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Abstract

Eurycope producta Sars, 1868 and Eurycope inermis Hansen, 1916 are two widely distributed and highly abundant isopod
species complexes within Icelandic waters, a region known for its highly variable environment. The two species complexes have
bathymetric depth ranges from 103 to 2029 m (E. producta) and from 302 to 2113 m (E. inermis). Molecular evidence was used
for species delimitation within these species complexes by analyzing nuclear (18S rDNA, H3) and mitochondrial (16S rDNA,
COI) sequence data. Tree-based methods (BI and ML) and four species delimitation methods (ABGD, GMYC, NDT, PTP) were
applied, in order to disentangle the two species complexes. A total of eight and four species clades could be identified within
samples of the E. producta and E. inermis complexes and respectively included the closely related species E. dahli Svavarsson,
1987; E. hanseni Ohlin, 1901; and E. cornuta Sars, 1864. The morphological findings coincide with the observed molecular
species clades. The elucidated species clades were geographically and bathymetrically much more restricted than previously
assumed. Eight species clades featured depth spans of less than 400 m and only four species clades featured depth spans of 1000
to 1500 m. Only two species clades (E. producta sensu stricto and E. inermis sensu stricto) were found on both sides of the
Greenland-Scotland Ridge. Further, species distribution maps were generated using random forest, to predict potential distribu-
tional patterns for the resolved species clades of the two species complexes. We present the first attempt of combining morpho-
logical, molecular, and species distribution models in marine isopods thus far.
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Abbreviations

ABGD  Automated Barcoding Gap Discovery

AWTY  Are We There Yet

BI Bayesian inference

DZMB  German Centre for Marine Biodiversity Research
GMYC Generalized mixed Yule coalescent

GSR Greenland-Scotland Ridge

IFR Iceland-Faroe Ridge
ML Maximum likelihood

NDT Nucleotide divergence threshold
OOB Out-of-the-box error

PCR Polymerase chain reactions

PTP Poisson tree process

RF Random forest

SDM Species distribution modeling
SQ Sequencing

ZMH Zoological Museum of Hamburg
Introduction

Species are regarded as the fundamental unit of biodiversity
(Claridge et al. 1997) and, thus, are of major importance not
only for taxonomists and evolutionary biologists, but also for
ecologists and conservationists (Harrison 1998; Kunz 2001).
Species delimitation was unavoidably dominated by morpho-
logical data evaluation for centuries (Fujita et al. 2012). New
integrative taxonomic approaches of species delimitation that
include morphological, genetic, behavioral, and/or ecological
data can make species delimitation more robust (Sites and
Marshall 2004; Dayrat 2005; Leaché et al. 2009; Padial
et al. 2010).

Molecular analyses of the population structure and diversi-
ty of deep-sea benthic invertebrates have become more com-
mon within the last two decades and suggest that recently
morphologically determined widespread species are likely to
represent cryptic species (e.g., France and Kocher 1996; Etter
et al. 1999; Raupach and Wigele 2006; Raupach et al. 2007,
Brix et al. 2011) or species complexes (e.g., Brokeland and
Raupach 2008; Havermans et al. 2013). Molecular species
identification has been well supported by the classical gene
for DNA barcoding, the mitochondrial cytochrome oxidase
subunit I (COI; Hebert et al. 2003). However, COI can be
difficult to amplify in asellote isopods (e.g., Raupach et al.
2007; Brokeland and Raupach 2008; Riehl and Kaiser 2012,
Riehl et al. 2017). Thus, the mitochondrial ribosomal RNA
large subunit (16S) has been used for asellote isopods as a
replacement barcode marker in various studies (e.g.,
Raupach and Wigele 2006; Riehl and Kaiser 2012; Kaiser
et al. 2017; Riehl et al. 2017; Bober et al. 2018; Brix et al.
2018). Further, the inclusion of a nuclear gene has been shown
to prevent the challenges of incomplete lineage sorting and
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introgression (Rubinoff and Holland 2005; Galtier et al.
2009).

Crustaceans (Arthropoda) are ubiquitous in the marine ben-
thos and appear to be very diverse, considering the number of
species and their large range of observed morphologies
(Hessler 1981). Asellote isopods in particular are considered
to be the most numerous crustacean taxon encountered within
the deep-sea macrobenthos (Sanders et al. 1965; Sanders and
Hessler 1969; Brandt et al. 2007). Munnopsidae Lilljeborg,
1864 is one of the most diverse and abundant isopod families
in the deep sea (Sanders and Hessler 1969; Wilson and
Hessler 1987) and features a known depth range from 4 m
(Svavarsson et al. 1993) to 9345 m (Birstein 1971). The fam-
ily contains 42 genera and currently more than 320 species
(Wilson and Schotte 2017). Munnopsids lack (like all other
peracarid crustaceans) planktonic larvae; instead, their devel-
opment takes place in the brood pouch (marsupium) of fe-
males. Most munnopsids are, in contrast to other asellote iso-
pods, able to swim, or at least able to be active in the near-
bottom water layer. Gene flow depends only on the active and/
or passive (e.g., by currents) dispersal of adults (Wilson 1989;
Brandt 1992; Marshall and Diebel 1995).

Munnopsid isopods are a common component of the fauna
within the highly variable environment at the transition be-
tween the northernmost North Atlantic and the Nordic Seas
(Svavarsson et al. 1993; Schnurr et al. 2014). The subfamily
Eurycopinae Hansen, 1916 is the most diverse group within
munnopsid isopods (Svavarsson 1987). The genus Eurycope
Sars, 1864 is especially speciose and known to be complex in
comparison to the other genera within the subfamily (Wilson
1983a; Kussakin 2003). Molecular phylogenetic analysis
showed the paraphyly of the genus (Osborn 2009), and mul-
tiple authors have discussed the diversity of Eurycope, as well
as the presence of species complexes within the clade (Wolff
1962; Wilson and Hessler 1981; Wilson 1989; Malyutina and
Brandt 2006). This problematic genus is in need of revision, in
no small part because of its ubiquitous presence in a topo-
graphically and hydrologically complex region.

The oceanic conditions around Iceland are shaped by the
Greenland-Scotland Ridge (GSR), a topographic feature that
separates the deep-sea basins of the northernmost North
Atlantic and the Greenland, Iceland, and Norwegian Seas
(the Nordic Seas). The ridge system features a mean depth
of around 500 m with three deep sills, each on a different
portion of the ridge. The maximum depth of the GSR
(840 m) is located in the Faroe Bank Channel between the
Faroe Islands and Scotland. The maximum depth in the
Denmark Strait between Greenland and Iceland is 620 m,
whereas the maximum depth of the Iceland-Faroe Ridge
(IFR) is 480 m (Hansen and @sterhus 2000). The near-
bottom water masses exhibit major temperature differences
ranging from -1 up to 12—-14 °C (Jochumsen et al. 2016).
Direct exchanges of deep water masses between the deep
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basins of the northern North Atlantic and the Nordic Seas
across the GSR are not possible, and thus, only limited ex-
changes of intermediate layers take place through the deep
channels (Hansen and @sterhus 2000). Water transport across
the ridge at depth is of major importance to global thermoha-
line circulation and thus for the regional climate and oceanic
regions north of this submarine barrier (Hansen and @sterhus
2000). Hence, species distributional patterns and distribution-
al limits within this highly variable environment are especially
interesting. Previous studies on benthic invertebrates within
the area observed distributional limits in connection to the
GSR and abiotic factors associated with the ridge (e.g.,
Svavarsson et al. 1990, 1993; Svavarsson 1997; Dijkstra
et al. 2009; Brix and Svavarsson 2010; Dauvin et al. 2012).

Combining morphological, genetic, and ecological ap-
proaches in order to determine mechanisms that shape the
geographic distribution of species has become more common,
especially in terrestrial environments (e.g., Johnson and
Cicero 2002; McCallum et al. 2014). However, sampling in
the vast oceanic environment relies on more localized data,
and the major limitations of sampling make it difficult to col-
lect sufficient data for species distribution modeling.
Although species distribution models (SDMs), which use spa-
tial environmental variables, can lead to a better understanding
of species distribution patterns even within the less accessible
marine environment (Elith and Graham 2009), only a few
SDMs of benthic marine invertebrates have been constructed
so far (e.g., MeiBner et al. 2008; Elith and Graham 2009;
MeiBner et al. 2014). However, a combination of morpholog-
ical, genetic, and ecological approaches has not been applied
to marine benthic isopods thus far.

In this study, we sampled and analyzed specimens of
Eurycope producta Sars, 1868 and Eurycope inermis
Hansen, 1916 around Iceland, which were suspected to
represent species complexes (Wilson 1982; Svavarsson
1987). We hypothesize that (1) multiple species clades
within both taxa can be identified using multiple genetic
loci, (2) genetically distinct clades within each species
complex can be identified by morphological key charac-
ters, (3) the resolved species clades are separated from each
other by natural geological or hydrological barriers, and (4)
species distribution maps for the resolved species clades
within both species complexes can predict more complete
species distribution patterns.

Material and methods
Sampling and sequencing
Specimens of the E. producta complex and of the E. inermis

complex were examined morphologically and genetically.
The datasets of both species complexes included closely

related sister species, which are morphologically similar and
also present within the sampled research area. Those known
species were included in the analyses particularly in regard to
the need of a morphological revision of the genus Eurycope,
which will be part of a future study. Thus, species that are
already known to science, but look similar to the
E. producta and E. inermis complexes, were also included in
the dataset. The analyzed E. producta complex dataset
contained 83 specimens (including specimens of E. dahli
Svavarsson, 1987) and the E. inermis complex dataset
contained 102 specimens (including specimens of E. hanseni
Ohlin, 1901 and E. cornuta Sars, 1864). Hence, hereafter they
will be referred to as E. producta and E. inermis species com-
plexes and base our confirmation of named species and iden-
tification of new species on our genetic and morphological
analyses.

All specimens were sampled around Iceland with three
different types of epibenthic sleds (EBS; Rothlisberg and
Pearcy 1977; Brenke 2005; Brandt et al. 2013) during the
IceAGE1 and IceAGE2 (Icelandic marine Animals: Genetics
and Ecology) expeditions in 2011 and 2013, respectively
(Fig. 1). Bulk samples were immediately fixed on deck in
chilled 96% nondenatured ethanol and kept cool throughout
the sorting process according to Riehl et al. (2014).
Subsamples from the EBS stations were sorted on board and
at the DZMB (German Centre for Marine Biodiversity
Research, Hamburg). One to three posterior pereopods (legs,
depending on the size of the individual) of E. producta and
E. inermis specimens were dissected and separately stored for
tissue digestion and DNA amplification. This semidestructive
approach was conducted in order to allow further morpholog-
ical analyses of each specimen. Polymerase chain reactions
(PCR) were performed on all specimens for 16S, COIL 188,
and H3 (see Table 1 for a list of the primers used). However, it
was not possible to obtain sequences from all four loci for all
the specimens, even after several rounds of PCR optimization
(see Table 2 for a list of available sequences and GenBank
accession numbers of COI, 168, 18S, and H3). The extraction
and PCR protocols for 16S, COI, and 18S followed the
methods of Richl et al. (2014) and Brix et al. (2011).
Extractions of H3 followed the methods described by Riehl
et al. (2014) and Brix et al. (2011). Polymerase chain reaction
of H3 comprised an initial 5-min denaturation at 95 °C,
followed by 4 cycles of 30 s at 94 °C, 45 s at 50 °C, 60 s at
72 °C, followed by 34 cycles of 30 s at 94 °C, 45 s at 47 °C,
60 s at 72 °C. The cycling ended with an 8-min extension at
72 °C. The H3 primers H3ar/H3af from Colgan et al. (1998)
were used for amplification. ExoSap-IT (USB) was used for
purification of PCR products. Cycle sequencing of purified
products was performed with BigDye chemistry (Perkin-
Elmer) by 30 cycles of 30 s at 95 °C, 30 s at 50 °C, and
4 min at 60 °C. Sequences were obtained with an ABI
3730x1 96-well capillary sequencer. All the sequencing of
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Fig. 1 Location of the sampled stations of the IceAGE! and IceAGE2 cruises used in the current study

the individuals used in this study was conducted at the
Laboratories of Analytical Biology (LAB), Smithsonian
National Museum of Natural History, Washington, DC, USA.

All individuals of the two putative species complexes were
analyzed morphologically. Drawings were created following
the guidelines of Wilson (2008) and Hessler (1970). Adobe
[lustrator CS6 (http://www.adobe.com/products/illustrator.
html) was used for finalizing the drawings following the
guidelines of Coleman (2003, 2009). Only characters needed

for determination of the species are presented within this
study.

Specimens used in this study are stored at the Zoological
Museum of Hamburg (ZMH K-45583-K-45765; Table 2).

Genetic analyses

The forward and reverse sequences of each individual were
assembled using Geneious v. 7.0.4 (Biomatters; available

Table 1 Primers used for this

study, including whether the Primer Usage for PCR and/or SQ Reference
respective primer was used for
polymerase chain reaction (PCR) 18S 18Almod PCR/SQ Raupach et al. (2009)
and/or for sequencing (SQ) 1800mod PCR/SQ Raupach et al. (2009)
400F SQ Dreyer and Wigele (2001)
100F SQ Dreyer and Wigele (2001)
700R SQ Dreyer and Wigele (2001)
1155R SQ Dreyer and Wiagele (2001)
16S 16S AR PCR/SQ Palumbi et al. (1991)
16S BR PCR/SQ Palumbi et al. (1991)
16S SF PCR/SQ Tsang, in Riehl et al. (2014)
16S SR PCR/SQ Tsang et al. (2009)
COlI LCO1490 PCR/SQ Folmer et al. (1994)
HCO2198 PCR/SQ Folmer et al. (1994)
H3 H3af PCR/SQ Colgan et al. (1998)
H3ar PCR/SQ Colgan et al. (1998)
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from www.geneious.com). All consensus sequences were
manually edited and checked. The COI and H3 consensus
sequences were translated into amino-acid sequences in order
to prevent the inclusion of pseudogenes (Buhay 2009).
Further, all consensus sequences were compared against the
GenBank nucleotide database by using BLASTN (Altschul
et al. 1990). Afterwards, the edited consensus sequences of
16S, COI, 18S, and H3 were aligned using the default settings
of MAFFT v. 7.017 (Katoh et al. 2002) under the E-INS-i
option and alignments were manually edited, if needed.
Eurycope complanata Bonnier, 1896 (GenBank accession
no: 16S: MH101741; COI: EF682281; 18S: EF682256) and
Eurycope elianae Schnurr and Malyutina, 2014 (GenBank
accession no: 16S: KJ716799; COI: MH056597; 18S:
KJ716804) were used as an outgroup for E. producta and
E. inermis, respectively. All sequences produced for this pro-
ject can be retrieved from GenBank (see Table 2 for accession
numbers). The final alignments of the E. producta complex
(18S, 73 sequences, with an alignment length of 2142 bp; 16S,
66 sequences, with an alignment length of 421 bp; COI, 33
sequences, with an alignment length of 601 bp) and the F.
inermis complex (18S, 98 sequences, with an alignment
length of 2113 bp; 16S, 76 sequences, with an alignment
length 0f435 bp; COI, 47 sequences, with an alignment length
of 600 bp) can be retrieved from TreeBase (http://purl.org/
phylo/treebase/phylows/study/TB2:522443). Because nodal
support of H3 analyses was low in both species complexes
(although respective species clades appeared to cluster
together), H3 sequences were only used in the concatenated
dataset. Thus, concatenated alignments of 16S, COI, 18S, and
H3 were created for each species complex, using
SequenceMatrix (Meier et al. 2006), and were used to recon-
struct species trees in addition to the six single gene
alignments.

Bayesian inference (BI) and maximum likelihood (ML)
tree construction methods were used in order to identify pos-
sible clades within the two putative species complexes. The
best-fitting substitution model of DNA sequence evolution
was identified with MrAIC (Nylander 2004) for each align-
ment under the Akaike’s information criterion (AIC).
Bayesian trees were obtained with MrBayes v. 3.2 (Ronquist
et al. 2012). Two independent runs were conducted for 100
million generations each, where every 2000th generation was
sampled (resulting in 50,000 trees), using three heated and one
cold chains. The program Are We There Yet (AWTY)
(Wilgenbusch et al. 2004) was used to determine if stable
posterior probabilities had been reached. Consensus trees of
single loci datasets as well as concatenated partitioned datasets
were calculated with MrBayes, considering the model of nu-
cleotide substitution estimated by MrAIC, with a burn-in of
15,000 generations. The models for the single loci datasets
and partitions of the concatenated datasets were GTR+G+I
for 18S and GTR+G for 16S, COI, and H3 for the

@ Springer

E. producta complex datasets and GTR+G+I for 18S, 16S,
and COI and GTR+G for H3 for the E. inermis complex
datasets. Posterior probabilities of < 0.9 were collapsed into
polytomies.

Maximum likelihood trees were obtained using RAXML v.
7.2.8 (Stamatakis et al. 2008) using a total of 10,000 replicates
for bootstrap calculations (Felsenstein 1985). All trees were
visualized with FigTree v1.3.1 (http://tree.bio.ed.ac.uk/
software/figtree/) and prepared for publication with Adobe
Illustrator. Bootstrap percentages of <75 were collapsed into
polytomies.

Relationships between haplotypes of 16S, COI, and 18S
datasets were explored for each species complex with TCS
v. 1.21 (Clement et al. 2000). Gaps were treated as fifth states
and the probability threshold was set to 95% (Clement et al.
2000; Templeton 2001). Haplotype networks are not
displayed, but shared haplotypes are indicated in the tree fig-
ures (Figs. 2, 3, 4, and 5).

Uncorrected p-distances of the 16S, COI, and 18S single
gene datasets were calculated with MEGA v.6.06 (Tamura
et al. 2013) and used for comparing the genetic variability
within clades (Tables 3 and 4; Online resources 1-2).

Species delimitation

Four different methods of species delimitation were conducted
on 168, COI, and 18S alignments for each species complex in
order to delimit species within the complexes: ABGD, nucle-
otide divergence threshold (NDT), generalized mixed Yule
coalescent (GMYC) model, and the Poisson tree process
(PTP) model.

The ABGD by Puillandre et al. (2012) is an automated
iterative method, which groups specimens based on pairwise
distance measures. Sequences are automatically grouped by
assuming that the distance between different species is always
larger than within species. Thus, the sequences are grouped on
the basis of the automatically determined significant differ-
ences, the barcoding gap. Alignments of 16S, COI, and 18S
were uploaded to the online server of ABGD (http://wwwabi.
snv.jussieu.fr/public/abgd/abgdweb.html) without outgroups
by using the default settings and the Kimura (K80) mutational
model.

The NDT analysis after Tang et al. (2012) clusters se-
quences in an alignment based on an uncorrected distance
matrix and a threshold, which must be defined by the user.
We used a threshold of 97% for the alignments of the three
different gene loci. The R script of the NDT analysis by Tang
et al. (2012) was run in RStudio v.0.97.318.

The GMYC approach by Monaghan et al. (2009) and Pons
et al. (2006) is a maximum likelihood method that identifies
the significant shift in a gene tree from within-species (e.g.,
coalescence) events to between-species events (e.g., specia-
tion) on an ultrametric phylogenetic tree without an outgroup.


http://www.geneious.com
http://purl.org/phylo/treebase/phylows/study/TB2:S22443
http://purl.org/phylo/treebase/phylows/study/TB2:S22443
http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/
http://wwwabi.snv.jussieu.fr/public/abgd/abgdweb.html
http://wwwabi.snv.jussieu.fr/public/abgd/abgdweb.html
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analysis was run in RStudio using the package ‘splits’ (Edzard

et al. 2009). Prior to the analysis, an ultrametric input tree was
generated with BEAST v.1.8 (Drummond et al. 2012), using a
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<« Fig. 3 Consensus Bayesian tree for E. producta a 18S and b the
consensus of the concatenated four gene loci dataset (16S, COI, 188,
and H3). The branch lengths are proportional to the number of
substitutions per site considering the models of nucleotide substitution
estimated by MrAIC for the respective loci or partition. Posterior
probabilities (>0.9) from Bayesian analyses and bootstrap percentages
(>70) from maximum likelihood trees are indicated at the nodes. The
colored vertical bars represent different species clades supported by
ABGD at different thresholds a for 18S (aa) 0.001000-0.001668, (ab)
0.002783, and (ac) 0.004642 as well as species clades supported by NDT,
GMYC, bPTP, and morphology. b E. producta consensus of the
concatenated dataset. Depth ranges of each species cluster and sampling
region are included. The different clusters within the dataset are named
Ep 1-8

relaxed lognormal clock with a coalescent prior. MCMC anal-
yses were run for 100 million generations, with every 2000th
step sampled. The burn-in was set to 0.25%. The MCMC
output was analyzed with AWTY and trees were assembled
with Tree Annotator (Rambaut and Drummond 2007).

The PTP model by Zhang et al. (2013) models speciation
or branching events in terms of substitutions. We used the
Bayesian (bPTP) implementation within our study, which also
accepts multifurcating phylogenetic trees (and even zero
branch lengths). The branch lengths of the phylogenetic input
tree have to represent the number of substitutions.
Unrooted phylogenetic trees, without an outgroup, cre-
ated by MrBayes were uploaded to the online server of
bPTP (http://species.h-its.org/ptp/). The following
parameters were used: MCMC, 500,000 generations;
thinning, 100; burn-in, 0.25; and seed, 123. Further,
convergence was always checked in order to be sure
that sufficient generations had been conducted.

Species distribution modeling

The assumption of SDM is to predict spatial distributions of
(for instance) species by using presence and (if available) ab-
sence data. The datasets are then combined with predictor
variables (which cover the whole research area). Random for-
est (RF) is a machine learning method (Breiman 2001), that
uses recursive partitioning to create decision trees. A great
number of subtrees are created using a random selection of
variables and observations. The best splits of all the subtrees
are then merged into a final ensemble tree.

Nine layers of environmental predictors recorded from
across the full research area were used for the creation of
SDMs (see MeiBiner et al. 2014, Table 1). The predictors used
within this study were bottom depth (ETOPO2v2 2006); near-
bottom temperature, temperature difference, and salinity
(Nilsen et al. 2008; Jochumsen et al. 2016); bottom oxygen
(Seiter et al. 2005); seasonal variation index (SVI; Lutz et al.
2007); particulate organic carbon flux (POC; Lutz et al. 2007);
bottom roughness (Whittaker et al. 2008); and sediment thick-
ness (Divins 2003). Only species clades obtained from at least

two stations were used for the creation of SDMs. Data were
imported into QGIS v.2.0.1 (http://qgis.osgeo.org). The values
associated with the different layers were then extracted using
the ‘point sampling’ tool of QGIS. Further, a total of 22,139
points regularly distributed throughout the research area were
generated with QGIS, and the corresponding predictor values
were extracted to be used for generating the SDMs with
random forest (Breiman 2001). Random forest models were
calculated in RStudio with the package ‘randomForest’ (Liaw
and Wiener 2002). A total of 6000 random trees (‘ntree’ op-
tion) and 4 randomly chosen predictors (‘mtry option’) were
chosen for all the species. The values of the ‘sampsize’ option
were adjusted to the number of presence records of each spe-
cies, so that the same number of presences and absences were
always used for each randomly created tree, in order to avoid
biased accuracy of the ‘absent’ class in the model.

Final prediction maps were generated with GMT v. 5.1.0
(Generic Mapping Tool; SOEST; http://gmt.soest.hawaii.edu/
doc/5.1.0/). Interpolation was conducted with the ‘surface’
function, using a tension factor of 0.5 and a gridding space
0f 0.005. Predictions higher than 0.5 most likely represent the
actual distribution of the respective species. Finally, positions
of the presence records of the respective species were plotted
on top of the interpolated SDMs.

Results
Genetic analyses

ML and BI tree reconstruction revealed identical tree topolo-
gies, with mostly comparable node support in both ap-
proaches; therefore, only BI trees are shown. Eight clades
could be observed within the E. producta complex datasets
(Figs. 2 and 3). Analysis of the E. inermis complex yielded
five or four different clades, depending on the locus (Figs. 4
and 5). However, some discrepancies in node support between
the two approaches were apparent in the 16S and COI datasets
of the E. producta complex, wherein on some branches good
support was obtained in the BI tree, but lower support in the
ML tree (Figs. 4 and 5). The 16S and 18S alignments of the
E. producta complex contained sequences for all eight clades,
and those for the E. inermis complex contained five clades in
the 16S dataset and four in the 18S dataset. The sequencing
success of COI was lowest, even after several rounds of PCR
optimization. Therefore, the COI alignment of E. producta
complex lacks sequences for Ep 1, Ep 6, and Ep 7 and for
Ei_B of the E. inermis complex (Table 2).

The E. producta complex 16S dataset contained 66 se-
quences with 27 haplotypes (Fig. 2a). The number of potential
species predicted by ABGD varied with different prior thresh-
olds, which ranged from 0.001000 to 0.059948. A total of 23
potential species were predicted under the lowest threshold
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Fig. 4 Consensus Bayesian tree for E. inermis a 16S and b COI datasets. species clades supported by ABGD at different thresholds a for 16S
The branch lengths are proportional to the number of substitutions per site (aa) 0.001000-0.001668, (ab) 0.002783—-0.021544, and (ac) 0.035938—
considering the models of nucleotide substitution estimated by MrAIC for 0.059948 and b for COI (ba) 0.001-0.001668 and (bb) 0.002783—
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and bootstrap percentages (>70) from maximum likelihood trees are and morphology. The different clusters within the dataset are named Ei
indicated at the nodes. The colored vertical bars represent different A-E
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(0.001000-0.001668), at which almost every haplotype clus-
tered as a separate species. The prior threshold from 0.012915
t0 0.035938 led to eight clusters, which corresponded with the
number of clusters achieved by BI, ML, NDT, GMYC, bPTP,
and morphology. The E. producta complex COI dataset
contained 33 sequences with 20 haplotypes (Fig. 2b). The
prior thresholds of ABGD ranged from 0.001 to 0.1. The
results of the highest threshold (0.004642—-0.1) showed the
same species clusters determined by BI, ML, NDT, GMYC,
bPTP, and morphology. The E. producta complex 18S dataset
consisted of 73 sequences and featured 16 haplotypes
(Fig. 3a). The prior thresholds ranged from 0.001 to
0.004642 and the lowest threshold (0.001-0.001668) showed
the same species clusters as produced by BI, ML, GMYC,
bPTP, and morphology. Results of NDT at a level of 97%
similarity were not conclusive. The concatenated dataset in-
cluding all four loci (16S, COI, 18S, and H3) revealed the
same species clusters observed in the single gene analyses
(Fig. 3b). All mtDNA haplotype networks of individual spe-
cies clades were unconnected to each other at a similarity level
0f 95%. The 168 network of Ep 1 was further split into two
unconnected networks. The nuDNA networks of Ep 1, Ep 2,
Ep 5, Ep 6, and Ep_7 were connected at a similarity level of
95%.

The E. inermis complex 16S dataset consisted of 75 se-
quences, featuring 20 haplotypes (Fig. 4a). The number of
potential species clusters predicted by ABGD varied among
different prior thresholds, which ranged from 0.001 to
0.059948. The same clusters predicted by BI, ML, NDT, and
GMYC were recovered at the intermediate threshold
(0.002783-0.021544). The bPTP approach split Ei_A into
two species. The E. inermis complex COI dataset contained
46 sequences and a total of 24 different haplotypes (Fig. 4b).
The prior threshold of ABGD ranged from 0.001 to 0.1.
Almost every haplotype was predicted to be a species at the
lowest threshold. The clustering results of the threshold from
0.002783 to 0.1 coincided with BI, ML, NDT, GMYC, and
bPTP results. The E. inermis complex 18S dataset consisted of
97 sequences with 10 haplotypes (Fig. 5a). The prior threshold
ranged from 0.001 to 0.035938. Specimens of E. inermis com-
plex Ei B and Ei_C could not be distinguished from each
other by ABGD and GMYC based on 18S data. The highest
prior threshold (0.012915-0.035938) predicted only two spe-
cies clusters. Only bPTP revealed five species clusters.
Moreover, analysis of the concatenated dataset revealed the
same species clusters as observed within the single locus 16S
tree (Fig. 5b). All the mtDNA haplotype networks of the
E. inermis complex species clades were unconnected at a sim-
ilarity level of 95%. Only the nuDNA networks of Ei B and
Ei_C were connected on a similarity level of 95%.

A clear gap between intra- and interclade divergences was
observed for all loci of both species complexes, with one
exception within the 18S dataset of the E. inermis complex

(Fig. 6), where no barcoding gap was detected. However, the
barcoding gap became visible when specimens of Ei B and
Ei C of the E. inermis complex were combined into one spe-
cies (data not shown).

Analysis of uncorrected p-distances of mtDNA and
nuDNA sequences of both species complexes also supported
the existence of eight and five different species within the
E. producta (Table 3) and the E. inermis complex (Table 4)
datasets, respectively (see also Online resources 1-2 for a
detailed documentation of uncorrected pairwise p-distances
of the 16S gene of E. producta and E. inermis). Intraclade
divergences were low in the E. producta complex dataset
(16S, 0.0-2.50%; COI, 0.0-1.88%; 18S, 0.0-0.10%) as well
as within the E. inermis complex dataset (16S, 0.0-1.20%;
COI, 0.0-1.95%; 18S, 0.0-0.14%). Intraclade variation for the
E. producta complex was highest at 16S in Ep 1 (2.5%) as
well as for the E. inermis complex in Ei B (1.19%) and Ei C
(1.20%). Interclade divergences were higher than intraclade
divergences in the E. producta complex dataset (16S, 4.90—
23.40%; COI, 19.06-30.31%; 18S, 0.20-4.10%) as well as
within the E. inermis complex dataset (16S, 2.83-25.41%;
COI, 17.5-27.11%; 18S, 0.10-4.01%). Interclade distances
for the E. producta complex were lowest at 16S in Ep 2 and
Ep 3 (both 4.90%) and for E. inermis complex Ei B and
Ei C (both 2.83%; Tables 3 and 4). However, when fusing
Ei B and Ei_C to one potential species clade, the interclade
distances of 16S range from 8.96 to 25.41%.

Morphological analyses

Morphological evaluation of the samples of this study re-
vealed small, but visible differences between the different ge-
netically delimited species clades within the two complexes,
with one exception: specimens of E. inermis complex Ei B
and Ei_C appeared to be morphologically identical. Males and
females were present and studied for all species clades, except
for E. producta complex Ep_8, where only females were pres-
ent within the evaluated specimens. Examples of some mor-
phological interclade differences of the two species complexes
are shown in Figs. 7 and 8 for the E. producta complex and the
E. inermis complex, respectively.

Characters potentially useful in distinguishing species
within each complex were (1) the relative size and shape of
the rostrum compared to the size and shape of article 1 of the
first antenna and (2) the shape of the distal margin of the male
pleopod 1. Specimens of the E. producta complex species
clades Ep_1-4 have a rostrum of comparable size or smaller
than article 1 (r<artl) of the first antenna, and the distal
margin of the male pleopod 1 is broad and blunt cut with inner
lobes not projected. In contrast, in E. producta species clades
Ep 5-8, the article 1 of the first antenna is longer than the
rostrum, and the male pleonite 1 tapers apically. The tip is
narrow and has projected inner lobes. Some differences in
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morphological characters can also be observed within the
evaluated E. inermis complex specimens. The species clades
Ei A and Ei B C have a narrower rostrum, and article 1 of
the first antenna has an extended distomedial lobe, which is
visibly longer than article 2. Additionally, the male pleopod 1
is tapering with inner lobes projected apically in Ei A and
Ei B C. Specimens of Ei D and Ei E feature broader ros-
trums, and the distomedial lobe of the first antenna is shorter,
which is subequal or shorter than article 2. Similarly, the inner
lobes of the male pleopod 1 distal margins are curved on the
outside.

A unique combination of morphological character states
could be observed between the putative species clades of both
species complexes, including more morphological differences
than presented herein. A thorough taxonomic description of
the evaluated specimens will be part of a different study. A
total of eight and four morphospecies were present within the
E. producta complex and E. inermis complex datasets, respec-
tively, including the previously described and morphological-
ly similar species E. dahli, E. hanseni, and E. cornuta.

Species distribution modeling and bathymetric
ranges of the species clades

Putative distributions using SDMs were developed for all
clades of the E. producta complex (Ep 1-8; Fig. 9) and the
E. inermis complex (Ei_A-E; Fig. 10), with the exception of
Ep_ 3, since specimens belonging to this group were only
sampled at a single station. Some species occur in partial sym-
patry (E. producta: Ep 1, Ep 2, Ep 5, and Ep 6; E. inermis:
Ei Awith Ei Cand Ei D with Ei E). Predictions above the
probability threshold of 0.5 are considered to indicate the most
likely distribution potential of the respective species. The best
model fit was observed for E. producta: Ep 4, Ep 5, Ep 7,
and Ep_8 and for E. inermis: Ei_A and Ei_B, where the pres-
ence class error was 0% (Table 5).

Species could be grouped into three main categories after
Schnurr et al. (2014):

Group 1. Northern species: Ep 2, Ei A, Ei C, and Ei D;
species occurring on the northern side of the GSR and
across the Iceland-Faroe Ridge: Ep 6 and Ei E

Group 2. Trans-GSR species: Ep_1; species occurring
only across the IFR: Ep 5

Group 3. Southern species: Ep 3, Ep 4,Ep 7, Ep 8 and
Ei B

Eight species clades feature depth spans of less than 400 m,
occur either only north of the GSR (Ep 2, Ep 6, Ei_A, and
Ei D) or south of the ridge (Ep 3, Ep 4, Ep 7, and Ep_8),
and feature depth ranges that are either below or above the
deepest depression of the GSR (Fig. 11). Two species clades
feature a range of less than 650 m (Ep_5 and Ei_E). Both of

@ Springer

Fig.5 Consensus Bayesian tree for E. inermis a 18S and b the consensus P
of the concatenated four gene loci dataset (16S, COI, 18S, and H3). The
branch lengths are proportional to the number of substitutions per site
considering the models of nucleotide substitution estimated by MrAIC for
the respective loci. Posterior probabilities (> 0.9) from Bayesian analyses
and bootstrap percentages (> 70) from maximum likelihood trees are
indicated at the nodes. The colored vertical bars represent different
species clades supported by ABGD at different thresholds a for 18S
(aa) 0.001000-0.007743 and (ab) 0.012915-0.035938, as well as species
clades supported by NDT, GMYC, bPTP, and morphology. b E. inermis
consensus of the concatenated dataset. Depth ranges of each species clus-
ter and sampling region are included. The different clusters within the
dataset are named Ei_ A-E

these clades feature a depth range that includes the deepest
depth of the GSR. However, only one of them (Ep_5) was
present in samples across the IFR. The remaining three species
feature depth spans between 1000 and 1500 m. Two of them
(Ep_1 and Ei_B) feature depth ranges that include the maxi-
mum depression of the GSR, though only Ep 1 occurs north
and south of the ridge. Eurycope inermis C was restricted to
areas north of the ridge (Fig. 11).

Discussion
Multiple species within both species complexes

Molecular analyses of deep-sea isopods have so far been
mostly restricted to maximum parsimony analyses (e.g.,
Raupach and Wégele 2006) or BI and ML analyses (e.g.,
Brix etal. 2011). Only very recently submitted work also used
species delimitation methods (Kaiser et al. 2017; Brix et al.
2018). However, a combination of the four different species
delimitation methods (ABGD, GMYC, NDT, and bPTP) with
morphology and species distribution modeling, as used within
this study, has thus far not been applied to benthic isopods.
The current study provides strong molecular evidence for mul-
tiple species within the two species complexes E. producta
and E. inermis, which were mostly congruent among
mtDNA and nuDNA analyses.

The existence of species complexes and cryptic species has
been observed in different isopod families, such as the
Janiridae (Carvalho and Piertney 1997), Munnopsidae
(Wilson 1982; Raupach and Wigele 2006), Parammunidae
(Just and Wilson 2004), Haploniscidae (Brokeland and
Raupach 2008; Brix et al. 2011), Serolidae (Held 2003;
Leese et al. 2008), and Chaetiliidae (Held and Wigele
2005), potentially Desmosomatidae (Brix et al. 2014b), as
well as in other peracarid crustaceans, for instance amphipods
(Baird et al. 2011; Lorz et al. 2012; Havermans et al. 2013).
Thus, overlooked morphologically similar species and the
presence of cryptic speciation can lead to an underestimation
of biodiversity (Vrijenhoek 2009).
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Table 3 Maximum and mean of
pairwise intraclade distance as

well as minimum, maximum, and
mean interclade distances for 16S,

COlI, and 18S of each identified
clade within the evaluated 16S
E. producta dataset

E. producta Intraclade distance Interclade distance
Max. (%) Mean (%) Min. (%) Max. (%) Mean (%)

Ep 1 (E. producta s. str.) 2.50 1.30 9.80 23.40 16.82
Ep_2 (E. dahli) 1.00 0.31 4.90 21.90 14.61
Ep_3 (E. producta sp. 3) 0.30 0.16 4.90 21.40 12.76
Ep_4 (E. producta sp. 4) 0.30 0.02 14.90 23.40 18.37
Ep_5 (E. producta sp. 5) 0.30 0.02 15.60 23.30 20.09
Ep 6 (E. producta sp. 6) 0.50 0.25 10.40 21.20 16.86
Ep 7 (E. producta sp. 7) 1.00 0.67 10.40 22.90 18.78
Ep 8 (E. producta sp. 8) 0.20 0.07 15.90 23.30 19.29

COlI
Ep 1 (E. producta s. str.) - - - - -
Ep 2 (E. dahli) 1.88 0.55 19.06 30.31 24.95
Ep_3 (E. producta sp. 3) 0.00 0.00 19.06 27.51 19.06
Ep_4 (E. producta sp. 4) 0.00 0.00 20.23 30.09 23.83
Ep 5 (E. producta sp. 5) 1.15 0.47 24.91 30.31 27.58
Ep 6 (E. producta sp. 6) — - - - -
Ep 7 (E. producta sp. 7) — - - - -
Ep_8 (E. producta sp. 8) 0.67 0.42 22.00 26.93 24.89

18S
Ep_1 (E. producta s. str.) 0.00 0.00 0.70 4.10 1.64
Ep_2 (E. dahli) 0.00 0.00 0.70 3.50 1.53
Ep_3 (E. producta sp. 3) 0.10 0.03 0.80 3.90 1.72
Ep_4 (E. producta sp. 4) 0.00 0.00 1.70 3.40 2.33
Ep 5 (E. producta sp. 5) 0.10 0.02 0.40 3.00 1.86
Ep 6 (E. producta sp. 6) 0.00 0.00 0.20 2.80 1.54
Ep 7 (E. producta sp. 7) 0.00 0.00 0.20 2.80 1.45
Ep 8 (E. producta sp. 8) 0.10 0.04 2.10 4.10 2.82

The existence of different species within both species com-
plexes is suggested by high statistical support for each poten-
tial species cluster (posterior probabilities > 0.95 and boot-
strap values > 70) according to our multilocus analyses of
mtDNA and nuDNA. Single locus as well as concatenated
datasets revealed similar tree topologies indicating that gene
and species trees do not differ. The results of the different
species delimitation methods were largely congruent. All four
delimitation methods (ABGD, NDT, GMYC, and bPTP) re-
vealed multiple species clades within each of the two com-
plexes, although intraclade sampling for some of the species
was small (e.g., Ep_7, Ep 8, and Ei_A).

Congruence between mtDNA and nuDNA
Classic DNA barcoding (Hebert et al. 2003) is based on a
distinct gap between intraspecific variability and interspecific

variability in genetic distances of COI, for which a threshold
of 3% for delineating species is generally recommended.

@ Springer

However, thresholds are sometimes not applicable to all tax-
onomic groups and thus have to be applied carefully across
taxa. Schwentner et al. (2011) determined a 5-6% threshold
between intra- and interspecific divergence in branchiopods,
and Radulovici et al. (2009) detected intraspecific divergence
between 3.78 and 13.6% in amphipods. However, Radulovici
et al. (2009) supposed that especially the larger distances can
be an evidence for cryptic species in amphipods. Thus far,
only a limited amount of genetic data are available for isopods
and we are still at a stage of finding a recommendable thresh-
old for this group, and therefore, we, as have recent studies,
applied a threshold of 3% (e.g., Brix et al. 2018).

Species delimitation based on a single locus can lead to an
under- or overestimation of the number of species, for instance
due to incomplete lineage sorting or pseudogenes (Song et al.
2008). Thus, inclusion of a nuDNA marker with a different
level of gene flow in combination with mtDNA markers is
useful to confirm the existence of putative species (Hare
2001; Petit and Excoffier 2009). It is known that mtDNA is
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Table 4 Maximum and mean of

pairwise intraclade distance as E. inermis Intraclade distance Interclade distance

well as minimum, maximum and

mean interclade distances for 16S, Max. (%) Mean (%) Min. (%) Max. (%) Mean (%)

COlI, and 18S of each identified

clade within the evaluated 16S

Eurycope inermis dataset Ei_A (E. hanseni) 0.93 0.29 8.96 25.41 12.96
Ei B (E. inermis s. str.) 1.19 0.50 2.83 23.76 9.33
Ei C (E. inermis s. str.) 1.20 0.29 2.83 24.77 11.33
Ei B_C (E. inermis s. str.) 4.12 1.58 8.96 24.77 16.17
Ei D (E. cornuta) 0.56 0.37 19.26 25.41 22.92
Ei E (E. inermis sp. E) 0.52 0.28 15.33 20.94 16.95

COI
Ei A (E. hanseni) 0.00 0.00 17.50 27.11 21.08
Ei B (E. inermis s. str.) - - - - -
Ei C (E. inermis s. str.) 1.17 0.58 17.50 25.95 23.11
Ei D (E. cornuta) 0.43 0.12 22.08 27.11 24.23
Ei E (E. inermis sp. E) 1.95 0.86 22.08 25.95 24.18
18S

Ei A (E. hanseni) 0.05 0.01 1.06 3.88 223
Ei B (E. inermis s. str.) 0.05 0.02 0.10 3.94 1.91
Ei C (E. inermis s. str.) 0.05 0.00 0.10 4.01 2.51
Ei B C (E. inermis s. str.) 0.2 0.05 0.05 4.01 3.21
Ei D (E. cornuta) 0.00 0.00 1.15 4.01 3.05
Ei E (E. inermis sp. E) 0.14 0.01 1.15 3.65 2.97

more sensitive to recent divergence than nuDNA (Wilson
et al. 1985; Barrowclough and Zink 2009). Discordance be-
tween nuDNA and mtDNA is a sign for recent or ongoing
speciation (e.g., Shaw 2002; Johnson et al. 2006), which has
also been recently observed within marine taxa (e.g., Eytan
et al. 2009; Reveillaud et al. 2010; Baird et al. 2011; Schiiller
2011; Jennings et al. 2013; Marlétaz et al. 2017).

Intraspecific genetic divergence of mtDNA and nuDNA
was low in our study in comparison to interspecific diver-
gences (Tables 3 and 4), a finding congruent with previous
studies on isopods (e.g., Raupach et al. 2009; Brix et al. 2011,
2014a, b). For instance, haploniscid isopods featured interspe-
cific divergences of 9-20% and intraspecific divergences be-
low 1.8% in COI (Brix et al. 2011). Interspecific divergences
in macrostylid isopods based on 16S ranged between 23 and
31%, whereas intraspecific divergences were close to zero
(Riehl and Brand 2013). Similar examples exist for instance
for Desmosomatidae (16S data; Brix et al. 2018),
Macrostylidae (16S, 18S data; Riehl et al. 2017), and
Nannoniscidae (COI, 16S, 18S data; Kaiser et al. 2017).
Thus, the distances observed within our dataset fall within
the ranges that were previously observed in other isopod fam-
ilies. Interestingly, all these isopod studies as well as our
dataset have one thing in common: low intraspecific diver-
gence and high interspecific divergence.

The ‘4%’ criterion (Birky et al. 2005) was fulfilled for the
three loci of both species complexes (except for the 16S and

18S dataset of E. inermis Ei_B and Ei_C, where the difference
was only 2x). Further, a distinct barcoding gap could be ob-
served in all mtDNA datasets as well as in the nuDNA
datasets, except for E. inermis Ei_B and Ei C in 18S (Fig.
6), which became visible when Ei_B and Ei_C were consid-
ered as one species. In contrast to our expectations, groups
with the lowest interspecies divergences did not occur in sym-
patry but were either separated by the GSR (e.g., 16S and 18S
in E. inermis Ei_ B and Ei_C), or by depth (e.g., 16S and COI
in E. producta Ep 2 and Ep_3).

The mtDNA networks of this study were all unconnected at
95% similarity (networks not shown). Particularly, the forma-
tion of unconnected parsimony haplotype networks supports
the existence of separate species (Hart and Sunday 2007). It is
not surprising that some of the determined nuDNA haplotype
networks were connected to each other at a level of 95%, since
we were examining relationships within two complexes of
closely related species. However, two discordant observations
were made between the 16S and 18S networks: E. producta 1
and E. inermis B and C were each split into two independent
networks in the 16S datasets, but not the 18S datasets. In
contrast, Ep 1 as well as Ei_B together with Ei_C formed a
connected network within the nuDNA network. We assume
that E. producta 1 could be at the beginning of species forma-
tion and that part of the group might be only successful in
shallow waters (down to 330 m), whereas the other part was
present from 288 to 1372 m, although the signal is still very
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Fig. 6 Histograms show the percentage of the p-distances within and

between the specimens of the E. producta and E. inermis datasets. The
barcoding gap between intraspecific (dark gray bars) and interspecific

weak. Topographic barriers can potentially hinder gene flow
between populations (Etter et al. 2011). Separation by the
GSR or factors related to the physical barrier could be ob-
served between populations of E. inermis Ei B and Ei C.
Those two populations have thus far not been isolated long
enough to diverge in the slow evolving nuDNA 18S gene
locus. However, until now, there has not been enough evi-
dence to support that there are two populations diverging into
different species either in . producta 1 nor in E. inermis B_C.
Further sampling and also further genetic information are
needed to draw robust conclusions. Apart from those two
exceptions, results of mtDNA and nuDNA were congruent
and supported the likely existence of eight and four species
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(light gray bars) variability is indicated by a black arrow. Barcoding gap
histogram of 16S a E. producta and b E. inermis, of COI ¢ E. producta
and d E. inermis, and of 18S e E. producta and f E. inermis

within the E. producta and the E. inermis datasets,
respectively.

Morphological findings

Geographically widespread species tend to exhibit vari-
ation in species-level morphological characters. Thus,
elucidation of the variation within the species characters
can lead to discovery of new species and better knowl-
edge of species boundaries and their distributions and
improve our knowledge of deep-sea biogeography
(Wilson 1985).
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Fig. 7 Habitus drawings of E. producta Ep 1-8 (upper row),
magnification of the rostrum (middle row), and male pleopod 1 (lower
row). The relative size and shape of the rostrum (r) compared to the size
and shape of article 1 of the first antenna (art 1) in combination with the

(sp. nov.)

<

Application of a combined morphological and molec-
ular approach helped to identify multiple morphospecies
within both species complexes. Specimens of both spe-
cies complexes evaluated within this study feature small,
but visible morphological differences, which are congru-
ent with mtDNA and nuDNA species delimitations. One
exception occurred between the E. inermis groups Ei B
and Ei C, which could not be distinguished from each
other morphologically.

Some of the species clades could be linked to species
already known to science. Overall, a total of eight puta-
tive morphospecies could be observed within the
E. producta dataset; specimens of E. producta Ep_1 were
most similar to the original description of E. producta
sensu stricto (type locality: Norwegian Sea), whereas
specimens of Ep 2 belong to the known species
Eurycope dahli (type locality: Norwegian Sea).
Eurycope producta 3-8 are not yet described. Similarly,
a total of three species of E. inermis evaluated herein are
already known to science. Specimens of Ei A resemble
Eurycope hanseni (type locality: NW Atlantic) and

Ep_8
(sp. nov.)

No male specimen
available.

shape of the distal margin of the male pleopod 1 are useful characters to
distinguish species within the E. producta complex. Scale bar habitus
1 mm and pleopod 0.1 mm

specimens of the Ei B and Ei_C group are most similar
to E. inermis sensu stricto (type locality: NW Atlantic,
Ingolf St. 120, NE of Iceland). Eurycope inermis Ei_D
resembles E. cornuta (type locality: Drebak Strait,
Oslofjord, Norway), the type species of the genus; thus,
one species within this complex (E. inermis E) is new to
science.

Putative species are geographically
and bathymetrically isolated

Environmental factors, for instance topographic barriers
and hydrographic conditions, are factors known to have
an impact on organism dispersal; however, these barriers
are often semipermeable (McClain and Hardy 2010).
Long-range dispersal across oceanic ridges has been ob-
served in smaller, meiofaunal organisms and also in
macrofaunal groups that feature dispersal stages such
as larvae or adult swimmers (Zardus et al. 2006; Bik
et al. 2010; Menzel et al. 2011; Schiiller and Hutchings
2012). Benthic isopods are brooders without a larval life
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Fig. 8 Habitus drawings of

E. inermis Ei_A-E (upper row),
magnification of the rostrum
(middle row), and male pleopod 1
(lower row). The relative size and
shape of the rostrum (r) compared
to the size and shape of article 1 of
the first antenna (art 1) in combi-
nation with the shape of the distal
margin of the male pleopod 1 are
useful characters to distinguish
species within the E. inermis
complex. No drawings are pre-
sented for Ei_C, since there were
no morphological differences to
specimens of Ei B. Scale bar
habitus 1 mm and pleopod

0.1 mm

Ei_A

(E. hanseni)

stage; thus, their dispersal ability seems to be more
restricted by submarine ridges (Schnurr et al. 2014;
Kaiser et al. 2017; Riehl et al. 2017; Bober et al.
2018). Further, the speciation potential of marine
brooders is assumed to be increased due to their low
vagility and their small body size (Teske et al. 2007).
Previous studies on putatively widespread isopods with
similar morphology established the existence of distinct
species with the original species based on genetic anal-
ysis (e.g., Betamorpha fusiformis (Barnard 1920);
Raupach et al. 2007), Atlantoserolis vemae ((Menzies
1962); Brandt et al. 2014). However, munnopsid iso-
pods have an enhanced potential for dispersal (Wilson
1983b), since they have secondarily evolved natatory
adaptations (Wilson 1989) and can swim off the bottom
using their natatory legs (Hessler and Stromberg 1989;
Marshall and Diebel 1995); thus, some of them are able
to traverse larger distances (Raupach et al. 2007) likely
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(E. cornuta)

Ei_B_C

(E. inermis sensu stricto)

with some help from near-bottom currents once up off
the sea floor.

Specimens from each species complex evaluated herein
were reported in former studies to occur on both sides of the
GSR and to exhibit depth ranges from 103 to 2029 m depth
(E. producta) and from 302 to 2137 m depth (E. inermis;
Schnurr et al. 2014). However, delimiting species within the
two complexes based on our current dataset revealed that most
component species are not only geographically more restrict-
ed than the whole complex, but also bathymetrically more
restricted (Figs. 9, 10, and 11) than previously assumed.
Differences in previously recorded depth ranges could be ob-
served in comparison to the results of Schnurr et al. (2014).
Thus, the genetically and morphologically identified species
clades feature much smaller depth ranges than previously as-
sumed: for instance, specimens of Ep 2 (E. dahli; former
depth range, 1624-2590 m; observed depth range within this
study, 2130-2346 m), Ei_A (E. hanseni; former depth range,
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893-2410 m; observed depth range within this study, 2134~
2410 m), and Ei_D (E. cornuta; former depth range, 229—
1320 m; observed depth range within this study, 833—
1225 m). Most species clades feature a depth range spanning
less than 400 m (e.g., E. producta clades Ep 2, Ep 4, Ep 6,
Ep 7,and Ep_8). Only four species clades (E. producta: Ep 1
and Ep 3 and E. inermis: Ei_B and Ei_C) feature depth ranges
spanning 1000 to 1500 m. Thus, a vertical zonation of species
was observed. This is in line with the findings of Brix et al.
(2014b) for different lineages within Chelator insignis
(Hansen, 1916) south of Iceland. The observed genetic differ-
ences of the putative species from different depths suggest that
bathymetry has an effect on the speciation process of the ex-
amined species complexes. Similar observations have previ-
ously been made in various taxa (France and Kocher 1996;
Rogers 2003; Schiiller 2011; Havermans et al. 2013; Brix
et al. 2014b). Depth or factors related to depth can increase
the genetic differentiation in benthic organisms (e.g., Held
2003; Rex and Etter 2010; Havermans et al. 2013; Jennings
et al. 2013; Eustace et al. 2016). Further, depth has been
shown to influence distributional patterns of munnopsid iso-
pods (Schnurr et al. 2014) and ampeliscid amphipods (Dauvin
et al. 2012). However, the depth is correlated with several
other factors such as hydrostatic pressure (Somero 1992), dis-
solved oxygen concentration (Watling et al. 2013), total or-
ganic carbon within the sediment, and availability of food
(Altabet et al. 1991), making it unclear which factor is the
ultimate driver of divergence.

Only two species, E. producta (Ep 1) and E. inermis
(Ei_B_C), were present on both sides of the GSR. However,
Eurycope inermis Ei_B and Ei_C were clearly separated from
each other by the GSR. Our 16S results show tendencies of
incipient speciation. However, this evidence is not enough to
support that there are two populations diverging into different
species, without analyzing further specimens. The remaining
species were either restricted to the deep areas north of the
ridge (Ep 2, Ei A, Ei D), to the deep areas south of the ridge
(Ep_4, Ep 7, Ep 8), along the GSR itself (Ep 8, Ei E), or
along the IFR (Ep_5). Thus, the GSR or factors related to this
extensive submarine ridge might affect the distribution of
most of the species evaluated herein (except for E. producta
Ep_1). However, the bathymetric distribution of this species
(288-1372 m) encompasses depths shallower than the deepest
depression of the GSR (840 m). Thus, crossing the ridge
should be possible for this species, since the depth of the
passageways falls within the bathymetric range of this species
(Fig. 11).

The topography of the Reykjanes Ridge differs from
other oceanic ridges. This ridge is more a chain of sea-
mounts than a continuous ridge and does not necessarily
prevent gene flow between the Irminger Basin and the
Icelandic Basin. Thus, the Reykjanes Ridge does not
always act as a barrier for the southern distributed

species evaluated here, as seen in the distribution of
E. producta 7 and E. inermis B. This distributional pat-
tern has also been observed within other isopods south of
Iceland (Brix et al. 2014b).

Species distribution modeling and limitations of our
dataset

Species distribution models are a helpful tool for illus-
trating potential distributional patterns of species.
Implementation of SDMs on datasets allows more gener-
alized assumptions on distributional patterns of species.
The use of SDMs within the marine environment is still
in its initial stage (Degraer et al. 2008), especially, since
data collection within the marine environment relies on
point data only, requires a lot of effort, and is expensive.
Studies on benthic invertebrates are so far mainly
modeled over local scales (e.g., Meillner et al. 2008),
but also some on larger scales as, e.g., the Baltic Sea
(Gogina and Zettler 2010), the North Sea (Reiss et al.
2011), or Icelandic waters (Meilner et al. 2014).
Random forest works with presence and absence data,
and the prediction accuracy of RF is known for its high
performance (e.g., Iverson et al. 2008).

This study is the first known attempt of modeling the dis-
tributions of marine benthic isopods based on a combination
of genetic and morphological data. We are aware that the
SDMs presented here are based only on a small dataset, which
should be expanded in the future. However, our dataset was
well resolved using RF. The SDMs give an insight on the
potential distribution and the limits of the resolved species
clades.

Conclusion

A solid knowledge on species is essential for taxonomists,
evolutionary biologists, ecologists, and conservationists
(Harrison 1998; Kunz 2001). However, biodiversity can
be underestimated by overlooked morphologically similar
species and the existence of cryptic species (Vrijenhoek
2009). For several years, the two species E. producta and
E. inermis were considered to be species complexes. No
attempts at resolving these species complexes had yet been
undertaken, and thus, it was not possible to determine the
number and also the potential distribution of candidate
species in previous studies (e.g., Meifiner et al. 2014,
Schnurr et al. 2014). As hypothesized, samples from the
two putative species complexes within Icelandic waters
represent not only genetically, but also morphologically
different species. Our BI and ML analyses of mtDNA
and nuDNA loci, as well as species delimitation methods,
support the existence of eight species within the
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<« Fig. 9 a—g Species distribution modeling for the species clades of the
E. producta complex. No species distribution model was created for Ep
3, since specimens belonging to this group were only sampled at a single
station. Color scales refer to probability of occurrence, black dots indicate
the presence sites of each species clade, and white dots indicate the absence
of the respective species clade. Values above 0.5 are considered to indicate
the most likely distribution potential of the respective species clade

E. producta complex (six new to science) and four species
within the E. inermis complex (one new to science).

The elucidated species clades featured (based on our
analyzed dataset) much smaller bathymetric ranges and
were much more geographically restricted than

Fig. 10 a—f Species distribution
modeling for the four species
clades of the E. inermis complex.
Clades Ei B and Ei C are
modeled separately and together
(Ei_B_C), in order to demonstrate
their geographic separation by the
Greenland-Scotland Ridge. Color
scales refer to probability of oc-
currence, black dots indicate the
presence sites of each species
clade, and white dots indicate the
absence of the respective species
clade. Values above 0.5 are con-
sidered to indicate the most likely a

Ei_A

(E. hanseni)

64"

previously assumed. Vertical zonation was observed,
with eight species clades having a depth span of less
than 400 m and four species clades having a depth span
of 1000 to 1500 m (Fig. 11). Interestingly, E. producta
1 was present on both sides of the GSR. Thus far, there
may not be enough evidence to suspect that this species
clade is at the beginning of species formation, although
discordant observations between the 16S and 18S
datasets were made. However, we assume that part of
the E. producta 1 group might be only successful in
shallow waters down to 330 m depth, whereas the other
part of the group was present from 288 to 1372 m
depth. Eurycope inermis B_C were separated from each

32" 28"

Ei B
(E. inermis B
sensu strictg

60"
distribution potential of the re-

spective species clade
Ei_C

(E. inermis C
sensu stricto

RSP
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Table 5 Error rates of random

forest models, with reference to Species Stations ~ OOB [%]  Absence class error [%]  Presence class error [%]

the number of stations where the

respective species clade of Ep_1 (E. producta s. str.) 6 20.0 214 16.0

E. producta and E. inermis Ep_2 (E. dahli) 4 20.0 18.7 25.0

specimens were present, OOB Ep_4 (E. producta sp. 4) 4 10.0 12.5 0.0

[%], the absence class error [%], -

and the presence class error [%] Ep 5 (E. producta sp. 5) 3 10.0 11.7 0.0
Ep 6 (E. producta sp. 6) 4 35.0 31.2 50.0
Ep 7 (E. producta sp. 7) 2 45.0 50.0 0.0
Ep 8 (E. producta sp. 8) 2 5.0 5.0 0.0
Ei A (E. hanseni) 3 11.1 133 0.0
Ei B (E. inermis s. str.) 5 5.6 7.7 0.0
Ei C (E. inermis s. str.) 6 277 333 16.7
Ei B _C (E. inermis s. str.) 11 16.7 14.2 18.2
Ei D (E. cornuta) 3 38.9 40.0 33.0
Ei_E (E. inermis sp. E) 4 16.7 14.3 25.0

other by the Greenland-Scotland Ridge. We assume that
they are two different populations, which might be at
the beginning of species formation. However, we choose
to take the conservative approach and suggest they are
not yet separate species, that further sampling needs to
be done in order to draw robust conclusions and

Ep_1 (E. producta s.str.)

Ep_2 (E. dahli)
Ep_3 (E. producta sp. 3) I

Ep_4 (E. producta sp. 4)

Ep_5 (E. producta sp. 5) S
Ep_6 (E. producta sp. 6) 7

Ep_7 (E. producta sp. 7) |

Ep_8 (€. producta sp. 8) [ ]

E/_A (E. hanseni)
Ei_ B (E. inermis s. str.)
Ei_C (E. inermis s. str)
Ei_D (E. cornuta)

E/_E (E. inermis sp. E)

0 500 1000

Fig. 11 Observed depth ranges of all the evaluated specimens used in this
study of the species clades belonging to the two species complexes
E. producta and E. inermis. The geographic distribution of the species
clades is visualized in light gray bars (northern species clades; group 1),
dark gray bars (northern and southern species clades; group 2), and black
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confirm speciation for both E. producta 1 and
E. inermis B_C.

Our integrative approach holistically supported the need of
a taxonomic revision of the two species complexes. Further
molecular research in combination with taxonomy and inclu-
sion of SDM at the transition of the northern North Atlantic

[l Southern
[l Northern and southern
Northern
T T depth [m]
1500 2000 2500

bars (southern species clades; group 3). Clades E. inermis B and C are
visualized separately, in order to demonstrate their different depth
distributions. Asterisk indicates the maximum depth of the Greenland-
Scotland Ridge
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and the Nordic Seas will eventually enhance our knowledge of
biodiversity, distribution, and dispersal of benthic organisms
and, thus, will offer options on how to conserve the environ-
ment. Moreover, inclusion of climate-related variables into
SDMs will enable us to predict responses to environmental
changes.
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