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Abstract
Okenia polycerelloides (Ortea & Bouchet, 1983) is a small goniodoridid nudibranch originally described from the Canary
Islands. Its taxonomic history has been problematic since its original description, a situation that worsened after this taxon was
synonymizedwithOkenia zoobotryon (Smallwood, 1910), one of the most problematicOkeniaMenke, 1830 species. Because of
their external similarity, it has been difficult to determine the differences between the two taxa without a meticulous anatomical
study. Thus, we present herein the first complete anatomical study of O. polycerelloides, based on specimens from the type
locality and from Brazil (the latter previously identified as O. zoobotryon). A topotype of O. zoobotryon was also analyzed.
Additionally, we also performed a preliminary molecular analysis on these species. Okenia polycerelloides can be distinguished
externally from O. zoobotryon by the absence of integumentary spicules and the presence of a posterodorsal papilla, and
internally by characteristics of the digestive (shape of the salivary glands, length of the typhlosole) and reproductive systems
(diameter and length of the penial sac; cilia on the penis; and shapes of the seminal receptacle, bursa copulatrix, and ampulla).
Molecular analysis revealed a high genetic divergence in both COI and H3 genes betweenO. polycerelloides andO. zoobotryon,
which support both species as distinct. Therefore, we present a redescription and propose to restore the species status of
O. polycerelloides, and consider the records of O. zoobotryon in the South Atlantic Ocean as attributable to
O. polycerelloides, until new evidence may suggest otherwise.
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Introduction

Okenia polycerelloides (Ortea & Bouchet, 1983) was first
described in 1983 as Bermudella polycerelloides from
Tenerife, Canary Islands (Ortea and Bouchet 1983). Until
then, Bermudella Odhner, 1941 was monospecific, with

Bermudella zoobotryon (Smallwood, 1910) as the type spe-
cies (originally Polycerella zoobotryon Smallwood, 1910)
(Odhner 1941), with which B. polycerelloides would be later
synonymized (Rudman 2004). The histories of these two spe-
cies are mixed and confused, making it impossible to refer to
one without referring to the other.

Okenia polycerelloideswas originally attributed to the genus
Bermudella by mistake, since the species has a radular formula
of 1.1.0.1.1 (see Ortea and Bouchet 1983), characteristic of the
genus Okenia Menke, 1830 (see Leuckart 1828; Menke 1830;
Vayssière 1901); whereas in Bermudella, the formula is
3.1.0.1.3 (see Smallwood 1912; Odhner 1941). Similarly,
Clark (1984) noted that the type species of Bermudella
(P. zoobotryon) also has a radular formula of 1.1.0.1.1, instead
of 3.1.0.1.3 as described by Smallwood (1910), and consequent-
ly, Clark proposed a new combination for the type species and
synonymized the genera Bermudella and Okenia. Even after
this, Ortea et al. (2009), referring to nudibranchs from the
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Canary Islands, considered the type species of Bermudella as
Okenia zoobotryon (Smallwood, 1910), but still maintaining
B. polycerelloides. Rudman (2004) recorded O. zoobotryon
from Australia, considering B. polycerelloides as a synonym,
without further remarks. Rudman (2006) briefly discussed this
decision, suggesting that the synonym was established based
only on analysis of the original descriptions of both species.
Since then, the synonymy has been accepted by several authors,
andmany photographs of specimens identified asO. zoobotryon
from different locations across the world have been published
(e.g., Poddubetskaia 2004; Redfern 2004; Grune 2005; Valdés
et al. 2006; García et al. 2008). However, not a single specimen
ofO. polycerelloideswas analyzed byRudman (2004), and until
now, except by the radula described by Ortea and Bouchet
(1983), no information was available about its internal anatomy.

The original description of O. polycerelloides provides on-
ly drawings and was based on external morphology and rad-
ular features (Ortea and Bouchet 1983). Similarly, despite the
anatomical description by Smallwood (1912), the anatomy of
the reproductive system of O. zoobotryon remained unknown
until its recent redescription (see Pola 2015).

We present the first complete anatomical study of
O. polycerelloides, based on specimens from the type locality
(Canary Islands) and from Brazil (previously reported as
O. zoobotryon). Comparing external and internal anatomical fea-
tures, and molecular data, we discuss the systematic and nomen-
clatural status ofO. polycerelloides and O. zoobotryon, conclud-
ing that both are valid species and that their world distributions
need to be reviewed in light of the new data herein provided.

Material and methods

Morphological study

Most specimens were collected by the authors and collaborators
at several locations along the Brazilian coast, mainly in the state
of São Paulo, but also from Bahia and Santa Catarina states.
Material referred to O. polycerelloides and previously identified
as O. zoobotryon from the Malacological Collection of the
Museu de Zoologia da Universidade de São Paulo (MZSP), the
type material of O. polycerelloides from the Muséum national
d’Histoire naturelle (MNHN), a specimen from the type locality
(Tenerife, Canary Islands), and a topotype of O. zoobotryon lent
by the Department of Invertebrate Zoology and Geology at the
California Academy of Sciences (CASIZ 18106, Bermuda
Island, Hamilton Parish, VI/2009) were also examined. Several
individuals of O. polycerelloides were examined and
photographed alive, as were some of the spawn and one juvenile.
The animals were anesthetized with a mixture of isotonic mag-
nesium chloride solution and menthol dissolved in seawater.
Specimens were fixed in 70% ethanol or 10% formalin in

seawater; all of them were preserved in 70% ethanol and depos-
ited in the MZSP.

The description of external morphology is based on living
and preserved specimens. Internal morphologywas studied by
means of standard dissection techniques (see Cunha and
Simone 2019), and the drawings were done under a stereomi-
croscope fitted with a camera lucida. The radula, jaw, and
penis were analyzed by scanning electron microscopy
(SEM), following the methods of Alvim and Pimenta (2016).

Molecular study

Taxon sampling

Molecular sampling included three specimens of
O. polycerelloides from Brazil (São Paulo state) and one spec-
imen from Canary Island. Sequences of others eight Okenia
species were retrieved from GenBank, and the genera Triopha
Bergh, 1880, Tyrannodoris Willan & Chang, 2017, and
Ancula Lovén, 1846 composed the outgroups for the phylo-
genetic analysis. Voucher information and accession numbers
of all sequences are in Table 1.

DNA extraction, amplification, and sequencing

Total genomic DNAwas extracted using Instagene Matrix Kit
(Biorad). One mitochondrial (cytochrome oxidase I, COI) and
one nuclear gene (histone 3 gene, H3) were sequenced using
the following primers, respectively: dgLCO 5′-GGTC
AACAAATCATAAAGAYATYGG-3′ and dgHCO: (5′-
TAAACTTCAGGGTGACCAAARAAYCA-3′) (Meyer
et a l . 2005) ; H3AD F (5 ′ -ATGGCTCGTACCAA
GCAGCVGC-3′) and H3BD R (5′-ATATCCTTRGGCAT
RATRGTGAC-3′) (Colgan et al. 1998).

Polymerase chain reaction (PCR) amplification was carried
out using a Mastercycler Nexus machine (Eppendorf) in a 25-μl
total volume. Reactions were as follows, 20 mM Tris-HCl (pH
8.4), 50 mM KCl, 1.5 mM of MgCl2, 200 μM of each primer,
and 1.0 unit of TaqDNAPolymerase (Thermo Fisher Scientific).
All amplifications of COI and H3 genes wereperformed using a
PCR program a dNTPs, 0.4 μM of each primer, and 1.0 unit of
Taq DNA Polymerase (Thermo Fisher Scientific). All amplifica-
tions of COI andH3 genes wereperformed using a PCR program
a of each primer, and 1.0 unit of Taq DNA Polymerase (Thermo
Fisher Scientific). All amplifications of COI and H3 genes were
performed using a PCR program according to the following
protocol, 3-min denaturation at 95 °C, 35 subsequent cycles of
94 °C for 30 s, 50–52 °C for 30 s, 72 °C for 1 min, and a final
extension step at 72 °C for 7 min. PCR products were purified
using the Agencourt Ampure XP PCR Purification Kit
(Beckman Coulter) and sequenced using the BigDye terminator
v.3.1 sequencing kit and analyzed on an ABI 3730 capillary
sequencer (Applied Biosystems).
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Sequence alignment and analysis

Chromatographs were checked and consensus sequences were
constructed from the forward and reverse sequences using
CodonCode Aligner (v. 7.0.1, CodonCode Corporation).
Final consensus sequences, together with the additional se-
quences of the Okenia spp. and the outgroups, were aligned
using MUSCLE (Edgar 2004).

To measure the genetic distance between the species, a
distance matrix based on the uncorrected p-distance was
calculated in PAUP (as implemented on CIPRES Science
Gateway, Miller et al. 2010). Phylogenetic relationships
were recovered using a Bayesian Inference (BI), based
on concatenated COI and H3 datasets, as implemented in
MrBayes 3.2.6 (Ronquist and Huelsenbeck 2003), also
available at CIPRES Science Gateway (Miller et al.
2010). The best-fitting models of sequence evolution were
determined based on the Akaike Information Criterion
(AIC) as implemented in jModelTest2 2.1.6 (Darriba
et al. 2012). The Bayesian analysis performed two inde-
pendent runs and four Markov Chain Monte Carlo
(MCMC), starting with a random seed. Each run consisted
of 10,000,000 generations, sampled at every 1000th gen-
eration. Convergence between chains and ESS (effective

sample size) values were checked in Tracer 1.6. (Rambaut
et al. 2018). After discarding the first 25% trees as burn-in,
a 50% majority-rule consensus tree and posterior probabil-
ities (PP) for node support were calculated using the re-
maining trees from both chains and values > 0.95 were
considered strongly supported. Final trees were visualized
and edited with FigTree v.1.4.2 (Rambaut 2007).

Results

Systematics

Order Nudibranchia Cuvier, 1817
Family Goniodorididae H. Adams & A. Adams, 1854
Genus Okenia Menke, 1830
Okenia polycerelloides (Ortea & Bouchet, 1983)
Bermudella polycerelloides Ortea & Bouchet, 1983: 51;

Ortea et al. 1996: 128; Ortea et al. 2009: 79 (pl. 2, fig. B);
Caballer-Gutiérrez et al. 2015: 242 (pl. 4, fig. C).

Okenia zoobotryon: García et al. 2008: 102 (non
Smallwood 1910); Rios 2009: 422 [ in part] (non
Smallwood 1910).

Table 1 Specimens included in the molecular analysis, and their respective voucher numbers and GenBank accession number, with updated species
names

GenBank accession numbers

Species Voucher Number COI H3

Okenia polycerelloides1,a MZSP 143644 MK433585 MK433588

Okenia polycerelloides2,a MZSP 143645 MK433586 MK433589

Okenia polycerelloides3,a MZSP 143646 MK433587 MK433590

Okenia amoenula CASIZ176191 KF192606.1 KF744248.1

Okenia brunneomaculata CASIZ177712 KF744236.1 KF744242.1

Okenia felis Gosliner, 2010 CASIZ174175 KF744237.1 KF744243.1

Okenia harastii MNCN:15.05/46986 KF744238.1 KF744244.1

Okenia pellucida1 MNCN:15.05/46987 KF744239.1 KF744245.1

Okenia pellucida2 CASIZ166767 KF744240.1 KF744246.1

Okenia rosacea CASIZ184340 KF192605.1 KF744249.1

Okenia vena1 MNCN15.05/70408 KY661380.1 KY661383.1

Okenia vena2 MNCN15.05/70409 KY661381.1 KY661384.1

Okenia zoobotryon CASIZ181105 KF744241.1 KF744247.1

Triopha maculata MacFarland, 1905 CASIZ181556 HM162691.1 HM162507.1

Triopha catalinae (Cooper, 1863) CASIZ170648 HM162690.1 HM162506.1

Tyrannodoris ernsti (Pola, Padula, Gosliner & Cervera, 2014a) MZUSP:103252 KJ999211.1 KJ999231.1

Tyrannodoris ricei (Pola, Cervera & Gosliner, 2008) CASIZ173900 HM162688.1 HM162504.1

Ancula gibbosa (Risso, 1818) CASIZ182028 KP340388.1 KP340413.1

Superscript numbers are individual identification numbers
a Sequenced in the present study
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Material examined

Type material

Canary Island, Tenerife, Los Cristianos Beach, no collection
data, MNHN (holotype, MNHN-IM-2000-28179; paratype,
MNHN-IM-2000-28180) (Holotype, Fig. 1a–c).

Additional material

Canary Islands, Tenerife, Los Cristianos, 3 m depth, MZSP
139548, 1 specimen (dissected, 6 mm long when preserved,
23/I/2003). Brazil, São Paulo state: Ubatuba, Marina Kawai,
1–2 m depth, MZSP 139553, 38 specimens (6 dissected, 3–
6 mm long preserved, 21/I/2013); São Sebastião, Araçá Bay,
MZSP 139549, 4 specimens (4 dissected, 3–5 mm long pre-
served, 25/X/2011), MZSP 139550, 6 specimens (2 dissected,
1–2mm long preserved, 20/VII/2012), MZSP 143644, 1 spec-
imen (dissected and sequenced, 5 mm long preserved, L. Sales
coll., 22/VIII/2015), MZSP 143645, 1 specimen (dissected

and sequenced, 6 mm long preserved, V. Queiroz coll., 10/
VIII/2017), MZSP 143646, 1 specimen (dissected and se-
quenced, 4 mm long preserved, V. Queiroz coll., 10/VIII/
2017), Segredo Beach, MZSP 103213, 7 specimens (3–
5 mm long preserved, 17/I/2012), Itaçucê, MZSP 103278,
30 specimens (5 dissected, 1–4 mm long preserved, 20/I/
2012); Ilhabela, Yacht Club of Ilhabela (YCI), 1–2 m depth,
MZSP 139551, 60 specimens (10 dissected, 1–7 mm long
preserved, L. Sales coll., 28/II/2012), MZSP 139552, 5 spec-
imens (4 dissected, 3–5 mm long preserved, L. Sales coll., 16/
I/2013), MZSP 139554, 6 specimens (2 dissected, 2–4 mm
long preserved, 11/IX/2013), MZSP 139555, 4 specimens (6–
8 mm long preserved, 18/IX/2013); Santos, Alemoa Port, 10–
12 m depth, MZSP 32460, 1 specimen (4 mm long preserved,
09/V/2000); São Vicente, Porchat Island, 0.5 m depth, MZSP
109952, 28 specimens (2 dissected, 3–8 mm long preserved,
C. M. Cunha coll., 11/XI/2012), MZSP 109953, 1 specimen
(7 mm long preserved, 11/XI/2012). Santa Catarina state,
Porto Belo, Araçá Beach, MZSP 47262, 11 specimens (1 dis-
sected, 1–4 mm long preserved, 31/I/2005). Bahia state,
Salvador, Ribeira Beach, 1 m depth, MZSP 139556, 20 spec-
imens (1 dissected, 1–3 mm long preserved, 06/XI/2013).

Comparative material examined

Okenia zoobotryon: Bermuda Island, Hamilton Parish, Tom
Moore Pond, 4 m depth, CASIZ 18106, 1 specimen (dissect-
ed, 5 mm long preserved, 12/VI/2009).

Redescription

Diagnosis

Integumentary spicules absent. Single papilla (here termed
Bposterodorsal papilla^) in dorsal midline between gills and
posterior tip of foot. Gill composed of 7–9 bipinnate branchial
leaves, two distal leaves smaller than others. Typhlosole extend-
ing from cecum chamber to about four fifths of intestine total
length. Penis ciliated, about 4 times vagina length, fully covered
by penial sac; extending from its base located lateroventrally on
right side posterior to buccal bulb, to dorsal region, looping
around with several irregular turns and running to right lateral
region. Distal end of penial sac approximately twice width of
remainder of sac. Seminal receptacle and bursa copulatrix oval.

External morphology

Body (Figs. 1a–c, 2a, d, and 3a–c), elongated, up to 8 mm
long (juvenile 1 mm); middle third of body 1.5 times higher
than remainder, forming slight hump (Figs. 1c, 2a, d, and 3c).
Gill (Figs. 2a, d, 3a, c, and 4c: gi) on posterior third of body,
around anus, with 7–9 bipinnate branchial leaves, two
distalmost leaves smaller than others; juvenile with 5

Fig. 1 Okenia polycerelloides (Ortea & Bouchet, 1983), holotype
(MNHN-IM-2000-28179), 8 mm fixed, Los Cristianos Beach, Tenerife,
Canary Islands; a ventral view; b dorsal view; and c right lateral view.
(Images: M. Caballer Gutiérrez)
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bipinnate branchial leaves. Foot (Figs. 1a and 3b–c: ft) wider
than body; metapodium triangular (Fig. 3a, c: mt), occupying
posterior end of body and extending posteriorly about one
fourth of body length, forming tail. Genital pore (Figs. 3c
and 4a: gp) on right side of body, usually below second lateral
papilla. Notum (Fig. 3a–c: no) variable, generally continuous
with width of body, limited by presence of lateral papillae or
with distinct edge surrounded by papillae. Papillae (Figs. 2a, d
and 3a–c) up to 22 in number, cylindrical in shape, base slight-
ly wider than rounded apex, about one fourth–one third length
of rhinophores; anterior papillae (Fig. 3a–c: ap), 2–3 just an-
terior to rhinophores, central papilla usually smaller than
others; lateral papillae (Fig. 3a–c: lp), 9–12 in number, distrib-
uted symmetrically or asymmetrically around notum; one
posterodorsal papilla in dorsal midline between gills and pos-
terior tip of foot (Fig. 3a, c: pdp); dorsal papillae, up to 7
(usually 6–7 in number), located between rhinophores and
gill, most same size as lateral papillae, in a constant position;
number of dorsal papillae varying by the absence of up to 5 in
the general arrangement; when 7 papillae are present, they are
arranged in two triangles with 3 papillae each and 1 anterior to
them, generally smaller than the others, parallel to central
papillae; juvenile (Fig. 2d) with 4 dorsal papillae arranged in
lozenge pattern. Mouth vertical, slit-like (Fig. 3b: mo). Oral

tentacles (Fig. 3a–c) digitiform, smooth, short, approximately
one third of rhinophore length, dorsolateral to mouth.
Rhinophores (Fig. 3a–c: ri) non-retractile, about 1–1.5 times
body width, each rhinophore with 5–9 cup-like lamellae;
rhinophores smooth in juvenile (Fig. 2d).

Color

Body background color (Fig. 2a, b) whitish, translucent; mot-
tled with light- and dark-brown spots and clusters of opaque
white threadlike lines, both irregularly distributed; bluish pig-
mentation present or not; foot surface translucent white. Body
of juvenile (Fig. 2d) predominantly translucent white, with
few brown spots and opaque white clusters. Papillae, gills,
and rhinophores (Fig. 2a) with coloration similar to body,
but with brown spots concentrated on bases and extending
to proximal half of rhinophores and stems of branchial fila-
ments; clusters of opaque white rays more concentrated at
distal end of rhinophores.

Visceral mass

Visceral mass (Fig. 4a–b) with anterior buccal bulb (bb);
circumesophageal nerve ring (nr), posterodorsal to buccal

Fig. 2 Okenia polycerelloides (Ortea & Bouchet, 1983), São Sebastião, Brazil; a living animal; b detail of coloring of the tegument; c spawn on the
bryozoan Amathia verticillata; and d juvenile. Scale bars; a 1 mm, b 500 μm; c 2 mm; and d 250 μm
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Fig. 3 Okenia polycerelloides (Ortea & Bouchet, 1983), external mor-
phology; a dorsal view; b ventral view of the anterior region; and c right
lateral view. Scale bars: 1 mm. ap anterior papillae, dp dorsal papillae, ey

eye, ft foot, gi gill, gp genital pore, lp lateral papillae, mo mouth, mt
metapodium, no notum, pdp posterodorsal papilla, ot oral tentacle, ri
rhinophore

Mar Biodiv (2019) 49:2351–23682356



Fig. 4 Okenia polycerelloides (Ortea & Bouchet, 1983), internal anato-
my; a–b visceral mass; a right lateral view; b ventral view; and c circu-
latory system with gill, dorsal view. Scale bars, 1 mm. aa anterior aorta,
ag albumen gland, am ampulla, an anus, apt posterior aorta, au auricle, bc
bursa copulatrix, blg blood gland, bu, buccal pump, cc cecum chamber,

dg digestive gland, ebr efferent branchial vessel, es esophagus, gi gill, go
gonad, gp genital pore, in intestine, kd kidney, mo mouth, ne nephro-
stome, nr nerve ring, og oral gland, p penis, pc pericardium, pr prostate,
ps penial sac, rp renopericardial duct, sr seminal receptacle, va vagina, vd
vas deferens, ve ventricle, vs venous sinus
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bulb. Reproductive system anterior to and occupying about
one third length of visceral mass, posterior to nervous system;
gonad (go) posterior to reproductive system, fully covering
digestive gland, occupying about two thirds length of visceral
mass; cecum chamber (cc) dorsal to reproductive system and
anterior to pericardium; esophagus (es) partially ventral to
cecum chamber and dorsal to ampulla (am); intestine (in) lo-
cated to right of kidney, dorsal to reproductive system and
gonad; kidney (kd) ventral to pericardium; venous sinus (vs)
to left of anus (an) and posterior to kidney.

Circulatory and excretory systems

Pericardium (Fig. 4a, c: pc) elongate, covering about one
fourth length and one half width of visceral mass, located
between cecum chamber and gill, dorsally to kidney; branchi-
al circle composed of afferent and efferent rings at gill base
(Fig. 4c: ebr). Venous sinus (Fig. 4a: vs) ventrally connected
to afferent ring. Auricle (Fig. 4c: au) located posteriorly in
pericardial cavity; about two times volume of ventricle;
subtriangular, posterior end about three times larger than an-
terior, wall thin and tuberculated. Ventricle (Fig. 4c: ve)
subtriangular, posteriorly connected to auricle and anteriorly
to ventral pericardium wall, giving rise ventrally to aortic
trunk, which bifurcates into anterior and posterior aortas.
Anterior aorta (Fig. 4c: aa) running anteriorly in visceral mass,
to right and dorsolaterally to reproductive system, connecting
to blood gland (blg); blood gland located dorsal to mucus
gland. Posterior aorta (Fig. 4c: apt) running posteriorly in
visceral mass and ventrally to kidney, entering at median point
of digestive gland. Kidney (Fig. 4a: kd) thin-walled, granular,
partly attached to ventroposterior pericardium wall, connected
to it by renopericardial duct (rp) that opens internally in pos-
terior right ventrolateral region of pericardium wall.
Nephrostome (Fig. 4a: ne) small, located close to right side
and on anterolateral edge of anus.

Digestive system

Buccal bulb (Figs. 4a–b and 5a: bb) short, occupying
about 1/11 length of visceral mass. Buccal pump
(Figs. 4a, 5a, c, and 6a: bu) muscular, dorsal, about one
half of buccal bulb. Oral glands (Figs. 4a and 5c: og)
conical, composed of several elongated lobes with free
distal end, surrounding about one half of anterior end of
buccal bulb. Buccal bulb muscles (Fig. 5d): odontophore
protractor muscle (mp) arising on buccal bulb ventral sur-
face, inserting around odontophore; circular muscle (mc)
consisting of peri-buccal sphincter surrounding approxi-
mately anterior one third of buccal bulb; protractor mus-
cles (m1) consisting of several long narrow muscles, aris-
ing on lateral surface of buccal mass, inserting around
mouth; retractor muscles (m2) consisting of pair of wide

muscles, about one half diameter of mouth, same length
as buccal bulb, arising on ventrolateral surface of mouth
and inserting on internal ventrolateral surface of body
wall; superficial muscles of buccal bulb (m3) consisting
of several long narrow interlaced muscles, covering about
two thirds of dorso-posterior surface of radular sac; ven-
tral protractor muscles of buccal bulb (m10) consisting of
pair of muscles, 2 times wider than m2, arising on ventral
surface of mouth, covering ventral surface of buccal mass,
inserting anteroventral to radular sac; retractor muscles of
buccal pump (ms) consisting of pair of short muscles,
about 4 times longer than wide, arising on posteroventral
surface of buccal pump, running ventrally over m3,
inserting on lateral surface of buccal bulb, over mp; in-
trinsic buccal pump muscles (mb) consisting of several
large fibers covering sides of bulbs and connecting its
dorsal and ventral limits. Jaws (Figs. 6a and 7e: jw), a
reduced pair, smooth, located on anteroventral surface of
mouth; size about one third of mouth diameter. Pair of
ventral folds of buccal cavity (Fig. 6a: vf), gradually
appearing in midregion of ventral inner surface of buccal
cavity, running longitudinally toward anterior end, con-
nected to jaws at its lateral edge. Odontophore (Fig. 6a:
od) slightly ellipsoid, occupying about one third of vol-
ume of buccal cavity. Radular sac (Figs. 5a, c and 6a: rn)
elongated, about one half odontophore length. Radula
(Figs. 6a and 7a–c: ra) formula 29–31 × 1.1.0.1.1.; lacking
rachidian teeth; lateral teeth hook-shaped, base elongated,
about 2 times wider than width of cuspid; cuspid long,
about 4 times narrower than base, inner surface concave
with shallow groove, inner edge covered with pectinate
denticulation, about 15–18 long thin denticles, smaller at
ends of row and longer in middle; marginal teeth about
one third length of lateral teeth, base wide, rectangular;
distal end bicuspid, cusps parallel or intersecting at tips,
about one half size of teeth. Esophagus (Figs. 4b, 5a–d,
and 6a: es) cylindrical, about three fourths of intestine
length; two pairs of esophageal folds (Fig. 6a: ef) arising
at upper base of internal opening of buccal pump on right
and left sides. Pair of salivary glands (Fig. 5c, d: sg),
rounded, located on posterior lateral portion of buccal
bulb near point of connection with esophagus, about two
times wider than buccal ganglia. Pair of esophageal
glands (Fig. 5c, d: eg) similar to salivary glands in shape,
each esophageal gland located among salivary gland,
esophagus and buccal ganglion, on both sides of buccal
bulb. Stomach (Fig. 5a: st) connected anteriorly to esophagus
and posteriorly to cecum chamber, ventral to digestive gland
and connected to it by two ducts (dd), one on right side and
one ventral to stomach wall. Cecum chamber (Figs. 4a, b and
5a, b: cc) with internal folds extending from connection with
stomach to beginning of intestine; typhlosole (Fig. 5a, b: tf)
originating from upper part of inner wall and extending
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through intestine to about four fifths of its length. Intestine
(Figs. 4a and 5a, b: in) starting from end of cecum chamber,
similar in diameter to esophagus, ending at anus; anus opening
in center of gill circle.

Reproductive system

Posterior to nerve ring and anterior to digestive gland, occu-
pying about one third length of visceral mass, except for

Fig. 5 Okenia polycerelloides (Ortea & Bouchet, 1983), digestive sys-
tem; a digestive systemwith esophagus and buccal bulb deflected, ventral
view; b cecum chamber opened, dorsal view; c buccal bulb with nerve
ring, left lateral view; and d buccal bulb muscles, left lateral view. Scale
bars; a 1 mm; b–d 500 μm. an anus, bb buccal bulb, bg buccal ganglion,
bu buccal pump, cc cecum chamber, ccb cerebrobuccal connective, ce
cerebral ganglion, cpr pleurovisceral connective, dd digestive gland duct,
eg esophageal glands, es esophagus, ey eye, gf gastric folds, in intestine,
mb intrinsic buccal pump muscles,mc circular muscle of the buccal bulb,

momouth,mp protractor muscle of the odontophore,ms retractor muscles
of the buccal pump, m1 protractor muscles of the buccal bulb, m2 retrac-
tor muscles of the buccal bulb,m3 superficial muscles of the buccal bulb,
m10 ventral protractor muscles of the buccal bulb, nr nerve ring, og oral
gland, pd pedal ganglion, pl pleural ganglion, rin rhinophoral nerve, rn
radular nucleus, sc statocysts, scc connection between stomach and ce-
cum chamber, sg salivary gland, st stomach, tf typhlosole, vg visceral
ganglion

Mar Biodiv (2019) 49:2351–2368 2359



hermaphrodite gonad (Fig. 4a, b). Hermaphrodite gonad
(Fig. 4a, b: go) thin-layered, fully covering digestive gland
like a membrane, occupying about two thirds of visceral mass.
Hermaphrodite duct (Fig. 6b: hd) long and narrow, connected
on right side to dorsolateral anterior edge of gonad, ventrally
to intestine, connecting lateral and subterminal regions of am-
pulla. Ampulla (Figs. 4b and 6b: am) elongate, tubular, over

and between edges of mucus (mg) and albumen (ag) glands;
emitting short duct, about one fifth length of ampulla; duct
bifurcates connecting to anterior end of fertilization chamber
and prostate. Prostate (Figs. 4b and 6b: pr) tubular, ventral to
mucus gland, about two times length of ampulla, median re-
gion turning, running and narrowing at distal end, forming vas
deferens. Vas deferens (Figs. 4a, b and 6b: vd) narrow and

Fig. 6 Okenia polycerelloides (Ortea & Bouchet, 1983); a buccal bulb
opened, half of the buccal pump removed, left lateral view; b reproduc-
tive system; c–d central nervous system (nerve ring); c anterior view; and
d posterior view. Scale bars, 500 μm. ad allosperm duct, ag albumen
gland, am ampulla: bc bursa copulatrix, bg buccal ganglion, bu buccal
pump, cbg buccal commissure, ccb cerebrobuccal connective, ccp
cerebropedal connective, cce cerebral commissure, ce cerebral ganglion,
cp pedal commissure, cpr pleurovisceral connective, ef esophageal folds,

es esophagus, ey eye, fc fertilization chamber, hd hermaphrodite duct, jw
jaw, mg mucus gland, mo mouth, na nidamental opening, od
odontophore, p penis, pd pedal ganglion, pl pleural ganglion, pp
parapedal commissure, pr prostate, ps penial sac, ra radula, rd seminal
receptacle duct, rg rhinophoral ganglion, rin rhinophoral nerve, rn radular
nucleus, sr seminal receptacle, ud uterine duct, va vagina, vd vas deferens,
vf ventral fold, vg visceral ganglion
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long, about three times longer than prostate length, distal end
connecting to base of penial sac. Penis (Figs. 4a and 6b: p)
cylindrical, elongate, ciliated, about four times length of vagi-
na; fully covered by penial sac (ps); extending from its base
lateroventrally on right side, posterior to buccal bulb, to dorsal
region, looping around with irregular turns and running to
right lateral region; opening externally in genital pore, atrium
common to vagina and nidamental opening (Fig. 4a).
Fertilization chamber (Fig. 6b: fc) slightly immersed between

glands and ducts of hermaphrodite system. Uterine duct
(Fig. 6b: ud) arising from fertilization chamber, anterolateral
to ampulla duct insertion, bifurcating into short seminal recep-
tacle duct and allosperm duct. Seminal receptacle duct
(Fig. 6b: rd) about two times wider and shorter than uterine
duct. Allosperm duct (Fig. 6b: ad) about same width as sem-
inal receptacle duct and about three times length of vagina.
Seminal receptacle (Figs. 4a and 6b: sr) and bursa copulatrix
(Figs. 4a, b and 6b: bc) oval, variable in size, depending on

Fig. 7 Okenia polycerelloides (Ortea & Bouchet, 1983), scanning elec-
tron micrographs; a–c radula; a overview; b detail of the lateral tooth; c
detail of the marginal tooth, specimen from Canary Islands (MZSP

139548); d penis (penial sac removed), inset—detail of the penis showing
the cilia, a specimen from Brazil; e jaw (MZSP 139548). Scale bars: a
80 μm; b, e 20 μm; c 9 μm; d 500 μm, inset 5 μm. jw jaw
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amount of sperm inside. Vagina (Figs. 4 and 6b: va) similar in
shape and width to penial sac, about one fourth its length,
located dorsolateral to mucus gland and on side of penial
sac, near genital pore.

Nervous system

Nerve ring (Figs. 4a, b and 5a, c: nr) located posteriorly to
buccal mass, surrounding esophagus and salivary glands
anteriorly. Cerebral (ce) and pleural ganglia (pl) (Figs. 5c
and 6c, d) fused with each other, forming cerebropleural
ganglia, located dorsolateral to esophagus. Cerebral com-
missure (Fig. 6c, d: cce) short, about one third width of
cerebropleural ganglia. Pleurovisceral connectives
(Figs. 5c and 6c, d: cpr) short, left connective as long as
cerebropleural ganglion length, right connective about one
third of cerebropleural ganglion length; both arising on
inner side of and posterior to cerebropleural ganglia.
Visceral ganglion (Figs. 5c and 6d: vg) elongate, ventral
to esophagus, longer than right pleurovisceral connective.
Peda l gangl ia (F igs . 5c and 6c , d : pd) loca ted
ventrolaterally to esophagus and slightly posterior to
cerebropleural ganglia; cerebropedal connectives incon-
spicuous (Fig. 6c: ccp); antero-dorsal side of pedal ganglia
leaning to anteroventral side of cerebropleural ganglia
(Figs. 5c and 6c). Pedal commissure (Fig. 6c, d: cp) locat-
ed ventrally, parallel to esophagus, about three times
wider than and about same length as parapedal commis-
sure (Fig. 6c, d: pp); pedal and parapedal commissures
variable in length, one fourth to one half width of pedal
ganglion. Buccal ganglia (Figs. 5c and 6c–d: bg) located
dorsally to buccal bulb, ventrally to esophagus and
posterolaterally to salivary and esophageal glands; buccal
commissure short (Fig. 6c, d: cbg). Cerebrobuccal con-
nectives (Figs. 5c and 6c, d: ccb) arising on anteroventral
side of cerebropleural ganglion, about two times length of
left pleurovisceral connective, running laterally to esoph-
agus and salivary glands, crossing posterior superficial
muscles of buccal bulb ventrally (Fig. 5d: m3) and
connecting to latero-ventral side of buccal ganglia.
Rhinophoral ganglia (Fig. 6c, d: rg) bulb-shaped, located
on anterolateral edge of cerebral ganglia, giving rise to
rhinophoral nerve. Eyes (Figs. 5c and 6c, d: ey) on sides
of cerebropleural ganglia, closer to cerebropedal connec-
tives. Statocysts (Fig. 5c: sc) dorsal to pedal ganglia, clos-
er to cerebropedal connectives, covered by cerebropleural
ganglia.

Distribution

Although many previous records ofO. zoobotryon seem to be
attributable to O. polycerelloides (see the BDiscussion^ sec-
tion), we were unable to obtain specimens from these

localities. Therefore, we were able to confirm only that the
geographical range of O. polycerelloides includes Brazil
(Bahia, São Paulo, and Santa Catarina states) and the Canary
Islands (type locality). Moreover, the species has been report-
ed for Venezuela (Caballer-Gutiérrez et al. 2015, fig. 4C).

Biological notes

The type material ofO. polycerelloides was reported as found
among algae, hydroids and the bryozoan Amathia vidovici
(Heller, 1867), while the topotype was collected associated
to the bryozoan Amathia verticillata (Delle Chiaje, 1822) (=
Zoobotryon verticillatum), on which there were also attached
egg masses. In Brazil, O. polycerelloides are found living,
feeding, and spawning on colonies of both bryozoan species.
Actually, these bryozoans are sympatric in the area where
most of the collections were carried out (São Sebastião, São
Paulo), their colonies commonly occurring intermingled.
However, since the colonies of A. verticillata are commonly
bigger and more abundant, we generally focused our efforts
on them. The egg masses from the Brazilian specimens and
those that came attached to the bryozoans where the topotype
was collected look exactly the same: cylindrical, variable in
size (4–10 mm), gelatinous, with translucent walls, the eggs
and embryos white and arranged in several rows inside the
spawning (Fig. 2c). The nudibranch feeds by suctioning the
bryozoan zooids, probably by means of the buccal pump pres-
ent in the buccal bulb. During copulation, they exhibit pro-
miscuous behavior, mating several times with different part-
ners. Sperm exchange appears to be reciprocal during copula-
tion. When placed in an aquarium, they spawn continuously
on the glass walls.

Molecular results

The three O. polycerelloides samples from Brazil were effec-
tively amplified and sequenced, but our attempts to amplify
the topotype did not work. We sequenced 636 bp of COI and
328 bp of H3 genes, resulting in a concatenated dataset with
964 bp. Partitioned gene analysis revealed a higher diversity
in COI, which recovered two haplotypes with three segregat-
ing sites (0.47% of intraspecific divergence). For H3, only one
allele was found.

Among all taxa, pairwise sequence divergence in COI
varies from 17.13 to 19.34% and in H3 from 7.92 to 12.19%
(see Table 2). Comparison between O. polycerelloides and
O. zoobotryon revels a genetic distance about 17% for COI
and 10% for H3.

In the phylogenetic analysis, log likelihood ratio tests indi-
cate that GTR + I + G and TPM2uf + G were the best models
for COI and H3 genes, respectively. The Bayesian inference
tree shown in Fig. 8 revealed a highly supported clade that
corresponds to O. polycerelloides species with a PP equal
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1.00. ThisO. polycerelloides clade is included in a major clade
that comprises Okenia pellucida Burn, 1967, Okenia vena
Rudman, 2004 and Okenia brunneomaculata Gosliner,
2004, also well supported (PP = 1.00). This clade is nested

within a polytomy which includes O. zoobotryon, Okenia
harastii Pola, Roldán & Padilla, 2014b, Okenia amoenula
(Bergh, 1907), and Okenia rosacea (MacFarland, 1905)
(O. rosacea is also considered as part of the polytomy as its

Table 2 Pairwise distances among Okenia polycerelloides and other Okenia species, based on uncorrected p-distances, for COI and H3 genes

COI gene H3 gene

O. polycerelloides O. polycerelloides

1 2 3 1 2 3

O. polycerelloides1 – –

O. polycerelloides2 0.0047 – 0.0000 –

O. polycerelloides3 0.0047 0.0000 – 0.0000 0.0000 –

O. zoobotryon 0.1761 0.1745 0.1745 0.1006 0.1006 0.1006

O. harastii 0.1823 0.1855 0.1855 0.0853 0.0853 0.0853

O. vena1 0.1776 0.1776 0.1776 0.0884 0.0884 0.0884

O. vena2 0.1745 0.1745 0.1745 0.0884 0.0884 0.0884

O. rosacea 0.1729 0.1745 0.1745 0.1219 0.1219 0.1219

O. pellucida1 0.1745 0.1729 0.1729 0.0884 0.0884 0.0884

O. pellucida2 0.1776 0.1761 0.1761 0.0853 0.0853 0.0853

O. felis 0.1823 0.1855 0.1855 0.1219 0.1219 0.1219

O. brunneomaculata 0.1713 0.1729 0.1729 0.0792 0.0792 0.0792

O. amoenula 0.1918 0.1934 0.1934 0.0884 0.0884 0.0884

Superscript numbers are individual identification numbers listed in Table 1

Fig. 8 Phylogenetic relationship of Okenia spp. based on Bayesian
analysis of mitochondrial (COI) and nuclear (H3) genes, on a concatenat-
ed dataset. Numbers associated with nodes represent posterior

probabilities from Bayesian MCMC searches conducted in MrBayes.
Scale bar represents percent sequence divergence
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weak support at a sister position tend to collapse it). This
topology clearly demonstrates O. polycerelloides as distinct
species.

Discussion

Okenia polycerelloides was considered a synonym of
O. zoobotryon, after Rudman (2004). Since then, only Ortea
et al. (2009) and Caballer-Gutiérrez et al. (2015) have treated
O. polycerelloides as a distinct species, although they assigned
it to the genus Bermudella. However, the internal structure of
both species remained undescribed until recently, when Pola
(2015) published a redescription of O. zoobotryon, including
data on the internal anatomy and radula. We analyzed a
topotype of O. zoobotryon and found that the reproductive
system is completely in accordance with Pola (2015); the oth-
er systems (circulatory, nervous, and details of the digestive
system), which she did not describe, are similar in both
species.

Although similar in general appearance, there are clear dis-
tinctions between the two species in many external (see Ortea
et al. 2009; present study, Table 3) and internal characters
(Table 3). Externally, two conspicuous differences are appar-
ent: (1) the presence of spicules on the mantle of
O. zoobotryon, while in O. polycerelloides they are complete-
ly absent and (2) the existence of a posterodorsal papilla on the
dorsal midline between the gills and the posterior tip of the
foot in the latter species, which is absent in the former. The
usual number of dorsal papillae is also different, four in
O. zoobotryon and seven in O. polycerelloides. However,
our analysis of a large number of O. polycerelloides

specimens revealed that the number and distribution of these
papillae vary among individuals, although there is a regular
pattern common to most adult specimens. Therefore, the num-
ber and arrangement of the dorsal papillae are not constant as
described for O. zoobotryon (see Smallwood 1910; Pola
2015), and are not a reliable diagnostic character for
O. polycerelloides. In contrast, the posterodorsal papilla was
present and in the same position in all specimens of
O. polycerelloides analyzed, including the topotype, holotype,
and juvenile (Figs. 1c, 2a, b, d, and 3a, c). Internally, the
differences between O. polycerelloides and O. zoobotryon oc-
cur in the anatomy of the foregut and reproductive system.
The salivary glands are rounded in O. polycerelloides
(Fig 5c, d) and drop-shaped in O. zoobotryon (see Pola
2015, fig. 2A); the plica on the inner side of the radular inner-
most tooth base of O. zoobotryon (see Pola 2015, fig. 3D) is
absent in the other species. The reproductive system of
O. polycerelloides differs from O. zoobotryon in the shape
of the bursa copulatrix, seminal receptacle, and ampulla; di-
ameter and length of the penial sac; and diameter of the vagina
(Table 3). Thus, based on all these differences, we re-establish
O. polycerelloides as a valid species, distinct from
O. zoobotryon.

The penis of O. polycerelloides is ciliated throughout its
length (Fig. 7d). However, we do not know for sure whether
this feature is present or absent in O. zoobotryon, since it was
not possible to verify the presence of this character in the
topotype studied here. However, it seems that the penis of
O. zoobotryon illustrated by Pola (Pola 2015, fig. 3F, G) does
not have cilia, as she made nomention of this character, which
would be another difference between the two species. The
ciliation on the penis could be a useful distinguishing

Table 3 Comparative summary of the differences between Okenia polycerelloides (Ortea & Bouchet, 1983) and Okenia zoobotryon (Smallwood, 1910)

Characters Species

Okenia polycerelloides Okenia zoobotryon

Spicules Absent Present

Number of dorsal papillae 2–7 4–6a

Posterodorsal papilla Present Absent

Number of branchial leaves 7–9, two distal leaves smaller than the others 4–7a

Shape of salivary glands Rounded Drop-shaped

Lateral radular teeth The inner side of the tooth base, without plica The inner side of the tooth base, with plica

Typhlosole length Four fifths of the intestine length 1/3 of the intestine length

Ampulla shape Elongated and tubular Short and oval

Seminal receptacle shape Oval Elongated

Bursa copulatrix shape Oval Spherical

Penial sac Similar to the diameter of the vagina and
covering the penis over its entire length

Twice the diameter of the vagina and is a sac with the
penis coiled inside

Cilia on the penis Present Absent

a Variation based on the specimen analyzed and the descriptions provided by Smallwood (1910), Clark (1984), and Pola (2015)
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character for other Okenia species, but most of them have not
been studied at this level of detail (e.g., Gosliner and Bertsch
2004; Rudman 2004, 2007). The penis of the type species of
the genus (Okenia elegans (Leuckart, 1828)) is not ciliated,
but its surface is completely armed with spines (Vayssière
1901). More-detailed descriptions ofOkenia species generally
report the presence or absence of penial spines (e.g., Gosliner
2004, 2010; Paz-Sedano et al. 2017). The cilia are not easily
detected, since the species of Okenia are usually small and
their penises are commonly involved by a thin-walled sac
(penial sac). In this study, under the stereomicroscope, the
penial cilia of O. polycerelloides were initially mistaken for
possible penial spines. The presence of cilia was confirmed
only after examination of living specimens with an everted
penis under the stereomicroscope and fixed specimens under
SEM.

Externally, O. polycerelloides is also similar to O. harastii
and Okenia mija Burn, 1967. Their background colors range
from translucent brownish to whitish, with scattered dark-
brown and white spots (Burn 1967; Pola et al. 2014b), but in
O. mija the dark-brown spots are surrounded by a yellow band
(Burn 1967; see Rudman 2004, fig. 29C), which easily distin-
guishes it from the others. Color, however, is not a reliable
character to distinguish the other species, since both have the
same general coloration pattern. Nevertheless, since
O. harastii does not have the posterodorsal papilla that is
present in O. polycerelloides, the number and arrangement
of the papillae, and the number of lamellae in the rhinophores
(see Rudman 2004; Pola et al. 2014b) are good distinguishing
characters for these species. In O. mija, there is a notch in the
posterior midline of each lamella of the rhinophores (see
Rudman 2004, fig. 12B), and this notch is absent in all the
other species mentioned. Although O. polycerelloides and
O. mija share the presence of an unpaired posterior papilla
(Fig. 3a, c; Rudman 2004, fig. 12B), in the latter, two smaller
papillae are present on each side of this papilla. Therefore,
O. polycerelloides can be distinguished from its congeners
by a combination of external characters: color pattern, number
of lamellae in the rhinophores, and number and arrangement
of papillae. Moreover, O. polycerelloides can also be distin-
guished from O. harastii and O. mija by characteristics of the
reproductive system. For example, the latter two species pres-
ent a broad vagina (see Rudman 2004, fig. 4C for O. mija and
Pola et al. 2014b, fig. 3D for O. harastii) while
O. polycerelloides present a thin vagina; the seminal recepta-
cle is pyriform in O. harastii and oval in O. mija and
O. polycerelloides; the bursa copulatrix is oval in O. harastii
and O. polycerelloides, and spherical in O. mija; the penis of
O. harastii is coiled in a large thin-walled sac while in
O. polycerelloides this penial sac cover the penis over its entire
length, and inO. mija, according Rudman (2004), the penis is
not contained in a thin-walled sac (Rudman 2004; Pola et al.
2014b; present study).

Although the original description of O. polycerelloides did
not provide an anatomical study of the reproductive system,
the description and illustration of the external morphology
(see Ortea and Bouchet 1983, fig. 1A–D) are well documented
and unambiguous with respect to the presence of the
posterodorsal papilla. Furthermore, the study of several spec-
imens revealed that the numbers of dorsal papillae and bran-
chial leaves as originally described are within the range of
variation that we observed for the species. The radular mor-
phology of the topotype and the Brazilian specimens also
agrees with the original description (see Ortea and Bouchet
1983, fig. 2), as do the general shape and coloration of the
body. Moreover, the morphological analysis of the type mate-
rial allowed us to confirm that the penis, ampulla, and bursa
copulatrix of the Brazilian specimens and the topotype present
the same characteristics of the type material. Although we
were not allowed to dissect the type material, the paratype
had a cut on the head that was probably made by the authors
of the species in order to remove the buccal mass and study the
radula, what allowed us to see the general aspect of the penis,
ampulla, and bursa copulatrix. Thus, the Brazilian specimens
and the topotype analyzed herein fit the original description
and the observed characteristics of the type material of
O. polycerelloides.

Besides O. polycerelloides, two other species of Okenia
have been reported in Brazil: Okenia evelinae Marcus, 1957
and Okenia impexa Marcus, 1957. Both were originally de-
scribed from the coast of São Paulo state (Marcus 1957) and
are easily distinguishable fromO. polycerelloides:O. evelinae
has violet rhinophores and yellow spots spread over the body,
and O. impexa has claviform and pointed papillae with a con-
tinuous axial bundle of spicules, only one dorsal papilla be-
tween the rhinophores and the gill, and the last pair of lateral
papillae arises from a common base. Both species have spic-
ules in the tegument, and neither of them has the posterodorsal
papilla (see Marcus 1957; Sales et al. 2016) that is present in
O. polycerelloides.

Okenia zoobotryon has been recorded in many locations
around the world since its original description, e.g., in
Bermuda (Smallwood 1910; Clark 1984), Barbados,
(Edmunds and Just 1985), Cuba (Valdés and Ortea 1995),
the Bahamas (Redfern 2004), Senegal (Poddubetskaia
2004), Australia (Rudman 2004), and Venezuela (Grune
2005; Valdés et al. 2006; Caballer-Gutiérrez et al. 2015).
However, comparison of the illustrations provided by these
reports with the redescription of O. zoobotryon (Pola 2015)
and O. polycerelloides (present study) suggests the possibility
that many of these records are attributable to the latter species,
and even to other, similar ones. As Pola et al. (2014b) stated,
in spite of some differences, the specimens reported as
O. zoobotryon for Australia (Rudman 2004) are more similar
toO. harastii than to the former species. Similarly, the reports
of O. zoobotryon for Senegal (Poddubetskaia 2004),
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Venezuela (Grune 2005; Valdés et al. 2006), and the USA
(Ianniello 2007) seem to belong to O. polycerelloides, as do
the previous reports for Brazil (García et al. 2008), since the
specimens illustrated have the posterodorsal papilla that is
absent in O. zoobotryon. Based on this, it is possible that the
geographical distribution of O. zoobotryon is more restricted
than that of O. polycerelloides, but we think that any conclu-
sion on this matter should await the examination of specimens
from these localities.

The abundance of O. polycerelloides in Brazil, together
with the current difficulty in finding the other species of the
genus previously reported for this country (O. evelinae and
O. impexa), raises an interesting question: How did Ernst and
EvelineMarcus, the pair of researchers who worked intensive-
ly with sea slugs in Brazil for three decades (1950–1980), not
find this now-abundant species? A possible answer would be
that O. polycerelloides did not occur in Brazil at that time.
Amathia verticillata (= Zoobotryum verticillatum), the bryo-
zoan with which this nudibranch is commonly associated,
occurs worldwide in temperate and warm waters (e.g., Delle
Chiaje 1822; Bullivant and Bills 1968; Fox 2001; Hill 2001;
Elkhorn Slough Research 2002), and is considered a crypto-
genic species (McCann et al. 2007). Although it has a short-
lived, non-feeding larva (Santagata 2008) that probably lacks
good dispersal capabilities, its colonies could possibly travel
long distances bymeans of fouling on ship hulls and rafting on
seaweed or other substrata (Miranda et al. 2018). It is therefore
possible that their associated biota, including the nudibranchs,
could be transported along with them. Amathia verticillata has
been reported in Brazil since at least 1860 and was recently
considered an exotic species there (Farrapeira 2011; Micael
et al. 2018; Miranda et al. 2018), whereas O. polycerelloides
was first recorded in the western South Atlantic (as
O. zoobotryon) only in 2008 (García et al. 2008). Thus, if
the occurrence of O. polycerelloides in Brazil is related to
the introduction of A. verticillata, probably there were multi-
ple arrivals of the bryozoan in the region, at least some coming
from places where the nudibranch was present. This hypoth-
esis should be tested in future studies involving population
genetics.

Although the Brazilian specimens of Okenia studied
here closely fit the holotype and the topotype of
O. polycerelloides analyzed, it is important to consider
the possibility that they are part of a species complex.
Recent molecular studies have shown that sea slug species
that are morphologically similar and were previously con-
sidered as only a single taxon are in fact a complex of
different species with more restricted distributions than
first thought (e.g., Carmona et al. 2011, 2014a, 2014b,
2014c, 2014d). In order to test that, we tried to obtain
DNA sequences of O. polycerelloides from Brazil and the
Canary Islands, but we failed in amplifying the topotype.
However, considering the strong morphological similarity

among the Brazilian specimens, the topotype, and the type
material of O. polycerelloides, as well as the differences
between them and O. zoobotryon, the more parsimonious
decision, for now, is to attribute the Brazilian species to
O. polycerelloides until molecular studies can be per-
formed with specimens from the Canary Islands. Thus,
cons ider ing the Braz i l i an spec imens be long to
O. polycerelloides, until new evidence may suggest other-
wise, we compared the obtained sequences to those of the
neotype of O. zoobotryon and other Okenia species.

The molecular data clearly corroborate the morphological
results concerning the validity of O. polycerelloides as a dis-
tinct species from O. zoobotryon. Okenia polycerelloides has
an expressive genetic distance when compared with other
Okenia species available onGenbank (see Table 2), compatible
with a status of a taxonomic unit. The genetic divergence be-
tween O. polycerelloides and O. zoobotryon, previously con-
sidered the same species, is about 17% to the COI gene and
10% to the H3 gene, which strongly suggests that they belong
to different species. COI distances between pairs of
O. polycerelloides and all Okenia species studied here were
similar to the reported by Pola et al. (2014b) regarding
O. harastiiwith otherOkenia species. The divergence between
O. polycerelloides andO. zoobotryon has also been reinforced
by Bayesian tree topology (Fig. 8), which recovered each spe-
cies in distinctive clades with high PP support as well.

The distinguishing morphological (external and inter-
nal) features found in our study are more than sufficient
to recognize O. polycerelloides as a separate species.
Although our molecular study presented here also suggests
the same, it is still important to obtain DNA sequences of
O. polycerelloides from the type locality to compare them
with the Brazilian ones. Therefore, we propose to restore
the spec ies s t a tus and cons ide r the records of
O. zoobotryon in the South Atlantic Ocean as attributable
to O. polycerelloides, until new evidence may suggest
otherwise.
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