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Abstract The Sipuncula, or peanut worms, are a small taxon
of lophotrochozoan worms that live mostly in warm shallow
waters, but little is known about the diversity and distribution
of this group in the deeper parts of the ocean (>2000 m). To
address this point, all existing information from the scientific
literature on deep-water sipunculans was retrieved, and a cen-
sus was organised in several data matrices by species and by
geographic and bathymetric distribution. From this data, deep-
water sipunculan fauna were found to include representatives
of 4 families, 10 genera, 51 species and 3 subspecies.
Geographical range maps for all the censused species were
created. The most ubiquitous species are Nephasoma
diaphanes (Gerould, 1913); Phascolion lutense Selenka,
1885; Golfingia muricaudata (Southern, 1913); Apionsoma
murinae (Cutler, 1969), G. margaritacea (Sars, 1851) and
Onchnesoma magnibathum Cutler, 1969. By contrast, 18 spe-
cies of various genera in the dataset are considered to be ex-
tremely rare, with only one previous record. No endemic spe-
cies have been detected on the sea bottoms investigated to
date. With regard to vertical distribution, most deep-water
sipunculans were collected at depths ranging from 2500 to
3000 m, whereas there were fewer ultra-abyssal and hadal
records (>6500 m). This also applies to the deepest depths
investigated (>7000 m), where only three isolated records of
three different species (N. diaphanes, P. lutense and
P. pacificum Murina, 1957) were found. By relating species
richness to depth, a significant linear regression was found,

with lower richness values at greater depths. Finally, attempts
to relate the species richness values to latitudinal or longitudi-
nal gradients have as yet proved unsuccessful. The conclusion
drawn from this census is that sipunculan fauna down to a
depth of 2000 m is characterised as remarkably sensitive to
bathymetry, with the lowest species richness values recorded
in the deeper bottoms.
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Introduction

Sipunculans (or peanut worms) are soft-bodied, defenceless,
sedentary marine worms with a non-segmented body and a
highly retractable introvert (Stephen and Edmonds 1972).
Approximately 150 species of sipunculans have been de-
scribed, mostly from warm oceans and shallow waters
(Murina 1975a, 1984; Cutler 1994). Sipunculans have been
reported in cryptic habitats such as burrows, crevices, tubes
and discarded shells of other invertebrates in both sedimentary
deposits and rocky bottoms. This enigmatic group has long
been considered as a separate phylum, based mainly on the
lack of body segmentation and chaetae. However, recent mo-
lecular analyses suggest that sipunculans should be placed
close to or even nested within the phylum Annelida (Struck
et al. 2007, 2011; Dordel et al. 2010; Hickman et al. 2014;
Dunn et al. 2014; Ruggiero et al. 2015; Brusca et al. 2016).

The first sipunculans collected from the depths investigated
(>2000 m) was by the Norwegian North-Atlantic Expedition
1876–1878 (Danielssen and Koren 1880, 1881), which found
a new species named Nephasoma lilljeborgi (Danielssen and
Koren, 1880) from depths of 2030 and 2127 m. A few years
later, the results of the scientific voyage on board the HMS
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Challenger were published (Selenka 1885), with sipunculans
being reported at abyssal depths, including the new species
Nephasoma flagriferum (Selenka, 1885), collected at a depth
of 2300 fathoms (4206 m) in the northwestern sector of the
Pacific Ocean. More extensive collections of deep-water
sipunculans were made during the second part of the twentieth
century by well-known scientific expeditions (Murina 1975a,
1984; Cutler 1977; Cutler and Cutler 1980b, 1987). More
recently, the Census ofMarine Life (CoML), a global network
of scientists, set out to assess and quantify the diversity of
living organisms throughout the world’s oceans (McIntyre
2010; Snelgrove 2010; Alexander et al. 2011; Crist and
O’Dor 2013). One of its field projects was the CeDAMar
(Census of Diversity of Abyssal Marine Life), devoted to the
study of marine diversity on abyssal plains (Stuart et al. 2008).
This large research group was able to compile massive
amounts of information on the global species diversity of sev-
eral invertebrate groups and to investigate their dependence on
environmental parameters (Ebbe et al. 2010). Some earlier
results dealing with other invertebrate groups collected in wa-
ters more than 2000 m deep have been published (Brandt
2005; Paterson et al. 2009; Brandt et al. 2012; Gebruk et al.
2014).

As part of this global initiative, the present study set out (1)
to update the global geographical distribution of all sipunculan
species at depths in excess of 2000 m, and (2) to detect the
(vertical and horizontal) spatial preferences of the species over
all the world’s oceans.

Material and methods

The data used here represent a final compilation of all the
scientific publications from 1880 to 2015 (Table 1). Only data
for depths greater than 2000 m were selected, according to
previous studies (Brandt 2005; Paterson et al. 2009;
Ramirez-Llodra et al. 2010; Mironov et al. 2013; Gebruk
et al. 2014). The compiled information is organized in a
spreadsheet that includes details on species, authors, collec-
tion date, geographic position of the sampling site, depth,
name of the expedition, research vessel name, type of gear
used, specimen abundance of the haul, and updated species
name of the collected specimens. Classification and coding of
the higher taxa of sipunculans follows that of Cutler (1994),
with the recent amendments by Kawauchi et al. (2012).

To analyse the diversity of deep–water sipunculans along
spatial gradients, several data matrices are constructed with
taxa organized in rows and distributional data in columns. A
grid of 10 x 10-degree squares, as proposed by Ebbe et al.
(2010), is used to estimate and plot the sipunculan species
richness across the global geographical distribution.
Subgenera and subspecies taxonomic details are omitted from
the statistical analyses conducted here.

In order to check for any spatial gradient in the global
distribution of deep-water sipunculans, the species richness
values have been related to latitude, longitude and depth using
linear regression analyses. Species richness was calculated by
adding species presence/absence data collected at 30° inter-
vals for both latitudinal and longitudinal analyses. In the case
of depth, the species richness value was obtained by adding
sipunculan species collected in arbitrary 500-m vertical bands
from depths of 2000 to 7500 m. The relationship between the
geographic distribution and the eurybathic/stenobathic char-
acteristics of the species was also investigated using various
correlation analyses. Regression and correlation analyses were
conducted using the MINITAB® 16.1 software package
(Minitab 2000). In addition, species were aggregated into
higher taxonomic groups such as genera and plotted against
depth to visualise different faunal strategies within Sipuncula,
particularly in their colonising of the deep bottoms of the
world’s oceans.

The geographical and bathymetric variability of the
sipunculan assemblages were further investigated by multi-
variate analysis using the PRIMER 7 (Plymouth Routines in
Multivariate Ecological Research) software package (Clarke
and Gorley 2015). Two different approaches were adopted in
order to (1) display relationships among samples (Clarke
1993) and to (2) address patterns among variables
(Somerfield and Clarke 2013). All analyses are based on
presence/absence data using Bray–Curtis similarity for analy-
ses among samples and the Index of Association for analyses
among spatial variables. The resemblance matrix thus obtain-
ed was then grouped using hierarchical agglomerative cluster-
ing and group-average linkage routines. The resulting groups
were tested for statistical significance using similarities profile
(SIMPROF) tests. To visualize possible patterns or trends
among samples, non-metric multidimensional scaling ordina-
tion (MDS) plots are also shown. For the analysis of spatial
variables, coherence plots in combination with shade plots
were used to distinguish species groups which covaried co-
herently across samples.

Results

Geographical distribution

Table 1 lists the 51 species and 3 subspecies of sipunculans
recorded in this study. The most ubiquitous species are
Nephasoma diaphanes, Phascolion lutense, Golfingia
muricaudata, Apionsoma murinae, G. margaritacea and
Onchnesoma magnibathum. By contrast, 18 species found in
the data collected are considered extremely rare, with only one
record (Table 1).

The geographical distribution of the data shows that most
of the sipunculan records come from deep areas close to
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continental margins (Fig. 1). In fact, there are four hot-spot
diversity areas that show high numbers of deep-water
sipunculan species: the northeastern, northwestern and south-
eastern sectors of the Atlantic Ocean, and the northwestern
part of the Pacific Ocean. However, the percentage of
coloured grid cells (Fig. 1) indicating the existence of
sipunculans is relatively low (34%) compared to the total
number of grid cells greater than 2000 m. This is especially
noteworthy in the central part of the Pacific Ocean, which
remains largely undersampled.

No significant relationships were found between species
richness and their horizontal distribution along either the lati-
tudinal or longitudinal lines of the geographical coordinates.
Regarding global latitudinal distribution (Fig. 2a), the lowest
species number value was recorded in latitudinal band 1, with
only six species, corresponding mainly to the waters of the
Arctic Ocean. Similarly, the Southern Ocean, predominantly
in band 6 (from 60°S to 90°S), was relatively poor in deep-
water sipunculan diversity, with only 12 species recorded. By
contrast, a peak of diversity was recorded in latitudinal band 2,
which include water masses from 30°N to 60°N, with 35
species counted. The remaining latitudinal bands (3, 4, 5)
displayed intermediate diversity values ranging from 23 to
26 species.

With regard to longitudinal patterns, the diversity recorded
in the longitudinal bands in the far western longitudes (bands 1,
2, 3, from 180°W to 90°W) was significantly lower than that in
the rest of the areas sampled (Fig. 2b). By contrast, adjacent
longitudinal bands from 90°W to 30°E had higher sipunculan
species numbers, with a peak of 32 species recorded in longi-
tudinal band 6 (from 30°W to 0°). In the remaining eastern
longitudinal bands, species numbers ranged from 9 to 17.

Figure 3 shows the latitudinal variation in deep-water
sipunculan species assemblages. SIMPROF analyses
conducted on samples highlight the lack of a significant
multivariate structure among the species, since all lati-
tudinal bands (except band 1) were grouped in one

Fig. 1 Global map of sipunculan
species recorded at depths in
excess of 2000 m, shown as
number of species per 10 × 10-
degree square. Colours indicate
different species number ranges

Fig. 2 Changes in the number of sipunculan species along latitudinal (a)
and longitudinal bands (b) arbitrarily defined as 30° intervals. Correlation
values are also included
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cluster (Fig. 3a). Moreover, the ordination plot obtained
by the MDS analysis (Fig. 3 b) failed to reflect any
spatial gradient in faunal composition. Figure 3 c shows
ten groups of differentiated species which covary coher-
ently from one latitude to another. Two of these (groups
A and C) were restricted to a single latitudinal band (4
and 5, respectively), while the rest were recorded in at
least two latitudinal bands. Groups E, G and H are the
best represented across all geographical latitudes. The
sipunculan Nephasoma diaphanes was recorded in all
latitudinal bands, while Phascolion lutense, Golfingia
muricaudata, Nephasoma capilleforme (Murina, 1973),
G. margaritacea and G. anderssoni (Théel, 1911) were
recorded at all latitudes except latitudinal band 1.

The longitudinal variation in species composition is shown in
Fig. 4. All samples were grouped in one cluster, as indicated by
the SIMPROF analyses, denoting a quite similar multivariate
structure of species from one geographical longitude to another
(Fig. 4a). The ordination analysis obtained byMDS (Fig. 4b) has
a stress value of 0.13, indicating a fairly good representation
(Clarke and Warwick 2001). However, the graph does not show
any longitudinal gradient in faunal composition. Nevertheless, a
total of ten coherent groups of species are significantly obtained
across global longitudes (Fig. 4c). Four of these (groups A, B, D
and E) comprise species restricted to just one longitudinal band.
Group F is the best represented across all longitudes, followed by
groups G and H. The remaining groups are recorded in two
(group C) or three (groups I and J) longitudinal bands. The

Fig. 3 Dendrogram (a) and
ordination plot by non-metric
multidimensional scaling (MDS)
(b) obtained using Bray–Curtis
similarity measures of species
presence/absence data among
latitudinal bands (30° intervals
from 90°N to 90°S). (c) Shade
plot of the data matrix of the 6
latitudinal bands and dendrogram
based on the Index of Association
among species showing ten
‘coherent groups’ (A–J). White
space indicates absence of that
species at that range. Solid lines
indicate significant groups of
samples or variables (p < 0.05);
dashed lines indicate groups of
samples or variables for which the
null hypothesis cannot be rejected
(p > 0.05)
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sipunculan species Phascolion lutensewas recorded in all longi-
tudinal bands, but the rest exhibit noticeable gaps across global
geographical longitudes.

Bathymetric distribution

A scatter plot of deep-water sipunculan species richness versus
depth shows a clear pattern of decreasing diversity values, with
the upper parts of the investigated depth spectrum having

distinctly higher diversity (Fig. 5). A progressive drop in spe-
cies richness was observed from 2000 m to 3500 m, followed
by a relatively stable stretch to as deep as 5000 m, and a further
decrease as the 7000-m isobath was approached.When relating
the species number values to depth, a significant relationship
was obtained that is well explained by a linear regression mod-
el, with highly significant results (p < 0.0001; r = 94.5).

Concerning bathymetric distribution, most sipunculan gen-
era are well represented down to the 5500-m isobath, with the

Fig. 4 Dendrogram (a) and ordination plot by non-metric multidimen-
sional scaling (MDS) (b) obtained using Bray–Curtis similarity measures
of species presence/absence data among longitudinal bands (30° intervals
from 180°W to 180°E). (c) Shade plot of the data matrix of the 12 longi-
tudinal bands and dendrogram based on the Index of Association among

species showing 10 ‘coherent groups’ (A–J). White space indicates the
absence of that species at that range. Solid lines indicate significant
groups of samples or variables (p < 0.05); dashed lines indicate groups
of samples or variables for which the null hypothesis cannot be rejected
(p > 0.05)
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exception being Aspidosiphon Diesing, 1851; Themiste Gray,
1828; and Thysanocardia (Fisher, 1950), which showed a
preference for upper depths (Fig. 6) throughout the depth
spectrum investigated. Moreover, the cases of Themiste and
Thysanocardia are rare, since they represent single isolated
records in all of the area investigated.

With respect to the variation in species composition over
the range of depths, the SIMPROF analysis confirms a signif-
icant multivariate structure with three distinct main depth
zones (Fig 7a). The dendrogram recognized depths from
2000 to 2500 m as being in group I, from 3000 to 5000 m in
group II, and greater depths in group III. The ordination plot
obtained by the MDS analysis (Fig. 7b) clearly showed a
sharp gradient in the sipunculan faunal composition from the
upper to the lower depths investigated. Figure 7c indicated the

existence of 12 significantly differentiated species groups
which covaried coherently with depth. There are two groups
of species that are distributed across all depth zones from the
upper to the greater depths (groups E and G), and others that
are restricted to the 2000–2500-m depth band (group A) or to
the 3000–3500-m and 3500–4000-m bands (groups H and I,
respectively). Other species were recorded across bathyal and
abyssal zones (groups B, C, D and F). There are single groups
with species recorded in a single depth range (groups J, K and
H).

With regard to bathymetric distribution at the taxonomic
specific level, Nephasoma diaphanes and Phascolion lutense
were detected throughout the depth ranges investigated.
Phascolion pacificum generally follows this pattern, although
a clear gap is detected in its progressive bathymetric distribu-
tion, between the 6500-m and 7000-m isobaths. Moreover,
Golfingia muricaudata, G. anderssoni, Nephasoma
abyssorum, Onchnesoma magnibathum and G. vulgaris (De
Blainville, 1827) were virtually ubiquitous in all depth zones
investigated. A total of 22 sipunculan species were restricted
to just one 500-m band, with ten of these inhabiting the upper
part of the depth range investigated (2000–2500 m).

Linking geographic and bathymetric distributions

By cross referencing the distributional data of species along the
horizontal and vertical axes, a significant positive relationship
(rs = 0.887, p < 0.0001) was found between the number of grid
cells and the number of depth bands in which each sipunculan
species was recorded (Fig. 8). In general, species occurring in
restricted geographic areas displayed a narrow vertical distri-
bution, while species broadly distributed on the vast ocean floor
also had greater vertical distribution. These contrasting faunal
strategies were especially evident in stenobathic species, which
were recorded in just a few isolated grid cells. On the contrary,
more eurybathic species such as Nephasoma diaphanes,
Phascolion lutense and Golfingia muricaudata were also the
most widely distributed species worldwide. A few other species
(Fig. 8), including Onchnesoma magnibathum, Apionsoma
murinae, G. margaritacea and P. pacificum, showed a similar
tendency, with larger distributions when both horizontal and
vertical distribution axes were considered in a single correlation
analysis. However, the species Golfingia anderssoni differed
markedly, in that it was found in nine vertical bands but was
fairly restricted along the horizontal axis, recorded in only six
grid cells (Fig. 8).

Discussion

The deep-water sipunculan fauna consisted of 51 species (plus
3 subspecies) arranged in 10 genera and 4 families (Table 1).
No endemic species have been detected to date, based on a

Fig. 5 Changes in the number of sipunculan species over 500-m depth
bands. The solid line represents the fitted regression line (y = 47.4 –
0.00620 x; p < 0.0001; r = 94.5; n = 11)

Fig. 6 Bathymetric preferences of the ten sipunculan genera recorded in
this study. Note that the bathymetric range corresponding to the genus
Phascolosoma includes a single record of the genus Themiste in the
4500–4999-m depth band, where Phascolosoma was lacking

Mar Biodiv (2018) 48:449–464 457



detailed comparison of the distribution of sipunculans inves-
tigated with previously published data (Cutler 1994). This
may indicate the existence of frequent, repeated connections
between shallow and deep-water sipunculan faunas and the
absence of an effective oceanographic barrier separating the
two groups. In terms of species richness, the species encoun-
teredmake up almost 33% of sipunculan diversity worldwide.
This percentage is relatively low, since 70% of the diversity of
the phylum is linked to shallow tropical areas throughout the

world’s oceans (Murina 1971a, 1975a, 1977). However, the
retrieved figures should be considered with caution. In recent
years, several sipunculan species have been identified as com-
plexes of cryptic species through the application of molecular
methods (Staton and Rice 1999; Kawauchi and Giribet 2010,
2014; Schulze et al. 2012; Jonhson et al. 2015). The number of
cryptic species in Sipuncula was estimated to represent be-
tween 10% and 55% of the total diversity (Kawauchi and
Giribet 2010; Appeltans et al. 2012; Jonhson et al. 2015).
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Fig. 7 Dendrogram (a) and ordination by non-metric multidimensional
scaling (MDS) (b) obtained using Bray–Curtis similarity measures of
species presence/absence data in each depth band. (c) Shade plot of the
data matrix of the 11 depth bands and dendrogram based on the Index of
Association among species showing 12 ‘coherent groups’ (A–K). White

space indicates absence of that species at that depth band. Solid lines
indicate significant groups of samples or variables (p < 0.05); dashed
lines indicate groups of samples or variables for which the null hypothesis
can not be rejected (p > 0.05). I, II and III refer to the groups of samples
resulting from the similarity profile (SIMPROF) tests



No doubt, the extrapolation of these preliminary results to the
overall study of the deep-water sipunculan fauna can represent
a substantial increase in the species number obtained in our
study.

At the familial level, almost all sipunculan families are
represented on the sea bottoms investigated, with the excep-
tions being the recently erected families Antillesomatidae and
Siphonosomatidae, established by Kawauchi et al. (2012).
Antillesomatidae is monotypic, with a wide distribution in
warm shallow waters (Cutler 1994). Siphonosomatidae shows
a higher number of species in tropical and subtropical waters
(Murina 1971a, 1975a, 1977; Cutler 1994). The remaining
four sipunculan families are better represented in deep waters,
with different radiation events. The family Golfingiidae
Stephen and Edmonds, 1972, shows the greatest evolutionary
diversification, not only in terms of the number of genera and
subgenera (6 and 7, respectively), but also in its species num-
bers (36), compared with Phascolosomatidae Stephen and
Edmonds, 1972 (2 genera, 4 subgenera, 8 species),
Sipunculidae Rafinesque, 1814 (1 genus, 4 species) and
Aspidosiphonidae De Quatrefages, 1865 (1 genus, 2
subgenera, 3 species). These contrasting proportions coincide
with previous data from Murina (1975c, 1977, 1984), in
which the family Golfingiidae is defined as eurybathic, while
the other three families are mainly characterized as
thermophilic/coralliophilic and are more dependent on the
distribution of warm water masses.

Ten of the 16 genera of sipunculans are represented in the
deeper bottoms of the ocean. Some of the genera not found,
Antillesoma (Stephen and Edmonds, 1972), Cloeosiphon
Grube, 1868, Phascolopsis (Fisher, 1950) and Siphonomecus
Fisher, 1947, are monotypic. The first two of these are linked to
warm, shallow waters, whereas the last two are very peculiar in
their geographical distribution, since they are restricted to shal-
low waters in the western part of the Atlantic Ocean (Cutler
1994). The remaining two genera, Siphonosoma Spengel,
1912, and Xenosiphon Fisher, 1947, are linked to shallow,

warm waters (Murina 1971a, 1975a; Cutler 1994). Of the ten
genera found in the depth zones investigated, Themiste and
Thysanocardia are rare in the dataset, with only a single record
to date. Most records of Themiste retrieved from the scientific
literature (Cutler 1994) correspond to the intertidal or upper
part of the subtidal zones. Cutler questions the validity of the
deep records of Themiste minor (Ikeda, 1904), since they are
based on small specimens with anomalies in their anatomy or
confusion in collecting station data. The single case of the
genus Thysanocardia is to some extent parallel to the afore-
mentioned genus Themiste, since the single record, published
by Selenka (1885), represents a single specimen collected from
a deep-water (3500 m)-deployed trawl located off the southern
Brazilian coast, and no other specimens have ever been
collected.

The most speciose genera found in the zone investigated
were Nephasoma Pergament, 1946; Phascolion Théel, 1875;
and Golfingia Lankester, 1885 (14, 11 and 7 species, respec-
tively), which account for 62% of the total sipunculan census
found. Additionally, four of the five subgenera of the genus
Phascolionwere also recorded in deep bottoms (Cutler 1994),
a fact which suggests great potential for speciation in this
genus. According to Cutler (1994), only Nephasoma is a pre-
dominantly deep-water genus, while Phascolion shows equal
numbers of taxa living in shelf waters and deep waters.
Phascolionids also have a tendency toward asymmetry in cer-
tain internal organs such as nephridia, retractor and gonad
placement (Stephen and Edmonds 1972; Cutler 1994), appar-
ently for a better adaptation to life in the helical shells of
gastropods (Murina 1975c, 1977; Saiz et al. 2015). This ad-
aptation may have originated in shallow waters, where large
accumulations of empty shells are found on the seafloor. In the
case of the genusGolfingia, a preference for residing at greater
depths in lower latitudes is noted, a feature known as equato-
rial submergence (Cutler 1994). The evolutionary success of
Nephasoma in deep waters may be explained by a rapid spe-
ciation in the cold bathyal and abyssal waters of the northern
Atlantic and Pacific oceans (Cutler 1994). Thus, Murina
(1975c, 1977) noted a process of secondary simplification of
anatomical characters in deep-water sipunculans (retractor
numbers, body musculature, tentacles, nephridia, etc.) as an
adaptation to extreme hyperbaric and low thermal conditions.
Finally, the remaining five genera—Phascolosoma Leuckart,
1828; Sipunculus Linnaeus, 1767; Aspidosiphon Diesing,
1851; Apionsoma Sluiter, 1902; and Onchnesoma Koren and
Danielssen, 1876—are less diverse (3–5 species) in deeper
waters. This is especially evident for Aspidosiphon and
Phascolosoma, and to a lesser degree for Sipunculus, com-
pared with the total species numbers for these genera in the
world’s oceans (21, 17 and 10, respectively).

The most ubiquitous species are Nephasoma diaphanes,
Phascolion lutense, Golfingia muricaudata, Apionsoma
murinae, G. margaritacea and Onchnesoma magnibathum.

Fig. 8 Scatter plot showing the relationship between the horizontal and
vertical distribution of deep-water sipunculans. Correlation values are
also included
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In general, the species are characterised as common at bathyal
and abyssal depths (Cutler 1994). It is interesting to note the
collection of large and abundant (374 and 600) specimens of
P. lutense from bottom trawls (Murina 1957b, 1974, 1977).
This result corroborates observations by Rutgers and Lavaleye
(1986) of high biomass (up to 28 % of the total macrofaunal
biomass) of unidentified sipunculans on an abyssal plain in
the northeast sector of the Atlantic Ocean. Moreover,
P. lutense can be easily overlooked in dredge samples, since
many specimens are enclosed in ‘mud balls’ or ‘cocoons’
produced by the binding of sediment particles with secreted
mucus (Murina 1984; Gibbs 1985). Other common species
such as Golfingia muricaudata have developed a characteris-
tic long caudal appendage at the end of the body, apparently
for anchoring the sipunculan body to the soft fluffy layer of
sediment (Murina 1977). This distinctive adaptation is shared
by other common deep-water species, namely G. anderssoni,
N. bulbosum (Southern, 1913) and N. flagriferum, which are
also common in the dataset. High density values (up to 375
individuals/m2) of this last species have been recorded on the
abyssal plain from the Celebes Sea (Cutler 1977).
N. diaphanes was also abundant (900 individuals) in a haul
made on the abyssal plain in the southeastern part of the
Atlantic Ocean (Saiz 2007). The species inhabits abandoned
tubes of polychaetes for shelter.

By contrast, the data collected include 18 species from genera
that are considered extremely rare, with only a single record to
date. Some of these are mentioned above in the discussion of
monotypic genera. Others are common species in shallowwaters;
consequently, their presence in deeper bottoms is noteworthy and
even confusing in a few cases. This is especially evident for those
species identified by Cutler (1977) from the Galathea expedition
[S. robustus Keferstein, 1865; Aspidosiphon cristatus (Sluiter,
1902); Apionsoma pectinatum (Keferstein, 1867); P. collare
Selenka and De Man, 1883; Phascolosoma nigrescens
Keferstein, 1865; P. scolops (Selenka and De Man, 1883)]. This
author was not confident in the taxonomic identifications provid-
ed. It remains to be demonstrated whether they represent cryptic
or pseudo-cryptic complexes of other common species well dis-
tributed in shallow waters. The case of the deep-water species
Phascolosoma turnerae Rice, 1985, is a good example of diffi-
culties in the identification process (Saiz et al. 2014), due to its
morphological similarity to other shallow-water species of
Phascolosoma such as the common Phascolosoma granulatum
Leuckart, 1828, in the Mediterranean Sea. P. turnerae is a wood-
dwelling species patchily distributed in the bathyal Atlantic,
Mediterranean and Australian waters (Edmonds 1985; Rice
et al. 2012; Saiz et al. 2014).

Spatial analysis of sipunculan diversity (Fig. 1) shows that
many areas of the world’s oceans are especial ly
undersampled, such as the far western longitudes of both
hemispheres, the Arctic Ocean, and a sector between 30°S
and 60°S corresponding to the Atlantic, Pacific and Indian

oceans. This is without doubt a source of serious bias in any
biogeographical study, and seriously limits the scope of our
study. Analysis of areas with deep-water sipunculans reveals
no spatial patterns using latitudinal or longitudinal geograph-
ical coordinates as independent variables. This failure con-
trasts with the positive findings by Murina (1971a, 1975a,
1977) when working with shallow-water sipunculan fauna
(0–200 m). Peaks of sipunculan diversity are recorded all
around tropical areas, with the Indo-West Pacific region as
the main center of origin.

Analyses of coherent groups are helpful in gaining a better
understanding of the relationships among variables and sam-
ples. Interestingly enough, coherent groups of species vary
when the species associations are studied across the horizontal
and vertical distribution in the world’s oceans. Only two spe-
cies remain relatively constant in the species assemblages ob-
tained: Golfingia muricaudata and Nephasoma diaphanes.
These species always are classified together in the same clus-
ter when the horizontal and vertical distribution of the deep-
water sipunculans is analysed. When analyses are restricted to
global horizontal axes, further species associations emerge.
Golfingia margaritacea, Nephasoma cutleri (Murina, 1975)
and Phascolion lutense cluster together. Collectively, they are
the most widely distributed in our dataset, except for
N. cutleri. This observation is explored in detail by plotting
a correlation analysis (Fig. 8) between the horizontal and ver-
tical distribution of all deep-water sipunculan species. The
result is statistically significant and reaffirms the earlier
assertions by Murina (1971a, 1975a, 1977) concerning the
existence of a close correspondence between the distribution
abilities of the species over both dimensions in overall ocean
distribution. In general, deep-water invertebrates showing a
wide vertical range also have an extensive horizontal distribu-
tion (Vinogradova 1959, 1979, 1997).

Finally, the bathymetric range of deep-water sipunculans is
generally quite large, so this broad depth tolerance was used to
investigate the dependence of species on bathymetry. A total
of 1348 records beyond the 2000-m contour were retrieved,
and nearly half of them (49.3%) corresponded to the bathyal
zone investigated here, while the rest were abyssal (50.03%).
Records from the hadal zone are much rarer (0.67%)—indeed,
there are only nine such records to date. The same is true for
the deepest band investigated (>7000 m), where there are only
three isolated records corresponding to three different species
(N. diaphanes, P. lutense and P. pacificum). These total figures
from deep waters can be considered very low compared to the
amount of data from shallow warm waters, and they are in
accordance with previous results (Murina 1971a, 1975a,
1977, 1984; Cutler 1994) in which bathyal, and especially
abyssal, fauna of sipunculans are characterised as extremely
poor. This faunal poverty has been explained as the result of a
recent migration of some species to greater depths (Murina
1971a, 1975a, 1977).
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The impact of depth on species richness is not consistent
from one taxonomic group to another (Ellingsen et al. 2007;
Brandt et al. 2009; Ebbe et al. 2010). By investigating the
latitudinal/depth gradients in the Atlantic sector of the deep
Southern Ocean, these authors found a lack of any consistent
relationship between the numbers of isopod, polychaete and
bivalve species with geographical coordinates of latitude or
longitude. Depth, however, is a major environmental factor in
organising species richness for isopods and polychaetes, but
not for bivalves. Isopods show a unimodal response, but poly-
chaetes are negatively affected by depth similarly to the
sipunculans on a global scale (Murina 1984; this study).
Much of the large-scale variation in diversity with depth ap-
pears to be related to food supply and its collateral effects on
population density and growth (Rex and Etter 2010).
According to these last authors, diversity at abyssal depths is
probably depressed by vulnerability to extreme energy con-
straints, far below the levels needed for populations to be
reproductively viable. Those limitations, linked to food avail-
ability, may explain the overall low rate of sipunculan diver-
sification achieved in the deeper waters of the world’s oceans
(Murina 1977).

In conclusion, deep-water sipunculan fauna is mainly
characterised as remarkably dependent on bathymetry, with
species richness greater in the upper part of the depth spectrum
investigated and decreasing progressively towards the deepest
sea bottoms.
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