** 3.30 0.65

Residual 54 423.1 8.66 1.64 617.6 5.10

Cochran’s test C = 0.279 C= 0.557** C= 0.328 C = 0.297 C = 0.715**

Transformation None None Ln(x + 1) None None

a Tested over the Residual MS after elimination of the Depth × Transect term that was not significant with p > 0.25

*p < 0.05; **p < 0.01; ***p < 0.001



radation and coral decline due to extreme thermal events and
other anthropogenic impacts (Bell and Smith 2004; Kelmo
et al. 2013; Maldonado et al. 2017).In the Caribbean Sea, for
instance, a species of Chondrilla rapidly increased in abun-
dance and became dominant in the reef after thermal anoma-
lies due to the 1998 El Niño event that had caused severe
bleaching and mass mortality of corals (Aronson et al.
2002). Chondrilla remained the dominant component on the
substratum for 10 years, until 2009 when an earthquake killed
almost all the organisms in the area (Norström et al. 2009;
Aronson et al. 2012).

The domination of C. nucula in the present Apulian study
system is consistent with such observations, although in a
different environmental and biological context. To the best
of our knowledge, no historical quantitative data are available
for the area examined in our study. According to the earliest

naturalistic studies made in the area, however, the shallow
rocky reefs were reported to be characterized by photophilous
macroalgae (Solazzi 1967 and 1968; Parenzan 1973 and
1983). More recently, the whole Salento Peninsula was affect-
ed by the heavily destructive date-mussel fishery that originat-
ed persistent barren habitats (Russo and Cicogna 1991; Fanelli
et al. 1994; Guidetti et al. 2003; Bonaviri et al. 2011; Guidetti
2011). Our area of study was found to be one of the most
heavily damaged (Fanelli et al. 1994). Under such circum-
stances, it is plausible that sponges took advantage of the
increased availability of free space. Indeed, the sea urchins
Arbacia lixula and Paracentrotus lividus are common at the
study sites and are known to feed intensely on algae and other
invertebrates such as bryozoans, hydrozoans, barnacles, and
polychaetes (Privitera et al. 2008; Wangensteen et al. 2011).
Sponges are known to compete for the substrate with other

Table 4 Results of analysis of variance (ANOVA) on the abundance (percentage cover) of single taxa from shallow subtidal assemblages from site 2
along the Apulian coast

Source of variation df Chondrilla nucula Black massive sponges Padina pavonica Turf Amphiroa sp.

MS F MS F MS F MS F MS F

Depth 2 20.99 5.05 1.76 0.55 7158.8 4.52 939.8 0.29 138.66 0.91

Transect 1 3.65 2.47 4.43 8.12** 2200.6 3.92 235.1 0.25 23.44 2.86

Depth × Transect 2 4.16 2.82* 3.19 5.85** 1584.0 2.82 3256.6 3.42* 152.44 18.61***

Residual 54 1.48 0.55 562.1 951.9 8.19

Cochran’s test C = 0.334 C= 0.362 C= 0.410 C = 0.272 C = 0.358

Transformation Ln(x + 1) Ln(x + 1) None None None

*p < 0.05; **p < 0.01; ***p < 0.001
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Fig. 5 Mean (+ SE, n = 10) abundance of individual taxa, illustrating
differences between depths and transects at site 2. Different letters
above bars represent means differing significantly at p < 0.05 (SNK

tests). Only comparisons within each transect are appropriate in a, b, d,
and e. Note that different graphs are on different scales



sessile organisms (Dayton et al. 1974; Jackson and Buss
1975). However, especially on moderately exposed rocky
shores of temperate seas, macroalgae are among the strongest
space occupiers (Palumbi 1985; Davis et al. 1997; Cebrian
and Uriz 2006; Baldacconi and Corriero 2009; Cárdenas
et al. 2016). Therefore, it is likely that their anthropogenic
removal could trigger the dominance by sponges.

Furthermore, a comparison with data from 2002, shortly
after the ban of the L. lithophaga fishery, seems to indicate a
reduction of sea urchins and of the percentage cover of bare
substrate. At La Strea, Porto Cesareo (close to transect 1 at site
2), between 5 and 7 m depth, an average of ~ 20 sea urchins
per m2 was reported in 2002 (Guidetti et al. 2003). Fifteen
years later, we found an average of just two urchins per m2.
This reduction may be associated with the reduction in the
percentage of bare substrate, which changed from 90 to 95%
in 2002 (Guidetti et al. 2003) to 11–14% in 2017. Such drastic
ecological changemay explain the large occurrence of ephem-
eral and seasonal algae, typical of impacted and urbanized
environments, in the assemblage described here (Hay 1981;
Piazzi et al. 1999; Benedetti-Cecchi et al. 2001; Bulleri et al.
2002).

In addition to biological interactions, ocean warming asso-
ciated with global change could have provided a further con-
tribution to the establishment of the examined sponge ground.
Thermal anomalies have already led to mass mortality events
and species shifts in the Mediterranean Sea and worldwide
(Coma et al. 2009; Hoegh-Guldberg and Bruno 2010;
Rivetti et al. 2014). Recent studies indicate that certain sponge
species are less sensitive to ocean warming and acidification
compared with many other benthic organisms (Bell et al.
2013). Therefore, they could benefit from environmental con-
ditions related to global change compared with other organ-
isms (Bell et al. 2018b). This type of evidence is available also
for the eastern Mediterranean Sea (Bianchi et al. 2014).
Furthermore, Bertolino et al. (2017a, b) suggest that, on a
millennial time-scale, seawater warming coincides with
changes in sponge assemblage composition and an overall
increase of sponge richness.

Therefore, there are reasons to believe that the assemblages
reported in this study would represent not just an isolated and
temporary phenomenon, but also an important early-warning
indicator of a future scenario in temperate shallow subtidal
environments similarly to impacted coral reef systems (Bell
et al. 2018a). However, manipulative experiments are neces-
sary to unambiguously test for the previously discussed
models and hypotheses. These must be specifically designed
to unravel the causal role of biotic and abiotic factors and their
possible interactions that allow the formation and the plausible
persistence of these shallow-water sponge grounds. In conclu-
sion, information from studies such as the present one, possi-
bly expanded to larger spatial and temporal scales (Dayton
et al. 2016), is essential to guarantee that effective measures

include a representative sample of target organisms, of their
natural variability, and of the responsible factors even if not
yet fully known (Benedetti-Cecchi et al. 2003).
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