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Abstract
A phyllodocid polychaete belonging to the genus Eulalia is reported from Nuevo Gulf, Patagonia (South-western Atlantic
Ocean) with abundant populations thriving in the intertidal zone. Morphological and molecular data allowed assigning this
population toEulalia clavigera (Audouin&Milne-Edwards, 1834), a species typically occurring along the north-eastern Atlantic
coast. The absence of genetic structuring between north-eastern and south-western Atlantic E. clavigera strongly supports a non-
native origin of the Patagonian population. Conversely, the majority of the Mediterranean Eulalia cf. clavigera analysed in this
study turned out to belong to a different, probably undescribed species, suggesting that the diversity and taxonomy of green
Eulalia is more complex than previously supposed. The high adaptation capabilities to stressed environments showed by
E. clavigera, along with its possible high impact on native assemblages through predation, compel to carefully monitor its spread
along the Patagonian coasts.
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Introduction

The introduction of non-native species represents a major
threat to natural ecosystems, especially when the intro-
duced forms become invasive and eventually affect ecosys-
tem functioning and human activities (Vilà et al. 2010),
thus producing relevant economic losses (Pimentel et al.
2001). In the last decades, biological invasions in marine
environments have dramatically increased, chiefly due to
the technical and logistic improvements of maritime trade
and the development of the transport network (Hulme
2009). The effects of non-native species colonising a new
environment are often unpredictable, and even in the in-
stance of an initial economical gain, the invasion process
has usually a negative ecosystem impact, possibly leading
to a complete change in natural assemblages (Molnar et al.
2008; Jeschke et al. 2014). For this reason, monitoring of
biological invasions is essential for environmental man-
agement, allowing to plan impact reduction and, where
possible, mitigation strategies (Wittenberg and Cock
2001). Monitoring plans aimed at early tracking of non-
native species should concentrate on some areas that are
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particularly prone to biological invasions, among them,
aquaculture facilities and commercial ports, as well as ar-
tificial canals connecting different basins or oceans
(Molnar et al. 2008). However, the study of biological in-
vasions in marine ecosystems is greatly hindered by the
lack of knowledge regarding a large part of geographic
areas. In particular, a close monitoring of species, of their
spreading and of their impact on native communities is
commonly realised only in European waters (Leppäkoski
et al. 2002), in the Mediterranean Basin (Occhipinti-
Ambrogi and Savini 2003), along the North American
shores (Carlton 1989; Lodge et al. 2006) and in Australia
(Pollard and Hutchings 1990a, b), whereas in other geo-
graphic areas the knowledge about non-native species is
fragmentary and most likely their impact is greatly
underestimated (Rilov and Crooks 2009). Moreover, even
in well-monitored geographic areas, the majority of studies
focus on a few taxa, such as fishes, crustaceans and mol-
luscs, whereas information about the occurrence of the ma-
jority of non-native forms belonging to other phyla is an-
ecdotic and fragmentary, and their effects on ecosystem
functioning are scarcely known (Marchini et al. 2015).

In vertebrates and a few invertebrate groups, such as
insects, echinoderms, or molluscs, it is relatively easy to
assess whether a species is native or not. Instead, for sev-
eral taxa, this question is far more complex to tackle: spe-
cies with uncertain or unknown origin are considered cryp-
togenic and are particularly common in unicellular eukary-
otes as well as in several macroinvertebrate groups, chiefly
annelids and amphipods (Carlton 1996). This poses an ad-
ditional difficulty to alien species management, in particu-
lar in marine environments (Carlton 1996). Even if cryp-
togenic species are usually treated as non-native in envi-
ronmental management (Ojaveer et al. 2013), issues related
to the interpretation of newly reported species may have
consequences on environmental management practices,
and on ecological status assessment in marine environ-
ments (Borja et al. 2005; Vilà et al. 2010). Thus, works
aimed at solving cryptogenic species issues have high
relevance.

Among marine animals, polychaete worms are
characterised by a high frequency of cryptogenic species
(Carlton 1996). This is due to a poor understanding of the
diversity of some groups, which may lead to misidentifica-
tions, the inclusion of different biological species under the
same name, and lack of information about the biogeography
of several species (Giangrande 2003; Çinar 2013). Fifty out of
the 292 alien polychaete species listed by Çinar (2013) are
considered cryptogenic, at least in some areas; this high per-
centage (approximately 17%) shows that the occurrence of
cryptogenic species in polychaetes is substantial. Moreover,
alien and cryptogenic species are not evenly distributed
among polychaete families. According to Çinar’s (2013)

review, groups that have been subject of thorough taxonomic
revisions, such as Nereididae, Sabellidae and Serpulidae,
show a high occurrence of alien species, and conversely, a
lower number of cryptogenic ones, whereas groups with a
more uncertain taxonomy, and putative occurrence of cryptic
species, such as Spionidae, comprise a relatively low number
of confirmed alien species, and a higher number of cryptogen-
ic ones. Molecular techniques are often necessary to unravel
the distribution and dispersal path of alien polychaetes (Blank
et al. 2008), as well as the occurrence of cryptic species within
traditionally recognisedmorphospecies with a wide geograph-
ic range (Barroso et al. 2010; Carr et al. 2011; Nygren 2014).
Cryptogenic species issues can be solved with the appropriate
use of such techniques as well (Blakeslee et al. 2008; Bolton
et al. 2011), even though they have rarely been used to clarify
the status of cryptogenic polychaete species (Carrera-Parra
and Salazar-Vallejo 2011; Sun et al. 2017). A number of
non-native polychaetes are known to have a strong impact
on native communities. This is particularly evident for non-
native polychaetes that are also ecosystem engineers and are
known to strongly alter the invaded habitats and induce dra-
matic structural and functional changes in the native assem-
blages (Crooks 2002; Holloway and Keough 2002; Orensanz
et al. 2002; Tovar-Hernández et al. 2011), but polychaete spe-
cies might also have strong impacts on native assemblages by
competing with, and eventually replacing, native species
(Çinar and Altun 2007). Phyllodocidae are relatively large
polychaetes that commonly occur in shallow-water assem-
blages; as the majority of them are carnivores or scavengers,
they are expected to have a strong impact on the overall as-
semblages of colonised environments. In fact, Schimmenti
et al. (2016) and Bertocci et al. (2017) suggest that the
phyllodocid Eulalia ornata Saint-Joseph, 1888, occurring at
high densities on Mediterranean Sabellaria reefs, may have a
remarkable effect on ecological dynamics of this habitat
through predation on other invertebrates.

In recent years, a phyllodocid polychaete belonging to
the genus Eulalia has been reported with remarkably high
densities on shallow rocky environments along the
Patagonian coast in South America. In Patagonia, this ho-
mogeneously green phyllodocid was found crawling on
rocks or in tide pools and Lobo Orensanz, who participated
in the collecting trip, indicated he had not seen the species
during the 1970s when he collected polychaetes along
Argentinian shores (J.M. Orensanz pers. com. to MED
and SSV, 2013). The species had been preliminarily iden-
tified as an undescribed species belonging to the Eulalia
viridis/clavigera complex, but its sudden appearance along
the Patagonian coast raised doubts about the native status
of the species. This work has the purpose to clarify the
identity of the Eulalia species spreading in Patagonia, to
assess its eventual non-native status and to understand and
discuss possible introduction paths and vectors.
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Material and methods

Specimens of Eulalia sp. from Patagonia were collected at
tide level in environments along the coast of Puerto
Madryn (42°49.79′S; 64°53.1′W) in localities Cerro
Avanzado, Punta Cuevas and Ambrosetti as indicated be-
low (Fig. 1), during several years (2007–2013). Material
for comparison from European waters was collected at tide
level among mussels in Plymouth (50°40.45′N; 4°27.12′
W) NW Atlantic during years 2006 and 2011 and at 0.2–
0.5 m depth among calcareous algae at Capraia Island
(43°1.77′N; 9°50.61′E), Mediterranean Sea, and in the port
of Stintino, N Sardinia (40°56.13′N; 8°13′47.86″E),
Mediterranean Sea, during year 2013 (Fig. 1). Along with
this material, we studied also other museum specimens
identified as Eulalia clavigera (Audouin & Milne-
Edwards, 1834), collected in Bretagne, France, in 1994,
and in Brazil in 2008. The examined material has been
preserved in the institutional collections of El Colegio de
la Frontera Sur, Chetumal, México (ECOSUR) and of the

Laboratorio de Parasitología of the Instituto de Biología de
Organismos Marinos, Puerto Madryn, Argentina (CNP), in
the Los Angeles County Natural History Museum (LACM)
and in the Natural History Museum of the University of
Pisa, Italy (MSNP).

Specimens from Cerro Avanzado (Puerto Madryn),
Plymouth, Capraia Island and Stintino were directly fixed
and preserved in 96 or 70% ethanol until DNA extraction.
DNA extraction was carried out using the GenElute™
Mammalian Genomic DNA Miniprep Kit distributed by
Sigma-Aldrich, following the manufacturer’s instructions.
For molecular identification and phylogenetic reconstruction,
we amplified the mitochondrial gene coding for the subunit I
of the cytochrome c oxidase (COI) using the universal primers
LCO1490 (5′-GGTCAACAAATCATAAAGATATTGG-3′)
and HCO2198 (5 ′-TAAACTTCAGGGTGACCAAA
AAATCA-3′) (Folmer et al. 1994). Polymerase chain reaction
(PCR) amplifications were carried out in 20 μL solutions
using 1.5 mM of MgCl2, 0.2 mM of each dNTP, 0.1 μM of
each primer, 1 U of DreamTaq DNA polymerase (Thermo
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Fig. 1 Sampling localities of
Eulalia clavigera in western and
eastern Atlantic Ocean: Amb
Ambrosetti, BaF Beg an Fry, Cap
Capraia Island, Cas Cassino, CAv
Cerro Avanzado, PCu Punta
Cuevas, Ply Plymouth, Sti
Stintino. Black stars: populations
analysed from the molecular and
morphological point of view;
white stars: populations analysed
from the morphological point of
view only



Scientific), and ∼ 2.5 ng of template DNA. The PCR profile
was set as follows: initial denaturing step at 94 °C for 3 min;
34 cycles of denaturing at 94 °C for 45 s, annealing at 54 °C
for 1 min, and extending ay 72 °C for 1 min and a final
extending step at 72 °C for 7 min. A negative control was
included in each reaction. PCR products were precipitated
with sodium acetate and absolute ethanol and sent to
Macrogen Europe for sequencing. The obtained sequences
were compared with sequences of E. clavigera from
Banyuls-sur-Mer (Gulf of Lion, Mediterranean Sea) and
Plymouth (Northeastern Atlantic, English Channel) retrieved
from the GenBank database. Moreover, we employed COI
sequences of Eulalia quadrioculata Moore, 1906; Eulalia
gracilior (Chamberlin, 1919), Eulalia levicornuta Moore,
1906 and E. ornata and Eulalia viridis (Linnaeus, 1758) ob-
tained from the GenBank database (Table 1) for phylogenetic
reconstruction.

Sequences were aligned with ClustalX 2.1 (Larkin et al.
2007), and alignments were edited in BIOEDIT version
7.2.5 (Hall 1999). Measurement of the genetic differentiation
was based on the Kimura-two-Parameter (K2P) model
(Kimura 1980). Unrooted Neighbour-Joining (NJ; Saitou
and Nei 1987) trees were built using the software MEGA 7
(Kumar et al. 2016), considering reliable nodes supported by a
high proportion (> 90%) of replicates in the bootstrap analysis
(Felsenstein 1985). The bootstrap test, along with reciprocal
monophyly, was used to determine whether a species-like
cluster was well supported. The Automatic Barcode Gap
Discovery (ABGD) method, generated on the K2P pair-wise
distances, was used to support the grouping of the sequences
into species. Based on the barcode gap model, this test iden-
tifies whenever the average divergence among sequences
within species is lower than the average divergence inter-
species (Puillandre et al. 2012).

Estimates of Eulalia densities were obtained in an abra-
sion platform located in Cerro Avanzado (42°49.79′S,
64°53.1′W) through the sampling of 50 randomly placed
8 × 8 cm quadrats. The number of specimens in each quad-
rat was counted using the program ImageJ and divided by
the area.

Results

Systematics

Eulalia clavigera (Audouin & Milne-Edwards, 1834) (Figs.
2, 3, and 4)

Phyllodoce clavigera Audouin and Milne-Edwards 1834:
226–228, Pl. 5A, Figs. 9–13

Eulalia clavigera: Bonse et al. 1996: 40–45, Fig. 14
(redescr., syn.); Alós 2004: 193–196, Fig. 69 (SEM
photographs)

? Eulalia viridis: Morgado and Amaral 1984: 51 (non
Linnaeus, 1767)
Material examined

Morphology and genetics

South-western Atlantic. Argentina. Cerro Avanzado
(42°49.79′S, 64°53.1′W) ten individuals (MSNP: P/3892-P/
3901), 15 February 2015, coll. T. Vega Fernández and F.
Badalamenti. North-western Atlantic. Great Britain, UK.
Plymouth (50°40.45′N; 4°27.12′W), tide level, rocky shore,
five specimens complete, 18 March 2006, coll. F. Pleijel; tide
level, rocky shore with holdfast of Laminaria, six specimens
complete, 21 Mar. 2011, coll. F. Pleijel and A. Nygren.
Mediterranean Sea. Capraia Island, Italy. Capraia Island
(43°1.77′N; 9°50.61′E), 0.5 m, rocky shore with calcareous
algae, five specimens (MSNP: P/3024; P/3136; P/3902;
P/3903), 18 March 2013, coll. C. Ravaglioli and F. Bulleri.
Northern Sardinia, Italy. Stintino (40°56.13′N; 8°13′47.86″
E), 0.5 m, rocky shore with calcareous algae, endolithic, five
specimens (MSNP: P/3456; P/3904; P/3905; P/3906; P/3907),
15 May 2013, coll. J. Langeneck and M. Casu.

Morphology

South-western Atlantic. Argentina. Cerro Avanzado
(42°49.79′S, 64°53.1′W), five specimens (CNP INV 993),
two complete, others fragmented, 13 August 2007, coll. un-
known; 27 specimens; 6 ethanol-preserved specimens

Table 1 GenBank sequences
employed in the phylogenetic
reconstruction

Species GenBank accession numbers

Eulalia clavigera (Audouin &
Milne-Edwards, 1834)

KT709556.1; KT709559.1; KT709558.1; KT709557.1;
KT709568.1

Eulalia gracilior (Chamberlin, 1919) JQ623500.1

Eulalia levicornutaMoore, 1906 HM473374.1; HM473376.1; HM473375.1; HM473373.1;
HM473372.1

Eulalia ornata Saint-Joseph, 1888 KT709567.1; KT709565.1; KT709566.1

Eulalia quadrioculata Moore, 1906 JQ623496.1

Eulalia viridis (Linnaeus, 1767) KR916829.1; KR916828.1; KR916827.1; KT709563.1;
KT709561.1; KT709560.1; KT709564.1
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(ECOSUR-OH-P702–706), 2 complete, and 21 formalin-
preserved specimens (ECOSUR-P2903), 14 complete, and 7
other anterior fragments, Northern rocky platform, 19
February 2013, coll. E. González, J.M. Orensanz and S.I.
Salazar-Vallejo. Punta Cuevas (42°46′S, 64°54′W), Puerto
Madryn, nine specimens, six complete, among mussels, 3
December 2009, coll. B. Trovant and J.M. Orensanz.
Ambrosetti (42°50.00′S, 64°50.00′W), ten specimens (CNP
INV 964), five complete, others fragmented, 15 February
2010, coll. unknown. Brazil. Cassino (32°11′S, 52°9′W), five
specimens (CNP INV 1647), three complete, others
fragmented, 9 March 2008, coll. unknown. North-eastern
Atlantic. Bretagne, France. Beg an Fry, Guimaëc (48°40′
04″N, 03°42′27″W), 1 m, rocky shore, two specimens
(LACM, formerly SMF 4639, id. Eulalia viridis (Linnaeus
1767)), complete, 13 March 1994, coll. D. Fiege.

Description. Complete specimens with up to 168
chaetigers and 78 mm total length, for 3 mm maximum width
(smallest 13 mm long, 1 mm wide, 94 chaetigers).
Prostomium triangular, almost as long as wide; antennae,
palps and tentacular cirri tapered, but tips can be modified
due to preservation. Median antenna slightly ahead of eyes,
reaching prostomial anterior margin; longest tentacular cirri
reach chaetigers 7–8 (6–9 in smaller specimens) (Fig. 3a, d).
Pharynx with densely packed papillae, covering its whole sur-
face; 22–30 marginal papillae, with varying shape depending
on the degree of its extension (Fig. 3b, e). Dorsal cirri lance-
olate, blunt, about twice longer than wide, becoming longer in
posterior segments. Dorsal cirrophores narrower than dorsal
cirri in anterior chaetigers; progressively wider, as wide as
dorsal cirri in posterior chaetigers. Chaetal lobes bilobed, each
lobe rounded. Ventral cirri ovate, about twice longer than
wide, blunt, usually smaller than chaetal lobes (Fig. 4a, c, f),
or as long as them (Fig. 4d–e). Parapodia uniramous, with
thick bundles of heterogomph compound chaetae, handle
slightly swollen distally, denticulate, hinge teeth blunt, 2–3
times longer than wide, blades tapered, finely denticulate, 6–
8 times longer than wide.

Pigmentation, Living specimens are deep green (Fig. 2),
including the pharynx; once preserved, the pigment fades off
into a greenish hue (Fig. 3e, b). Aged specimens (Fig. 3c–e)
turn into brownish or pale brownish, and the pharynx is paler.
Darker, glandular spots are present laterally from prostomium,
in dorsal cirri, along posterior segmental margins but missing
in mid-dorsal regions and basally in parapodial bases. These
spots become better defined once the green pigment fades
off. Unlike the greenish pigmentation which fades off in
aged specimens (Fig. 3), dark brown or blackish, possible
glandular spots are present in dorsal cirri, in dorsal
cirrophores and in the lower part of parapodial lobes. In
dorsal cirri, they can be arranged in irregular series in me-
dian chaetigers (Fig. 4b–e), or as an irregular transverse
series (Fig. 4f), or not visible (Fig. 4a).

Remarks

Specimens from the south-western and north-eastern Atlantic
perfectly match as regards size, colour pattern and morpho-
logical features; Mediterranean specimens are often slightly
smaller, with yellowish-green (rather than bright green) colour
alive, slightly more elongate prostomium and more pointed
dorsal cirri. Kato et al. (2001: 387, Table 1) compiled several
Eulalia species having green pigmentation, but the only one
having uniform pigmentation was Eulalia viridis (Linnaeus,
1767). Bonse et al. (1996) redescribed E. viridis and reinstated
E. clavigera (Audouin & Milne-Edwards, 1834), but this pa-
per was apparently overlooked by Kato et al. (2001). These
two species have slight differences in prostomial, parapodial
and pharynx papillation features that allow their distinction.
According to Bonse et al. (1996), the length-to-width ratio of
dorsal cirri is the most useful character to distinguish between
E. viridis and E. clavigera.

Ehlers (1901) described Eulalia strigata from Puerto
Madryn, Argentina. He hesitated about the generic placement
because his specimen had its pharynx invaginated; he indicat-
ed that the body was brownish with a distinct mid-dorsal,
longitudinal band, and that the median antenna was placed
between the eyes. Since some specimens of E. clavigera be-
come darker, sometimes brownish, a comparison with Ehlers’
(1901) description is needed. However, the drawing of a
parapodium of E. strigata (Plate 7, Fig. 18) shows that it
is very different from those found in E. clavigera: in
E. strigata, dorsal cirri are oval to rounded, slightly tapered
distally, whereas ventral cirri are rounded but markedly
longer than the neurochaetal lobe. On the contrary, in
E. clavigera, dorsal cirri are markedly tapered, and the
ventral cirri are oval, slightly pointed and about as long
as the neurochaetal lobes. A somehow similar species,
Eulalia magalhaensis was described by Kinberg (1866,
1910) from Buket Island, Magellan Strait, in shallow
subtidal environments. It also has a greenish body and
similar prostomial and parapodial features, but dorsal and
ventral cirri are lanceolate, acute, not blunt as in
E. clavigera. All native species of Eulalia are therefore
clearly different from the introduced E. clavigera.

Changes in pigmentation after fixation have been
highlighted in the original description. Audouin and Milne-
Edwards (1834: 228) indicated that Bthe overall colour of
Phyllodoce clavigera is bright green but, through the action
of alcohol, changes to metallic brown^ (BLa couleur générale
de cette Phyllodocé clavigère est d’un vert brilliant qui, par
l’action de l’alcool, passe au brun métallique^). The rede-
scription indicated a homogeneous pigmentation but living
animals are paler ventrolaterally. The pharynx distal papillae
change their shape depending on the sample treatment. Non-
relaxed specimens have globose, low papillae whereas osmot-
ic shocked specimens have them thin, better defined.

Mar Biodiv (2019) 49:851–861 855
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Fig. 2 Live individuals of Eulalia
clavigera in Cerro Avanzado,
Puerto Madryn among Mytilus
edulis (a) and tubes of Boccardia
proboscidea (b, c). Scale bars—a
2.5 cm, b 1 cm, c 7.5 mm

Fig. 3 Eulalia clavigera
(Audouin & Milne-Edwards,
1834). a, b Cerro Avanzado,
Puerto Madryn, Argentina,
freshly preserved specimens
(ECOSUR-OH). c–e Bretagne,
France, aged specimens (LACM).
a Anterior end, dorsal view. b
Same, showing fully everted
pharynx (inset: close-up of
pharynx margin). c Two complete
specimens, one with fully
exposed pharynx. d Anterior end
of above specimen. e Same,
dorsal view, pharynx exposed.
Scale bars—a 0.25, b 1.4, c 3.5, d
0.3, e 1 mm



Distribution

The species is naturally present in the UK, France to the
Mediterranean Sea (Alós 2004) and southwards to the
Canary Islands (Núñez et al. 2005; Núñez et al. 2010). It is
now being recorded as an exotic species in Puerto Madryn,
Argentina; the examination of southern Brazilian material
highlighted the occurrence of individuals morphologically
corresponding to this species, even if molecular data are not
available. It is likely that individuals identified as E. viridis in
southern Brazil byMorgado and Amaral (1984) also belong to
E. clavigera, but we could not study their material. In
Argentina, it has been found in intertidal rocky or mixed bot-
toms, among mussels and barnacles and spionid tube masses
(Fig. 2). Themean density recorded on rocky bottoms at Cerro
Avanzado was of approximately 90 individuals/m2, with a
maximum density recorded of 468 individuals/m2.

Phylogenetic reconstruction and species delimitation

We obtained for our material 592 bp COI sequences
(GenBank accession numbers MG253792 to MG253802).
The unrooted NJ tree obtained (Fig. 5) showed that all spec-
imens from Patagonia belonged to a highly supported clade
including Eulalia clavigera from the north-eastern Atlantic
Ocean (PLY) and a single individual from the northern
Mediterranean Sea (BAN). These specimens should therefore
be identified without any ambiguity as E. clavigera.
Moreover, individuals from Portugal identified as Eulalia cf.

viridis by Lobo et al. (2016) turned out to belong to the
Eulalia clavigera clade, and their identification should be
changed accordingly. Intraspecific K2P distances detected
within this group ranged from the 0 to the 1.2%, and converse-
ly, no trace of geographical differentiation was detected, with
specimens from Patagonia, Portugal, Great Britain and the
Gulf of Lion showing extremely low distances. By contrast,
the remaining Mediterranean specimens examined, originally
identified as E. clavigera, turned out to be the sister group of
the Btrue^ E. clavigera, showing similar intraspecific dis-
tances (0.2–0.7%) but a high interspecific distance towards
E. clavigera (19–22%). All other species employed in the
phylogenetic reconstruction are clearly distinct from the two
lineages, with high interspecific distances (18–28%). The
ABGD test univocally identified all divergent lineages as dif-
ferent species, suggesting that Eulalia cf. clavigera from the
Mediterranean Sea actually represents a different, undescribed
species.

Discussion

Morphological and molecular characterisation unambiguous-
ly demonstrates the occurrence of Eulalia clavigera in
shallow-water environments of Patagonia. The examined
specimens do not show any difference from European mate-
rial both from the molecular and the morphological point of
view; on the other hand, morphological features allow a sure
distinction from native Eulalia species occurring in
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Fig. 4 Eulalia clavigera
(Audouin & Milne-Edwards,
1834). a–c Cerro Avanzado,
Puerto Madryn, Argentina,
freshly preserved specimens
(ECOSUR). d–f Bretagne,
France, aged specimens (LACM).
a Chaetiger 10, right parapodium,
posterior view. b Chaetiger 50,
right parapodium, posterior view.
c Chaetiger 110, right
parapodium, posterior view. d
Chaetiger 10, right parapodium,
posterior view. e Chaetiger 50,
right parapodium, posterior view.
f Chaetiger 110, right
parapodium, posterior view. Scale
bars—a 100, b, c 150, d 135, e
200, f 180 μm



infralittoral and upper subtidal environments of Patagonia.
E. clavigera is known to effectively resist dehydration
(Kensler 1967), has been recorded from salt-marshes (Nicol
1935) and is often seen crawling among barnacles in
European waters (Evans 1949). This ability to thrive in differ-
ent environments characterised by large variation in chemical
and physical parameters could explain why this species has
been capable to establish abundant populations in the upper
intertidal, among Spartina root mats, as it was observed in
Puerto Madryn, Argentina. The absence of differentiation be-
tween specimens from the north-eastern and south-western
Atlantic Ocean strongly supports the hypothesis of a recent
introduction of E. clavigera in south-western Atlantic waters;
the introduction date is currently unknown, but this species
has not been recorded in intensive surveys carried out in the
1970s (J. M. Orensanz, pers. comm.) and therefore, it is likely
that its introduction occurred in the last three decades. The
relatively recent development of aluminium industry (1970),

that led to a substantial expansion of the small town of Puerto
Madryn, and to a significant increase of its international naval
connections, is strongly consistent with the hypothesis of a
recent unintentional introduction of E. clavigera with ship-
ping, either with ballast waters or in fouling communities
(Schwindt et al. 2014). On the other hand, specimens from
Great Britain, Portugal and northern Mediterranean Sea did
not show any trace of genetic differentiation, and intraspecific
distances detected were always very low. This suggests a high
connectivity among populations of E. clavigera and prevents
a more precise reconstruction of the origin of the introduced
population of E. clavigera recorded in the present study.

This study highlights also some uncertainties in the taxon-
omy of green Eulalia species. The distinction at specific level
between E. clavigera and E. viridis was confirmed only re-
cently by Bonse et al. (1996), and Kato et al. (2001) still
considered E. viridis as the only species with uniform green
pigmentation. The distinction between E. clavigera and
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Fig. 5 Tree inferred using the
Neighbour-Joining method on
Kimura-2-Parameter COI
distances. The tree is drawn to
scale. Only significant bootstrap
values (> 90%) are shown next to
the nodes. *herein sequenced.
BAN Banyuls-sur-Mer,
Mediterranean Sea; CAP Capraia
Island, Mediterranean Sea; PAT
Puerto Madryn, Patagonia, SW
Atlantic Ocean; PLY Plymouth,
NE Atlantic Ocean; POR
Portugal, NE Atlantic Ocean; STI
Stintino, Mediterranean Sea



E. viridis is difficult, especially in environmental monitoring
surveys, and the two species are often confused: for instance,
E. viridis is still reported from the coast of Portugal (Rodrigo
et al. 2015), but sequences obtained by Lobo et al. (2016) from
Portuguese specimens, and deposited in GenBank as
E. viridis, actually belong to E. clavigera (Fig. 5). Alós
(2004) suggested, in agreement with Bonse et al. (1996), that
E. viridis is a northern boreal and sub-arctic species, and it
does not occur in the majority of the European Atlantic coast-
line, whereas E. clavigera is a temperate species, widespread
in the Atlantic and in the Mediterranean Sea. The occurrence
of E. clavigera in the Mediterranean Sea is confirmed by the
sequence from Banyuls-sur-Mer in our phylogenetic recon-
struction; however, specimens from shallow environments of
the Mediterranean Sea sequenced in this work turned out to be
only distantly related to both E. clavigera and E. viridis and
should probably be assigned to a currently undescribed spe-
cies. Possible morphological differences of the new species
towards both E. clavigera and E. viridis are still uncertain
and might take into account fine differences in the shape of
prostomium and cirri, and in the live colour pattern, that is
nonetheless still completely green, without any trace of
contrasted drawings. Considering that the Gulf of Lion repre-
sents one of the coldest areas in the Mediterranean Sea, show-
ing the occurrence of several Atlantic relict species, it is pos-
sible that E. clavigera is a relict species in the Mediterranean
Sea, whereas the majority of the shallow-water green Eulalia
in the Mediterranean Sea should be assigned to one, or more,
different species. Recent studies on the genus Eulalia
highlighted that different species are almost impossible to dis-
tinguish based on features of the fixed individual, whereas live
colour represents one of the most important features in the
taxonomy of this genus (Schimmenti et al. 2016). It is very
likely, therefore, that further studies will highlight in
Mediterranean Eulalia cf. clavigera a previously unexpected
diversity, as already shown for other Phyllodocidae (Nygren
and Pleijel 2011), and that the distribution of the Btrue^
E. clavigera in Mediterranean environments will turn out to
be distinctly narrower.

Taxonomic uncertainties tend to hinder the research about
polychaete introductions, and several allegedly alien poly-
chaetes should actually be considered cryptogenic (Çinar
2013). In several cases, new records of polychaete species
are merely the consequence of taxonomic revisions
(D’Alessandro et al. 2016) or of more detailed studies on
poorly known environments (Simboura and Zenetos 2005),
and several allegedly alien species have been demonstrated
to represent misidentifications of native, often undescribed
species (Faulwetter et al. 2008). Molecular identification tech-
niques represent in this frame a powerful tool to disentangle
cryptogenic species issues, but until now, their use for poly-
chaetes has been restricted to few taxa, often with implication
for human economic activities (Sun et al. 2017), whereas the

majority of cryptogenic species cases still remain unsolved.
Taxonomic uncertainties most likely prevent also a correct
identification of non-native species in the family
Phyllodocidae: Çinar (2013) listed only four alien
Phyllodocidae, and it is noteworthy that two of them are
Lessepsian immigrants (one might be cryptogenic—see Alós
2004) and the remaining two species are currently considered
as species complexes, thus of uncertain taxonomy and origin.
The complex taxonomy of the genus Eulalia, and more spe-
cifically of the apparently uniform group of the Bgreen
Eulalia^, could account for the late identification of
E. clavigera as a new successful invader in Patagonia; how-
ever, the combination of morphological and molecular ap-
proaches confirmed the identity of these specimens. The pres-
ent work shows that specimens from Patagonia actually
belong to E. clavigera and have been most likely intro-
duced in Patagonia from the north-eastern Atlantic Ocean
after the 1970s, probably by shipping, even if a more pre-
cise origin and path of introduction cannot be traced. The
high abundances observed in this species, and its regular
observation in intertidal rocky communities, suggest that
this species is currently established in the study area.
Eulalia clavigera is a relatively large predator, feeding
mostly on mussels and barnacles (Emson 1977; Rodrigo
et al. 2015), even if some studies regard it chiefly as a scav-
enger of predation remains left by other species (Michel 1970;
Morton 2011); the settlement of a large population of this
species is therefore expected to largely change trophic inter-
actions within the native assemblage. For this reason, the de-
mography and effect of the introduced E. clavigera on native
species deserve close monitoring.
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