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Characterization of fungal biodiversity and communities associated
with the reef macroalga Sargassum ilicifolium reveals fungal
community differentiation according to geographic locality
and algal structure
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Abstract
Marine environments abound with opportunities to discover new species of fungi even in relatively well-studied ecosystems such
as coral reefs. Here, we investigated the fungal communities associated with the canopy forming macroalga Sargassum
ilicifolium (Turner) C. Argardh (1820) in Singapore. We collected eight S. ilicifolium thalli from each of eight island locations
and separated them into three structures—leaves, holdfast and vesicles. Amplicon sequencing of the fungal internal transcribed
spacer 1 (ITS1) and subsequent analyses revealed weak but significant differences in fungal community composition from
different structures. Fungal communities were also significantly different among sampling localities, even over relatively small
spatial scales (≤ 12 km). Unsurprisingly, all structures from all localities were dominated by unclassified fungi. Our findings
demonstrate the potential of marine environments to act as reservoirs of undocumented biodiversity that harbour many novel
fungal taxa. These unclassified fungi highlight the need to look beyond terrestrial ecosystems in well-studied regions of the
world, and to fully characterize fungal biodiversity in hotspots such as Southeast Asia for better understanding the roles they play
in promoting and maintaining life on our planet.
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Introduction

Fungi are ubiquitous in almost all habitats on Earth. They have
been documented in mesophotic coral ecosystems, deep-sea
hydrothermal vents, arid, high altitude deserts and the cold

Arctic and Antarctic (Robinson 2001; Burgaud et al. 2014;
Gonçalves et al. 2016; Wainwright et al. 2017). Despite their
ability to persist in many distinct habitats, our knowledge of
their diversity is limited (Blackwell 2011; Richards et al.
2012; Peay 2016), especially in marine environments
(Wainwright et al. 2017; Deshmukh et al. 2018). It is estimat-
ed that 93% of all fungal species remain unnamed and are
waiting to be discovered (Nature Ecology and Evolution
2018), with conservative estimates of up to 10,000 unknown
marine taxa (Amend et al. 2019a).

Fungi afford humans many benefits, from yeasts used in
bread production, drugs that have medical applications (i.e.
penicillin and lovastatin used to reduce cholesterol levels), to
endophytic fungi that can break down polyurethane which is
common in household wastes (Russell et al. 2011). Most of
these discoveries have been made in terrestrial environments,
and the unexplored marine environment represents a potential
treasure trove of beneficial fungi. Research is showing that
marine environments likely contain a high diversity of puta-
tively novel taxa waiting to be explored (Ishino et al. 2016;
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Comeau et al. 2016; Picard 2017). Despite their oft-beneficial
roles, fungi can also be harmful and have been implicated in
the recent extinction of many species (Moree et al. 2014).
Numerous fungal diseases have been identified which are det-
rimental to humans (e.g. fungal pneumonia), bats (e.g. white-
nose syndrome) and amphibians (chytridiomycosis). Notably,
pathogens are becoming more prevalent in marine environ-
ments (Weldon et al. 2004; Kim 2016). In particular, the fun-
gus Aspergillus sydowii (Bainier & Sartory, 1926), black band
disease and white plague type II have been implicated in coral
mortality throughout the Caribbean and Atlantic (Rützler and
Santavy 1983; Nugues et al. 2004; Moree et al. 2014).

Sargassum (Phaeophyceae), a large canopy-forming brown
macroalga, is found throughout temperate and tropical seas. In
the Caribbean, Sargassum beaching is becoming a frequent
and increasingly problematic issue; several massive
Sargassum beaching events since 2011 have negatively im-
pacted local environments, fisheries and tourism (Wang and
Hu 2016a, 2016b). Similar events have taken place in West
Africa and northern Brazil (Oyesiku and Egunyomi 2015;
Széchy et al. 2012). While no mass Sargassum beaching
events have been observed in Singapore, Sargassum is abun-
dant (Low 2015, Low et al. 2019; Yip et al. 2018) and is
considered an important competitor for space in shallow hab-
itats. Singapore’s high marine biodiversity (Low and Chou
1994; Huang et al. 2009) and location at the periphery of the
hyperdiverse Coral Triangle (Allen and Werner 2000; Hughes
et al. 2002) mean that fungal diversity could also be corre-
spondingly high (Wainwright et al. 2018).

Sargassum shows distinct annual growth patterns in
Singapore and dominates many reef flats where it comes into
frequent contact with corals (Leong et al. 2018; Low et al.
2019). Macroalgae can damage corals through a variety of
direct and indirect mechanisms, including abrasion, reduction
of light, smothering or allelopathy (McCook 2001; Jompa and
McCook 2003; Morrow et al. 2011; Rasher et al. 2011; Haas
et al. 2011). Pratte et al. (2017) showed that coral-macroalgae
interactions can alter the coral microbiome, which plays an
important role in the health of corals and is sensitive to various
other stresses (Ainsworth et al. 2010; Hernandez-Agreda et al.
2018). Any changes in the coral microbiome induced by con-
tact with Sargassum are unlikely to be beneficial, in part be-
cause algae are reservoirs of pathogens harmful to corals
(Nugues et al. 2004; Egan et al. 2013).

On account of the various roles different algal structures
(e.g. holdfast, vesicles and leaf-like laminae, which we
refer to as leaves here) play in maintaining and promoting
growth, we hypothesise that each structure will contain a
different fungal community. For example, the grazing-
resistant holdfast (Loffler et al. 2018) is not involved in
nutrient uptake but functions to anchor and maintain con-
tact with the substrate. The leaves, which are frequently
observed with bi te marks (Low 2015) , perform

photosynthesis, while gas-filled vesicles provide buoyan-
cy. Considering the many vital roles fungi play within their
hosts, differences in function of each structure may select
for different fungal communities. In this study, as part of
efforts to characterize and compare microbial communities
on coral reefs, we investigated fungal diversity associated
with Sargassum ilicifolium (Turner) C. Argardh (1820), the
most abundant and widespread Sargassum species found in
the waters of Singapore (Low 2015; Yip et al. 2018).

Materials and methods

Eight entire Sargassum ilicifolium thalli were collected from
each of eight sampling locations over 2 days in January 2018
(Fig. 1). All sampling sites are essentially homogeneous in
terms of physical characteristics with comparable water qual-
ity throughout the year (Gin et al. 2000; Tun 2012; Chou et al.
2019; Tanzil et al. 2019). Individual thalli were separated into
leaves, holdfast and vesicles. All tissues were surface steril-
ized by immersion in 1% NaClO for 2 min, 70% EtOH for
2 min and rinsed twice in sterile, DNA-free autoclaved water
for 5 min. Tissues were disrupted in an Omni Bead Ruptor 24
(Omni International, Kennesaw, GA, USA) at 8 m/s for 2 min.

DNA was extracted with a Qiagen DNeasy Powersoil kit
following the manufacturer’s instructions. Because the mass
of host DNAwill be several orders of magnitude greater than
that of fungal template, DNA concentration was not quanti-
fied. Fungal DNA amplification of the internal transcribed
spacer 1 (ITS1) region was performed using the ITS1F
(CTT GGT CAT TTA GAG GAA GTA A; Gardes and
Bruns 1993) and ITS2 (GCT GCG TTC TTC ATC GAT
GC; White et al. 1990) primers, which were modified to in-
clude Illumina adaptors, a linker and a unique barcode (see
Smith and Peay 2014 for details of custom sequencing
primers). Each reaction was performed in a total volume of
25 μl, containing 9 μl of template, with final concentrations of
0.25 U of KAPA 3G Enzyme (Kapa Biosystems, Inc.,
Wilmington, MA, USA), 0.3 μM of each primer, 1.5 mg/mL
of BSA and KAPA Plant PCR Buffer. PCR cycling protocol
was 95 °C for 3 min, followed by 35 cycles of 95 °C for 20 s,
53 °C for 15 s, 72 °C for 20 s with a final extension at 72 °C
for 60 s. Negative PCR controls and DNA extraction blanks
were included to detect potential contamination. PCR prod-
ucts were visualized on a 1% TBE buffer agarose gel, then
normalized and cleaned using SequalPrep™ normalization
plates (Invitrogen, Frederick, MD, USA). Purified PCR prod-
ucts were submitted for sequencing on the Illumina MiSeq
platform (600 cycles, V3 chemistry, 300 bp paired-end reads)
with a 15% PhiX spike at the Genome Institute of Singapore
(GIS).

Raw reads were processed with ITSx (Bengtsson-Palme
et al. 2013) (version 1.1b1) to remove adaptors and extract
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the ITS1 region. Quality scores were reassigned using the
original fastq files and a custom R script. Due to the lower
quality of reverse reads, only forward reads were used for all
subsequent steps and analyses; discarding low-quality reverse
reads is a common strategy that frequently gives better results
than assembled reads (Pauvert et al. 2019). Forward reads
were filtered based on quality scores and trimmed using the
DADA2 package version 1.9.0 (Callahan et al. 2016) in R
version 3.4.1. Reads were filtered to remove those with a
max EE of 2, and subsequently truncated at the end of ‘a good
quality sequence’ with the parameter truncQ = 2 (see
benjjneb.github.io/dada2/ for detailed explanation of filtering
parameters).

The DADA2 algorithm was then used to estimate error
rates from all filtered reads and infer exact sequence variants
(ESVs). Chimeras were removed with de novo detection.
Sequenced negative controls were used to identify possible
contaminants using the decontam R package (Davis et al.
2017). A total of 196 reads were detected in our negative
controls. Of these, 182 reads were of one sequence. BLAST
results indicated that this sequence was Aspergillus
penicillioides. This was identified by decontam as a potential
contaminant and removed from the ESV table. Remaining
ESVs were assigned taxonomy with the RDP classifier algo-
rithm (Cole et al. 2007) against a training set based on the
UNITE curated fungal amplicon database. Initial taxonomic
assignments made using only the UNITE database returned
greater than 90% fungal assignments. To increase confidence
in our taxonomic assignments, we supplemented UNITE with
appropriate outgroups, including 20,061metazoan and 46,431
archaeplastid ITS1 sequences taken from the NCBI nt data-
base. The inclusion of these outgroups resulted in the

assignment of approximately 40% of reads to groups other
than fungi, underscoring the importance of including appro-
priate outgroups when assigning taxonomy based on ITS
amplicons. This approach ensured that the majority of non-
fungal taxa were purged, eliminating their inclusion in all
downstream analyses. Our complete taxonomic training set,
including outgroups, is available online (https://github.com/
gzahn/Sargassum_Fungi). ESVs not unambiguously
assigned to fungi, those present as only singletons or
doubletons, and sequences < 100 bp were removed.

Raw sequence counts were then converted to relative abun-
dance (Gloor et al. 2017). Non-metric multi-dimensional scal-
ing (nMDS) was performed on the Bray-Curtis dissimilarity
matrix of samples using the phyloseq R package version
1.25.2 (McMurdie and Holmes 2013). A permutational mul-
tivariate analysis of variance (PERMANOVA) was performed
on the ESV table with ‘location’ and ‘structure’ as predictors
using the adonis function of the vegan R package version 2.5-
2 (Okansen et al. 2016). Heatmaps were generated with R and
Venn diagrams were built using the VennDiagram R package
(Chen 2018).

All sequences associated with this work have been depos-
ited at the National Center for Biotechnology Information
under BioProject ID: PRJNA504438. All code, taxonomy da-
tabases, figures and output relating to this work can be found
at https://github.com/gzahn/Sargassum_Fungi.

Results

Sequencing of the fungal ITS1 region generated 5,356,697
reads. Following filtering and quality control, 1,115 ESVs

Fig. 1 Map showing sampling
locations in Singapore
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belonging to Fungi were retained for downstream analysis.
The ITS1 sequences of fungal communities associated with
S. ilicifolium revealed many fungal taxa that have yet to be
discovered or named prior to this work. Dependent upon lo-
cation, between 40 and 75% of the recovered taxa could not be
assigned to a class (Fig. 2).

Non-metric multi-dimensional scaling (nMDS) showed no
apparent structuring of fungal communities among sites, or
between different anatomical structures (SI Fig. 3).
However, PERMANOVA revealed weak but significant dif-
ferences (P < 0.05) in community composition among loca-
tions and different structures (SI Table 1).

We were unable to assign the majority of the ESVs associ-
ated with S. ilicifolium to a class, but of those that could be
assigned, Eurotiomycetes was the most abundant. The major-
ity of the remaining ESVs were assigned to Agaricomycetes,
Lecanoromycetes and Sordariomycetes (Fig. 2).

Four fungal orders, Eurotiales , Hypocreales,
Lecanorales and Pleosporales, were frequently found
throughout all surveyed structures, while several fungal
orders appeared to be confined to certain structures. For
example, Teloschistales appeared marginally less abun-
dant in leaves compared to the holdfast and vesicles,
while Capnodiales was most prevalent in the leaves
and vesicles, suggesting structural specificity regarding
fungal community composition (Fig. 3). Furthermore, of
the 1,115 ESVs identified as belonging to Fungi, 88
were found shared throughout all structures, 61 were
shared between the holdfast and leaves and 24 were
shared between the vesicles and both the holdfast and
leaves (Fig. 4). The holdfast contained the highest num-
ber of unique (not shared) ESVs at 535, followed by
leaves at 218, while vesicles contained the fewest non-
shared ESVs at 165.

Aspergillaceae is the most common fungal family encoun-
tered at all islands and correspondingly we encounter the ge-
nus Aspergillus (see SI Figs. 4 and 5 for details of fungal
family and genus assignments).

Discussion

Congruent with other work describing fungal biodiversity in
remote and understudied locations (Archer et al. 2018), we
have been unable to assign taxonomy to the vast majority of
sequences in this study. This demonstrates that marine envi-
ronments are likely reservoirs of yet-unknown fungi that
should be considered when estimating global fungal diversity.
At the very least, this inability to assign taxonomy represents a
limitation of our most comprehensive databases to date. This
is not entirely unexpected for marine fungi, given that most
fungal research has focused on terrestrial environments, and
thus fungi from other environments are likely underrepresent-
ed in current databases. Further examination of marine fungi
will likely lead to the discovery of numerous new species.

The vast majority of hosts recruit their microbiome constit-
uents from the surrounding environment. This is thought to
promote and increase adaptation to local environments
(Amend et al. 2019b). Work is now showing that microbial
community structure can be observed at small scales. For ex-
ample, differences in fungal community can be seen on either
side ofWallace’s line (Wainwright et al. 2018), and even with-
in 200 m (Galand et al. 2009; Agogué et al. 2011). These
small-scale patterns and the observation that the majority of
hosts recruit their microbes from the local environment could
be responsible for the significant differences we observe in
fungal communities from different localities.

Fig. 2 Bar plot showing relative
abundance of fungal classes at
each sampling location in
Singapore
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Fungal community composition also differs significantly
between different structures. Given the distinct functions that
each sampled part plays, this is not entirely unexpected. These
differences could be responsible for the resistance to herbivory
that holdfasts show in comparison to leaves that are frequently
seen with numerous bite marks. Fungi play an active role in
preventing herbivory in many plants (Mortensen 2013; García
Parisi et al. 2014; Tanentzap et al. 2014), and though the
current study has not investigated this, it is possible that fungi
found in the holdfast secrete products that render it

unpalatable to grazers, especially since the holdfast is known
to be grazing resistant (Loffler et al. 2018). Kohlmeyer (1971)
found a fungal pathogen associated with Sargassum from the
Sargasso Sea that exclusively infects vesicles, and once infec-
tion develops, the vesicles are shed. Here, we have not iden-
tified Lindra thalassiae, the fungal pathogen responsible for
the shedding of vesicles, but do observe similar fungal asso-
ciations specific to certain structures that may help to drive
fungal community differences among them. We also observe
certain fungal orders preferentially associating with particular
structures. For example, Capnodiales is found in the leaves
and vesicles but is rare in the holdfast, while Teloschistales
is found more commonly in the holdfast and vesicles relative
to the leaves (Fig. 3). In support, each structure contains fun-
gal ESVs that are unique and not shared between structures
(Fig. 4).

Numerous terrestrial studies have shown that microbial
communities differ strongly between plant part, and those
communities can be further delineated into above- and below-
ground components (Ottesen et al. 2013; Junker and Keller
2015; Amend et al. 2019b). Our work in the marine environ-
ment shows that while various structures do have significantly
different fungal communities, the relationship is weak and the
different structures do not show the same abrupt differences in
community structure seen in terrestrial plants. In terrestrial
environments, it is probable that the majority of fungi associ-
ated with roots and other belowground structures recruit from
the soil, whereas the atmosphere is likely to be a more impor-
tant fungal reservoir for aboveground structures such as

Fig. 3 Heatmap of order-level
taxa distributed in each structure
Deeper red indicates higher
abundance

Fig. 4 Venn diagram showing the number of ESVs unique to each
sampled part and shared between parts
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leaves. Sargassum has neither belowground parts nor special-
ized structures for nutrient uptake, and is completely
surrounded by an essentially homogeneous aqueous environ-
ment. Consequently, we see less specialization of fungal com-
munities in different algal parts.

Eurotiomycetes is the most common fungal class associat-
ed with S. ilicifolium in Singapore. This is the same fungal
class that is most abundant in the seagrass Syringodium
isoetifolium collected from Indonesia (Wainwright et al.
2018), and members of this class have also been found in
Sargassum spp. collected elsewhere in Southeast Asia
(Kawaroe et al. 2015). In addition to the Eurotiomycetes, we
also find the fungal classes Dothideomycetes and
Agaricomycetes at all localities and in all structures. These
classes are frequently observed in marine environments
(Gnavi et al. 2014; Rédou et al. 2015), a possible consequence
of their adaptations to the marine realm, including spores that
have long appendages to promote buoyancy as well as facili-
tate entrapment and adherence to marine substrates
(Prasannarai and Sridhar 2001; Vijaykrishna et al. 2006).

Eurotiomycetes contains the genus Aspergillus, and mem-
bers of this genus are known to cause aspergillosis.
Aspergillus is frequently observed in our samples and also
tends to be more abundant in comparison to other genera.
Aspergillus sydowii has been identified as the pathogen re-
sponsible for the mass mortality of sea fans (Gorgonia spp.)
throughout the Caribbean where up to 90%mortality has been
reported (Alker et al. 2001). Although we have found
Aspergillus in our samples, the short length of the ITS1 frag-
ment used in this work prevents us from conclusively delin-
eating species within this genus. Further work taking advan-
tage of long-read DNA sequencing technology would allow
the use of longer and more informative markers for improved
taxonomic resolution, and consequently more precise species
identifications (Tedersoo et al. 2018). This is particularly use-
ful for identification of marine pathogens that would have
implications for effectively managing marine systems, espe-
cially those associated with macroalgae (Egan et al. 2013). For
example, if A. sydowii or other emerging fungal pathogens are
identified, it may be possible to design and implement effec-
tive conservationmeasures tomitigate and even prevent future
disease outbreaks (Gleason et al. 2017). The resources re-
quired to perform this type of monitoring are becoming more
readily available and accessible to all, meaning that this ap-
proach to pathogen detection is feasible.

Marine habitats abound with plentiful opportunities to dis-
cover novel fungi that may have applications for advancing
human health and improving our standard of living
(Balabanova et al. 2018). Research such as that performed
here, and especially in diverse regions of the world, offers
exceptional opportunities to advance our understanding of
fungal diversity and ecology. By examining the fungal diver-
sity associated with S. ilicifolium in the waters of Singapore,

we improve our estimates and understanding of Earth’s biodi-
versity, particularly for the lesser-known yet biologically di-
verse coral reef habitats of Southeast Asia.
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