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Abstract

Mapping the distribution of genetic diversity of species over their geographic range is crucial from a conservation
perspective. We investigated nesting populations of an iconic and endangered species, Chelonia mydas, the green sea
turtle, in French Polynesia. Sequences of the mtDNA control region of 97 specimens were analyzed using Bayesian
phylogeny reconstruction, Bayesian dating, and skyline plots. Samples from French Polynesia belonged to four of the
nine recognized Indo-Pacific lineages, with two lineages (III and IV) recognized as widespread and two other lineages (V
and VI) geographically restricted to the South Pacific. More than half of the specimens belonged to the geographically
restricted lineages, and suggested the existence of two South Pacific refugia during glacial periods, a western one (rep-
resented by lineage V) and an eastern one (represented by lineage VI), herein revealed from French Polynesia. Expansions
of populations were recovered in most of the lineages and were all dated after the Last Glacial Maximum, similarly to the
Atlantic populations of C. mydas. Finally, as the likely existence of a glacial refugium near French Polynesia matches a
previously published predicted refugium under future climatic conditions, this makes the area particularly promising for
the conservation of green sea turtle populations.
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Introduction

Understanding the effects of past climate changes on
biodiversity is of the utmost importance in evolutionary
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and conservation biology (Pauls et al. 2013). A histori-
cal perspective on the contemporary distribution of ge-
netic diversity is indeed necessary as modern conserva-
tion policies must include the conservation of evolution-
ary processes (Crandall et al. 2000; Moritz 2002) and
the areas holding these processes, coined evolutionary
hotspots (Vandergast et al. 2008; Hoareau et al. 2013).
In this regard, past glacial refugia are particularly im-
portant as they usually hold great and/or unique genetic
diversity (Hewitt 2004) and shelter therefore a species’
adaptive potential. However, in the northern hemisphere,
past refugium areas were recently highlighted as the
zones most likely to be at risk under future climate
conditions (Pauls et al. 2013; Pfenninger et al. 2012;
Razgour et al. 2013). It is thus critical to retrace the
evolutionary history of species in a spatial context in
order to identify endemic lineages and pinpoint past
refugium areas. Tracking historical changes in
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distribution and abundances enables us to better predict
future changes (Fordham et al. 2014).

However, even for iconic and endangered species, such
as the green sea turtle, Chelonia mydas, our knowledge on
genetic distribution and past demographic changes is far
from complete. Exemplifying our incomplete knowledge
of marine biodiversity, an endemic lineage was only re-
cently recovered from the Ogasawara Islands in the north-
western Pacific (Hamabata et al. 2014). This lineage adds
up to the eight other mitochondrial lineages reported from
the Indo-Pacific region and the two from the Atlantic
Ocean (Bowen et al. 1992; Dethmers et al. 2006; Bowen
and Karl 2007; Dutton et al. 2014; Jensen et al. 2019).
These Indo-Pacific lineages show contrasting distribu-
tions, some being widespread (e.g., lineage VIII (formerly
clade I) in the Indian Ocean and West Pacific and lineage
IIT (formerly clade V) in the Central and West Pacific) and
some more geographically restricted (lineage V (formerly
clade II) and lineage VI (formerly clade III) to the South
Pacific and lineage VII (formerly clade 1V) to the Ryukyu
Archipelago and Ogasawara Islands). These contrasting
patterns can be explained by the fact that C. mydas shows
a strong female homing behavior (Bowen et al. 1992) but
long-distance migration events have also been reported
(Balazs et al. 1995; Luschi et al. 1996; Lohman et al.
1999; Scott et al. 2014).

Regarding past demographic changes, the Atlantic popula-
tions of Chelonia mydas were recently confirmed to have
experienced expansions in the southern and the northern mi-
tochondrial lineages likely following the Last Glacial
Maximum (Naro-Maciel et al. 2014). It is particularly impor-
tant to better understand the effects of past climatic changes as
the influence of climate is strong on resources, breeding suc-
cess, and sex-ratio for marine sea turtles. Indeed, the green sea
turtle populations from the Great Barrier Reef have undergone
feminization for the past two decades, stronger in the warmer
northern sites (Jensen et al. 2018). Additionally, both
Hamabata et al. (2014) and Naro-Maciel et al. (2014) point
towards the existence of distinct glacial refugia and
independent evolution of the lineages, which has important
implications for conservation strategy. Reid et al. (2019) re-
cently showed that most lineages of marine turtles underwent
population expansions after the Last Glacial Maximum.
Similarly, the latest review on phylogeographic patterns of
green sea turtles suggests a strong influence of past climatic
events, and the survival in multiple glacial refugia during the
last glaciations (Jensen et al. 2019).

However, some areas of the species range, such as French
Polynesia, have not been thoroughly investigated so far and
authors acknowledge the fact that the region is still under-
sampled and needs further investigation (Seminoff et al.
2015; Jensen et al. 2019). Dutton et al. (2014) showed that
their nine specimens from Mopelia Island, French Polynesia,
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belonged to the rare lineage VI. Jensen et al. (2019) also re-
ported on the southern part of the Central Pacific (American
Samoa and French Polynesia) as an area of high nucleotide
diversity, warranting further investigation. The populations of
green sea turtles of French Polynesia, together with that of
American Samoa, belong to a distinct population segment
(DSP), the Central South Pacific (Seminoff et al. 2015).
However, even with limited sampling, there is evidence of
spatial structuring between Samoan and French Polynesian
green turtle populations (Seminoff et el. 2015). Nevertheless,
long-distance migrations between the breeding sites of French
Polynesia and the foraging grounds around Fiji and Samoa
have been reported on multiple occasions (Balazs et al.
1995; Touron et al. 2018).

Regarding population size, no overall review exists on the
number of nesters per island in French Polynesia. Early esti-
mations suggested a total population of 1000 females in
French Polynesia (Groombridge & Luxmoore 1989). A recent
report on Tetiaroa Island indicates 96 distinct females for the
nesting season 2017-2018 and an estimation of 120130 adult
females for Tetiaroa and its islets (Touron et al. 2018). At
Scilly Atoll, during the 1970s, 1980s, and 1990s, observations
suggested that 300 to 400 females occurred there annually
(Lebeau 1985; Balazs et al. 1995). Therefore, the population
of French Polynesia is not as large as in other parts of the
species range (e.g., Great Barrier Reef), somewhat spatially
disconnected, and urgently needs further investigation.

Here, we surveyed the genetic diversity of green sea turtle
nesting populations in French Polynesia in order to (i) deter-
mine what genetic lineages are present here and thus enabling
a better understanding of the global distribution of genetic
diversity in this iconic species and (ii) retrace past demograph-
ic changes, and verify if their timing matches past climatic
fluctuations and the expansion of the Atlantic populations of
Chelonia mydas.

Materials and methods

Sampling, DNA extraction, and mtDNA control region
amplification

Tissue samples were collected from nesting populations of
Chelonia mydas in French Polynesia (Moorea, Scilly, and
Tetiaroa Islands), from both nesting females and hatchlings.
Sampling was realized in accordance with relevant guidelines
and regulations by Direction de I’Environnement de Polynesie
Francaise, and all experimental protocols were approved by
the Haut Commissariat de la République en Polynesie
Francaise (export permit number FR1298700118-E). DNA
was extracted from tissue using the QIAxtractor robot
(Qiagen, Hilden, Germany). A portion of the mitochondrial
control region (850 bp) was amplified for 176 specimens
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using the primers H950 and LCM 15382 and cycling parame-
ters as described in Abreu-Grobois et al. (2006). These spec-
imens are part of a broader study using microsatellite markers
to investigate the occurrence of multi-paternity in green sea
turtle nests in French Polynesia (unpublished). The mtDNA
control region dataset was compared with the microsatellite
dataset and paternity results (320 specimens) to keep only one
representative of maternal lineage per nest (i.e., removing sib-
lings of the mitochondrial dataset to avoid overrepresentation
of some haplotypes), resulting in 97 mtDNA control region
sequences used in the subsequent analyses (Online Resources
1). To place the population of French Polynesia in the broader
Indo-Pacific context, we analyzed these 97 sequences together
with long sequences (i.e., approx. 800 bp) of Chelonia mydas
from the Indo-Pacific and the Atlantic available in GenBank,
mostly from Dutton et al. (2014), Hamabata et al. (2014), and
Jensen et al. (2016) (see Fig. 1 for GenBank Accession
numbers).

Phylogeny and demography reconstructions

Sequences were aligned using MAFFT online (Katoh et al.
2002). MrAIC (Nylander 2004) was used to determine the
best-fit model of nucleotide substitutions. Neighbor joining
and maximum likelihood reconstructions were performed
using Mega v.5.05 (Tamura et al. 2011), with a bootstrapping
procedure. The software BEAST v1.8 (Drummond et al. 2012)
was used to perform Bayesian phylogenetic reconstructions.
Bayes factors were used to choose between 3 clock models
(strict, lognormal relaxed, exponential relaxed) and two tree
models (coalescent constant size and exponential growth).
Following Formia et al. (2006) and Naro-Maciel et al.
(2014), a mean mutation rate of 1.75 x 10™® substitutions/
site/year was used to estimate the “Time to the most recent
common ancestor” (TMRCA) of each lineage and of the spe-
cies. A total of 107 generations was run, recorded every 100th
generation. TRACER v1.5 (Rambaut et al. 2014) was used to
ensure sufficient samples were recorded (i.e., ESS >200) and
to obtain parameter estimates. TREEANNOTATOR was used to
summarize the information from 10,000 trees. Furthermore,
the Bayesian Skyline Plot framework available in BEAST was
used to reconstruct past demographic changes of the different
lineages separately. Similar to the previous step, 107 genera-
tions were performed, recorded every 100th generation, using
the same mutation rate. TRACER v1.5 was used to compute the
Bayesian Skyline Plots. The X-axis indicates the time in years
while the Y-axis indicates the relative female effective popu-
lation size (NeT, with T = generation time).

Nuclear data

Additionally, the 97 specimens were also analyzed at 12 mi-
crosatellite markers. Microsatellite markers, as well as

amplification and cycling parameters, were from Dutton and
Frey (2009) and Fitzsimmons et al. (1995). Principal coordi-
nates analyses and estimation of population differentiation
indices were performed in GenAlex v6.502 (Peakall and
Smouse, 2012) to verify if grouping of samples occurred ac-
cording to the mitochondrial lineages they belong to or ac-
cording to their geographic origin.

Results
Lineages present in French Polynesia

The sequences of 97 Chelonia mydas individuals collected
from French Polynesia corresponded to nine haplotypes
(Online Resources 1). They belong to four of the nine lineages
known from the Indo-Pacific region (Fig. 1). Noticeably, 50 of
the 97 sequences belong to lineage VI, while one sequence
belongs to lineage V, 44 sequences belong to lineage I1I, and
two sequences belong to lineage IV. So far, lincage VI was
only recovered from seven individuals from the Great Barrier
Reef, 20 from New Caledonia, nine from Mopelia (French
Polynesia), four from American Samoa, one from the
Marshalls, and one from Palau at breeding sites (Fig. 2), while
another 38 specimens from foraging grounds of eastern
Australia also belong to this lineage. While the sequences
belonging to lineage IV, V, and lineage VI correspond to
known haplotypes (CmP186.1, CmP65.1, and CmP56.1, see
Online Resources 1), two of the six haplotypes of lineage 111
represent new haplotypes (see Online Resources 1; GenBank
accession numbers: MH893824-MH&893825).

Bayesian dating and Bayesian skyline reconstructions

The TMRCA of all lineages belonging to C. mydas was esti-
mated at about 4 My (Fig. 1). TMRCAs of each lineage ranged
between 0.54 and 0.71 My. The Bayesian Skyline Plot analy-
ses revealed an expansion of populations for all Indo-Pacific
lineages except lineage VI (Fig. 3). The expansion events
were all estimated to have occurred after the LGM (about
10,000-15,000 years ago).

Nuclear data

The 97 specimens from lineages III, IV, V, and VI analyzed at
the 12 microsatellite loci form a homogeneous group on the
PCoA with no clustering of specimens according to their lin-
eage (see Online Resources 2: Fig. S1a). Similarly, when con-
sidering the three islands analyzed, Moorea, Scilly, and
Tetiaroa, specimens cluster together on the PCoA and do not
show genetic segregation (see Online Resources 2: Fig. S1b).
The Fgt values were all low and all but one non-significant,
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Fig. 1 Maximum likelihood
phylogenetic reconstruction of
Chelonia mydas mtDNA control
region haplotypes. Numbers
above branches are “Time to the
most recent common ancestor”
(TMRCAs) in million years and
their 95% highest posterior
probabilities from the Bayesian
reconstruction. Numbers below
branches are bootstrap values for
the neighbor joining
reconstruction/bootstrap values
for the maximum likelihood
reconstruction/posterior probabil-
ities of the Bayesian reconstruc-
tion. The nine haplotypes recov-
ered from French Polynesia spec-
imens are indicated in blue
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Fig. 2 Frequencies of observed lineages of Chelonia mydas in French
Polynesia from this study (Scilly, Moorea, and Tetiaroa). Frequencies of
lineages in breeding sites of other regions are compiled from Dethmers
et al. (2006), Dutton et al. (2014), Hamabata et al. (2014), and Jensen
et al. (2016). Numbers in pie charts indicate the number of specimens

suggesting important gene flow between islands and lineages
(see Online Resources 2).

Discussion

Current geographic distribution of mitochondrial
lineages

Combining our data with other data available for Chelonia
mydas from the Indo-Pacific region (Figs. 1 and 2) confirmed
three common and widespread lineages (II1, IV, and VIII), and
three rare and geographically restricted lineages (V, VI, VII).
Lineage VIII, common, and occurring from the eastern coast
of Africa to the western Pacific, was confirmed absent from
French Polynesia. Lineage VII, so far endemic to the north-
western Pacific (Hamabata et al. 2014), was also absent from
French Polynesia. Lineage III, widespread from the eastern
coast of Africa to the south-central Pacific, was present in
our dataset. Roughly half of our sequences belonged to this
widespread lineage, with two new haplotypes. Two specimens

sequenced. Numbers along the map frame indicate longitude and latitude
coordinates. Map generated with QGIS Lyon (version 2.12.3) a Free and
Open Source Geographic Information System, available at http:/www.
qgis.org/fr/

belonged to lineage IV, a lineage present in the Southwest
Pacific and the Southwest Indian Ocean, thus now expanding
the range of this lineage to southern part of the Central Pacific.
Specimens from lineage V were mainly derived from
Australasian populations (Dethmers et al. 2006; Dutton et al.
2014). This lineage range is now extended to French
Polynesia as one of the adult specimens analyzed here belongs
to this lineage and suggests long-distance migration between
the two regions. Long-distance migrations between west and
central Pacific islands were already reported from tagged
C. mydas individuals (Balazs et al. 1995; Touron et al.
2018). Lineage VI is rare and mostly restricted to the
South Pacific, with most of the specimens sampled in
French Polynesia and New Caledonia. Interestingly, more
than half of our sequences belong to this rare linecage and
French Polynesia could thus represent the center of the
range for this lineage. Similarly to green sea turtles, the
hawksbill turtle, Eretmochelys imbricata, shows five
Indo-Pacific lineages with contrasting distribution patterns
that demonstrate the complex evolutionary history of these
species linked to paleoclimate changes in the region
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Fig. 3 Bayesian skyline plots reconstructed from all Chelonia mydas
mtDNA control region sequences belonging to the Indo-Pacific lineages
LI to LVIIIL. The X-axis indicates the time in years; the Y-axis indicates
the female effective population size (NeT, with T = generation time). The

(Vargas et al. 2016). More recently, both Reid et al. (2019)
and Jensen et al. (2019) emphasized the complex evolution-
ary history of sea turtles linked to paleoclimates and their
survival in multiple refugia.

Past demographic changes
Signs of population expansions were detected in all lineages

except lineage VI. These demographic events were all estimat-
ed between 10,000 and 15,000 years ago, after the Last
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vertical dotted lines indicate the lower 95% highest posterior density of
the root height (i.e., time to the most recent common ancestor of each
lineage)

Glacial Maximum (LGM, Fig. 3). This is in accordance with
populations of C. mydas from the Atlantic where the expan-
sions of the southern and northern linecages were also both
dated after the LGM at about 20,000 years ago (Naro-Maciel
et al. 2014). Similarly, many marine organisms showed an
expansion of their populations after the LGM, when condi-
tions became more suitable and habitats were newly available
(Provan and Bennett 2008; Boissin et al. 2016). In particular,
hawksbill and leatherback turtles also showed expansion of
their populations dated after the LGM (Molfetti et al. 2013;



Mar Biodiv (2019) 49:2725-2733

2731

Vargas et al. 2016). This is also in accordance with a recent
review on population co-expansions of most sea turtle line-
ages, dated after the LGM (Reid et al. 2019). In contrast,
lineage VI did not show a signature of expansion. It is not
clear if this lack of signature comes from this lineage having
a constant population size over time or if it is from the fewer
number of specimens recorded from this rare lineage so far
(Dethmers et al. 2006; Jensen et al. 2016). Small sample sizes
are known to affect demographic reconstructions (Grant
2015). However, the shape of the network for this lineage is
not star-like as the other lineages and this lineage might have a
more complex evolutionary history (Jensen et al. 2019: Fig.
3). Overall, these signals of expansion of populations and the
occurrence of distinct mitochondrial lineages highlight the
sensitivity of green turtles to climate fluctuations (Reid et al.
2019; Jensen et al. 2019).

Past refugium areas, adaptive potential,
and conservation units

Endemic or geographically restricted lineages are particularly
interesting as they should point towards the areas of former
refuges (Avise 2000). A northern refuge was recently sug-
gested for the endemic lineage VII of Ogasawara Islands,
Japan (Hamabata et al. 2014). In our study, French Polynesia
was shown to shelter four lineages of green sea turtles. The
presence of the geographically restricted lineages V and VI,
mainly found in the South Pacific Ocean, points towards the
putative existence of refugium areas. Found primarily in the
South West Pacific, lincage V might have evolved from a
western South Pacific glacial refugium, near New Caledonia
and northeastern Australia where a glacial refugium area was
already suggested for several species (Worheide et al. 2002;
Lukoschek et al. 2007; Tillett et al. 2012). Furthermore, with
many specimens of our study belonging to lineage VI, a glacial
refugium seems also likely in the south-central Pacific, possi-
bly near French Polynesia. Even if this lineage is present in
eastern Australia, it is minor over the thousand green sea turtles
sampled (Dethmers et al. 2006; Jensen et al. 2016). However,
private haplotypes belonging to this lineage and restricted so
far to the south west Pacific exist (see Jensen et al. 2019). The
structure of this lineage seems to be complex, and this linecage
could have survived in several localities of the south and cen-
tral west Pacific. Specimens of this lineage present in Australia
and New Caledonia could represent a relict population.
Alternatively, specimens from the Southwest Pacific could
have colonized French Polynesia, where only two haplotypes
have been recorded so far. Studies of an increasing number of
specimens from this lineage might help understand better its
complex evolutionary history. Nevertheless, Polynesia was al-
ready suggested as a likely glacial refuge during the LGM for a
goby fish (Hoareau et al. 2012). Additionally, Jensen et al.
(2019) recorded a high nucleotide diversity in the south-

central Pacific (American Samoa and French Polynesia) and
pinpointed the region as a likely past refugium area for green
sea turtles. Overall, these results suggest that the two green sea
turtle populations from French Polynesia and eastern Australia
each have a unique evolutionary history, resulting from distinct
glacial refugia. These evolutionary significant units match the
regional management units defined for green sea turtles in the
South Pacific region (Wallace et al. 2010, Seminoff et al. 2015;
Jensen et al. 2019), and thus, the long-term and short-term
conservation needs (Moritz 1994) coincide in this region for
C. mydas. This distinctiveness due to an independent genetic
history could provide promising adaptive potential under fu-
ture climatic conditions, particularly given that the mitochon-
drial genome codes for important enzymes of metabolic path-
ways (such as cytochrome oxidases and ATPases). Duchene
etal. (2012), studying complete mitogenomes, revealed differ-
ences between the Atlantic and Indo-Pacific lineages of
C. mydas, whose effects on adaptive potential remain un-
known so far. Finally, it is particularly interesting to note that
French Polynesia is projected to serve as a refuge under future
climatic conditions (van Hooidonk et al. 2013; Freeman 2015).
Regarding sea turtles, a refuge under future warm conditions
would likely lower the impact on habitat availability (availabil-
ity of beaches to lay eggs) and will possibly limit feminization
of populations linked to warming. Areas that align with past
glacial refugia and those predicted to serve as refugia under
future climatic conditions should be a priority for conservation,
as they have the potential to maximize the preservation of
genetic diversity and unique genetic lincages.

Conclusions

Four of the nine Indo-Pacific lineages were recovered from
these French Polynesian specimens. This study extends the
range of lineage V and confirms the absence of lineage VIII
in the South-Central Pacific. As half of our sequences be-
long mainly to a rare lineage (VI), this could suggest that
French Polynesia was a former glacial refugium for green
sea turtles. Past climatic change effects can be seen on most
of the lineages that show signs of population expansion
dated after the Last Glacial Maximum, similar to the
Atlantic populations of C. mydas. This study confirms the
unique evolutionary trajectory of French Polynesian and
eastern Australian populations of green sea turtles. Finally,
French Polynesia seems a key conservation area for
C. mydas; given that it was likely a past glacial refugium,
it is predicted to be a refugium under future warm conditions
and that four of the nine Indo-Pacific lineages of C. mydas
occur there.
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