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Abstract
Decentralized exchanges (DEXs) have become an alternative to centralized exchanges (CEXs) for trading assets in the form
of tokens in cryptoeconomic systemmarkets. The emergence of DEXs is strongly driven by their potential to tackle challenges
for market quality originating from CEXs by design, such as opaque market-making strategies and centralization of power.
However, it remains unclear to what extent DEXs can enhance market quality compared to CEXs. A core reason for this is the
lack of an analysis concept for investigating influences of market makers, including automated market makers (AMMs) used
in DEXs and conventional market makers used in CEXs, on market quality in cryptoeconomic systems. To better understand
influences of market makers on market quality in cryptoeconomic systems, we developed an analysis concept based on
our formal price model grounded in established concepts of market microstructure. We demonstrate the usefulness of the
analysis concept by examining conventional market makers on CEXs (i.e., Binance and Coinbase) and automated market
makers (AMMs) on DEXs (i.e., Uniswap v2 and Uniswap v3). The main purpose of this work is to support the analysis of
influences of different market makers on market quality in cryptoeconomic systems. This is useful to better understand how
cryptoeconomic systems can ensure high market quality and safeguard market participants, when issuing tokens.

Keywords Cryptoeconomic system · Automated market maker · Centralized exchange · Decentralized exchange · Market
quality

JEL Classification D40 · G10

Introduction

Cryptoeconomic systems, such as the Bitcoin and Ethereum
systems, are sociotechnical systems wherein market partici-
pants (e.g., individuals, organizations, and software agents)
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manage ownership of assets represented as digital tokens that
are secured by cryptographic techniques and can be traded
instantaneously (Sunyaev, Kannengießer, Beck, Treiblmaier,
Lacity, Kranz, Luckow, 2021).

By trading tokens, markets emerge. Participants in such
markets need the ability to execute trades at desirable prices
and manage risks, such as quickly opening/closing large
trading positions. Such needs can be fulfilled when mar-
kets exhibit high market quality. Liquidity is particularly
important formarket quality (Chordia, Roll, Subrahmanyam,
2008).

To reach high market quality, token issuers in cryptoe-
conomic systems list their tokens on centralized exchanges
(CEXs) in order to achieve sufficient liquidity for token
issuance and trading. CEXs often provide market making
services that provide liquidity to cryptoeconomic system
markets. Being able to influence the liquidity of markets,
market makers of CEXs can strongly affect market quality in
cryptoeconomic system markets (Barbon & Ranaldo, 2023;
O’Hara, Ye, 2011).
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Driven by technological advances in distributed ledger
technology (DLT) and the vision of decentralized cryptoe-
conomic systems, decentralized exchanges (DEXs) emerged
(Xu et al., 2023). Instead of conventional market mak-
ers used in CEXs, DEXs typically use automated market
makers (AMMs). AMMs are market makers that are imple-
mented as software agents (based on smart contracts) that
execute transparent and persistent market making strate-
gies based on mathematical functions (Xu et al., 2023;
Kirste et al., 2023). For example, AMMs like Uniswap v2
(Hayden et al., 2020) allow market participants to con-
tinuously exchange Ether (ETH) and USD Coin (USDC),
while a constant-product function determines the exchange
rate.

Market making strategies based on mathematical func-
tions are transparent and assumed to be less dynamic than
those of conventional market makers on CEXs (Aoyagi &
Ito, 2021). AMMs seem to be useful in tackling challenges
related to conventional market makers in cryptoeconomic
system markets. Notwithstanding the assumed benefits of
AMMs over conventional market makers, the extent to which
AMMs influence market quality remains unclear.

AMMdevelopment is predominantly driven by practition-
ers focused on technological innovation. As a result, existing
concepts from financial literature to analyze market quality
are rarely adopted or modified to be suitable for cryptoeco-
nomic system markets.

The often unclear applicability of well-known concepts
prevalent in the finance literature (Amihud, 2002; Hender-
shott, Menkveld, 2014) make it difficult to analyze and
compare the influence of conventional market makers and
AMMs on market quality in cryptoeconomic system mar-
kets. An analysis concept is needed to better understand how
AMMs can influence market quality in cryptoeconomic sys-
tems markets. We answer the following research questions:
What is a useful analysis concept to examine, and what are
the actual influences of conventional and automated market
makers on market quality in cryptoeconomic systems?

Our work lays a foundation for analyzing and comparing
the influence of market makers on market quality in cryptoe-
conomic systems.We have four main contributions. First, we
present a formal price model based on well-known concepts
in finance literature on market microstructure. The formal
price model builds the foundation to understand price dis-
covery, how the execution price of a trade is determined, and
introduces concepts to analyzemarket quality. This is helpful
in better understanding price evolution in markets. Second,
we present an analysis concept that uses our formal price
model to analyze the influence of market makers on market
quality. The analysis concept supports analyses and com-
parisons of market quality and liquidity provided by market
makers on CEXs and DEXs. This is useful for market partic-

ipants to assess suitable markets for token trading. Third, we
analyze the influences of conventional market makers and
AMMs on market quality by applying our analysis concept
to historical market data during a 6-month timeframe. To
be representative, the analyzed timeframe covers sideways
movements of prices as moments of equilibrium and larger
price downturns due to the FTX bankruptcy, as a moment of
definite non-equilibrium. The analysis reveals the influence
of different market makers on market quality in cryptoe-
conomic system markets and showcases the utility of our
analysis concept. Fourth, by offering evidence for assump-
tions onmarket makers, we support assessingmarket impact,
market quality, and liquidity. This is useful to optimize trade
execution and reduce risks in trades.

The remainder of this work is structured into six sections.
In the next section, we elucidate the foundations relevant
to understanding the influence of market makers on mar-
ket quality in cryptoeconomic system markets. In Section
“A formalized price model, data accessibility, and analysis
concept,” we present a formalized price model and an anal-
ysis concept to measure the influences of market makers
on market quality. In Section “Methods,” we describe how
we applied the analysis concept to analyze the influences
of three different market makers types (i.e., conventional
market makers on Binance and Coinbase, Uniswap v2,
Uniswap v3) on market quality. We present the analysis
results in Section “Liquidity-based influences of market
makers on market quality in cryptoeconomic systems.” In
Section “Discussion,” we discuss the principal findings from
the analysis. Moreover, we explain our contributions to
practice and research. Then, the limitations of the findings
presented in this work are explained, and future research
directions are showcased. In Section “Conclusions,” we con-
clude this work with our personal takeaways.

Background

To better understand the interrelationships between market
making strategies and market quality relevant to this work,
we describe the foundations of market quality, conventional
market making, and automated market making.We use bold-
face italic characters for term definitions. Italic characters
indicate the use of already defined terms elsewhere within
the paper.

Market quality, market makers, and adverse
selection

Price discovery andmarket quality

Like in conventional financial markets, traders in cryptoe-
conomic system markets aim to swiftly buy or sell assets
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(e.g., shares and stocks represented as tokens) at reasonable
prices and transaction costs.Market quality characterizes the
ability to do so. We introduce the aspects that contribute to
market quality in the following, concluding with its defini-
tion.

The effective price paid or received by the trader in a
specific trade event is not known beforehand, but the result
of a price discovery process. The price discovery process
has a key role for market quality. It incorporates two basic
price contributions to the effective price: first, a more or less
accurate reflection of the true value of the asset, and second,
the price impact of the traded volume, referred to as market
impact. The market impact’s price contribution to the effec-
tive price depends on the liquidity of the market.

To better understand the interrelationships of those aspects,
we give a simplistic view of the price discovery process
before offering more details. We split the process into two
hypothetical steps, according to the two basic price con-
tributions given above. In the first step, a true value-based
reference price is assumed to be established. For perfectly
efficient markets, referred to as being in equilibrium, most
market participants know the information about the true value
of a traded good, and all available information (e.g., past
prices and future expected returns) is incorporated in prices.
Therefore, the (reference) price is close to the true value
(Fama, 1970; Zhang, 1999).

In the second step, trade orders (i.e., orders to buy or sell a
certain volume of an asset) are collected and matched. As the
trade volume related to buying and selling typically does not
exactly cancel at every point in time, a so-called net order
volume remains. This net order volume is absorbed bymarket
makers who are willing to do so but at a price premium. This
price deviation typically increases for increasing net order
volume. The net order volume, therefore, has a directional
effect on the price. In case the net order volume stems from an
individual trader solely, we refer to the trade as a directional
trade (Madhavan, 2000; Farmer, 2002).

The time-resolved price impact of net order volume can
basically be split into two components. Firstly, the overall
dynamics of instantaneous price change followed by partly
price recovery, referred to as transitory price effects (e.g.,
price pressure effects; Hendershott, Menkveld, 2014). Sec-
ondly, the remaining persistent price change after recovery.

A market is referred to as a liquid market if the price
impact of (net) order volume size is small. The relationship
between net order volume size and asset price is typically
referred to as the market impact function. The slope of the
market impact function is approximately inversely propor-
tional to liquidity (Madhavan, 2000; Farmer, 2002). In other
words, the more liquid a market, the smaller the slope of
the market impact function and hence the price impact of
net order volume. This illustrates how liquidity has a direct
impact on the effective price and market quality.

In real-world markets, prices do not adjust to value
changes instantaneously. This is due to information asym-
metry, nonlinear dynamic effects, and marginal arbitrage
costs (Zhang, 1999; Farmer, 2002). Continuously changing
environments lead to at least some transientmoments of non-
equilibrium. Within these moments, the actual trade orders
might inherently contain information about a value attribu-
tion adaption not yet publicly known, especially also not
by the market makers (Beja, Goldman, 1980; Zhang, 1999).
These information asymmetries are to be considered by the
marketmakers and lead to larger price premiums and reduced
liquidity. Therefore, the above hypothetically separated steps
of reference price discovery and liquidity provisioning are,
in fact, a continuous, interwoven process. Information gath-
ering about reasonable pricing is partly trade external (we
refer to this as external price effects in the following) and
partly from trade signals.

Based on the above-defined concepts and according to
O’Hara and Ye (2011), market quality can be defined as a
market’s ability tomeet its dual and involvedgoals of efficient
price discovery and liquidity.

The cost of liquidity: market makers and adverse selection
risk

Market quality depends on the liquidity provided by econom-
ically rational market participants submitting non-matching
bid/ask orders (e.g., via limit orders to the order book) at
which they are willing to buy/sell assets and thereby absorb
net order volume. These market participants are referred to
as market makers (Madhavan, 2000). Typically, bid prices
are placed below and ask prices above the estimated refer-
ence price, respectively, such that the market making activity
under close to equilibrium conditions, where the price move-
ment resembles a random walk, is in principle profitable
(Kyle, 1985). The peaks in supply and demand caused by
asynchronous trading activities balance out over time, and
market makers can maintain a balanced inventory (Madha-
van, 2000).

In an efficient market, market makers compete for the
opportunity to absorb the net order volume and thereby
extract a surplus. This competition is the driving force for
a small bid/ask price gap and a small slope of the market
impact function.

Real markets, however, show more or less strongly pro-
nounced transientmoments of non-equilibrium, where prices
do not reflect all available information (Fama, 1970; Zhang,
1999). Thereby,marketmakers face an adverse selection risk
through asymmetric information because there potentially
are asymmetries between market participants in terms of
information about asset valuation (Akerlof, 1978). Informed
traders exploit these asymmetries by creating a surplus of
supply or demand that is absorbed by the less well-informed
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market makers. The price evolution under non-equilibrium
conditions resembles a random walk with potentially large
mean value drift or even jumps. Thereby, as it is often the
case for cryptoeconomic system markets, the market maker
is at risk of building up a large inventory imbalance, holding
more of the less-worthy assets. The imbalance can only be
re-balanced at a loss. These potential losses are referred to as
adverse selection cost (Neal, Wheatley, 1998; Kyle, 1985;
Akerlof, 1978).

Market makers are rational market participants depending
on economic sustainability. Therefore, they need to account
for the adverse selection risk in their typically opaque pric-
ing strategies. This leads to larger bid/ask gaps, depending
on the uncertainty in the market. In addition, market makers
are required to adapt liquidity positions swiftly in dynamic
market situations (leading to reduced liquidity associated
with increased slope of the market impact function) (Bage-
hot, 1971; Menkveld, Wang, 2013). This adaption can even
create a self-reinforcing spiral, for example, through panic
selling. Market makers keep on removing liquidity when
prices increasingly fluctuate. This fluctuation, however, is
intensified by the continuously decreasing liquidity. Mar-
ket participants, therefore, encounter higher transaction costs
(large bid/ask spread and price impact) and significantly
heightened price volatility in non-equilibrium. These effects
severely constrain their ability to execute trades at desirable
prices and manage risk by quickly opening/closing trading
positions to re-balance their inventory without loss (Zhang,
2010).

To summarize, liquidity comes at a risk and hence at a cost,
referred to as the cost of liquidity, the trader has to pay for.
Due to the dynamics of the underlying processes, liquidity
and market quality related thereto may be fragile.

Conventional and automatedmarket making in
cryptoeconomic systems

The following subsections illustrate the importance of sepa-
ration of concerns between trade process operationalization
(i.e., exchange operation), initial public offering (organized
by the underwriter), andmarket making. Violating that sepa-
ration in cryptoeconomic systemmarkets can lead tofinancial
losses of market participants and dramatic breakdowns of
markets.

On the importance of separation of concerns: the interplay
between exchanges, underwriters, andmarket makers

Exchanges make an important contribution to market qual-
ity as they provide the technical operationalization of trade
processes. Exchanges bring together a reasonable amount
of buyers, sellers, and market makers, forming the technical

manifestation of “the market.” If the technical operational-
ization of an exchange is provided by a single entity or a small
group of entities or institutions, the exchange is referred to
as centralized exchange (CEX) in cryptoeconomic systems.

In principle, exchange operation and market making (i.e.,
liquidity provisioning) should be separated to prevent con-
flict of interest. In a nutshell, the ability to analyze incoming
trade orders provides an information advantage no market
participant has. Intermixing market making with exchange
operations may provide an unfair advantage over all other
market participants and entails market manipulation risks.

In matured markets, the exchange infrastructure is frag-
mented into many providers competing for market partici-
pants, jointly forming a virtual overall market (O’Hara, Ye,
2011). In immature markets (e.g., early cryptoeconomic sys-
tem markets), there are only a few possibilities to exchange
assets, offered by a small amount of providers. This entails
the risk of dominating providers exploiting their supremacy.
This dominance is problematic for traders (possibly paying
excess premiums) and newcomer projects because the ability
to raise capital is crucially affected by the access to trad-
ing facilities, for example, being listed on an exchange and
the organization of initial public offerings (IPO) (Madha-
van, 2000). In cryptoeconomic system markets, IPO is also
referred to as initial coin offering (ICO).

IPOs are usually organized by so-called underwriters.
The underwriter assumes the risk of purchasing the secu-
rities from the issuer and then selling them to the public or
institutional investors. This places underwriters, especially
in not well-developed markets, in a special position that may
be exploited, as it is long known for conventional financial
markets (Chen, Ritter, 2000). In addition, underwriters may
become dominant market makers in the IPO aftermarket,
giving them considerable ability to affect asset prices (Ellis,
Michaely, O’Hara, 2000). This is most often the case for
cryptoeconomic system markets.

To complete what could be regarded as the financial
systems “hat trick” in unregulated cryptoeconomic system
markets, the three roles of exchange, underwriter, and dom-
inant market maker are typically closely entangled. This
fraudulent entanglement has been shown to harmhonestmar-
ket participants massively. The breakdowns ofCEXs, such as
Mt. Gox in 2014 (Sidel et al., 2014; Leising, 2021), Quadri-
gaCX in 2019 (Deschamps, 2020; Doug, 2019; Ontario
Securities Commision, 2020), and FTX in 2022 (Huang et
al., 2022; Berwick et al., 2022; Scharfman, 2023), showcase
the vulnerability of central parties combining exchanges,
underwriters, andmarket makers. The entanglement of FTX
and Alameda Research, as the main market maker and
underwriter for FTX, showcases how market makers could
fraudulently manipulate token prices (e.g., FTT, the native
utility token of the FTX platform) and wrongfully use
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more than half of FTX’s customer funds to compensate for
losses caused by risky market making (Berwick et al., 2022;
Huang et al., 2022). Apparently, dependencies on fraudu-
lently entangled intermediaries lay at odds with the core idea
of cryptoeconomic systems (Nakamoto, 2008;Sunyaev,Kan-
nengießer, Beck, Treiblmaier, Lacity, Kranz, Luckow, 2021).
Decreasing the reliance of market participants on dominant
parties is a key motivation for developing automated market
makers and decentralized exchanges.

Automated market makers and decentralized exchanges

Automated market makers (AMMs) are market makers
implemented as software agents that operate inDLT systems.
AMMs determine asset prices in an automated and trans-
parent manner. Market participants can trade with AMMs
anytime, without requiring trust in intermediaries (Xu et al.,
2023;Mohan, 2022). Depending on the specific AMM proto-
col, the general exchange process is mapped to the individual
trader–AMM transactions (today’s state of the art). Alter-
natively, order book functionality and batch-settlement of
several trade orders against each other and the AMM in a
simultaneous fashion is enabled.

Strictly speaking, AMMs combine the exchange process
withmarketmaking and are thereforemore generally referred
to as decentralized exchanges (DEXs). Making use of DLT,
the shortfalls of exchange–market maker entanglement of
CEXs are circumvented in a transparent and tamper-proof
way by design, preventing central points of manipulation and
failure.

DEXs may also provide means for holding ICOs, so-
called initial DEX offerings (IDO), and thereby, in addi-
tion, remove the dependency on underwriter intermediaries,
which should resolve the possibly fraudulent “hat trick” dis-
cussed above (Zargham et al., 2020).

To cope with adverse selection risks (see Section 2.1.2),
conventionalmarket makers use opaque and highly dynamic
strategies to determine prices and amounts of liquidity they
provide to markets. In contrast to that, AMMs are fully trans-
parent and, in many cases, mostly persistent (Kirste et al.,
2023) by applying mathematically specified price functions
to determine prices, typically based on their inventory and the
amount of tokens that should be exchanged (Hayden et al.,
2020), thereby explicitly encoding the market impact func-
tion.

AMM designs differ in how liquidity is provided and used,
prices are determined, and surplus from market making is
shared. In our previous work (Kirste et al., 2023), we present
an AMM taxonomy that conceptualizes the design space of
AMMs. For details, we refer the reader to ourwork on designs
of AMM (Kirste et al., 2023) and the systematization of
knowledge by Xu et al. (2023).

Contemporary AMMs commonly source required liquid-
ity from deposits of liquidity providers. Liquidity providers
are market participants that take the risk of divergence loss
(also called impermanent loss) related to diverging prices
and inventory of the deposited asset pairs for retrieving a
proportion of the shared surplus from market making.

As there is no free lunch, we expect that, due to the design
of most liquidity pool-based AMMs, the cost of liquidity
might well be higher than with opaque and highly dynamic
strategies.

A formalized price model, data accessibility,
and analysis concept

AMMs seem to have several benefits compared to conven-
tional market makers, such as transparent and persistent
trading strategies. However, the extent to which AMMs can
help to improve market quality compared to conventional
market makers is barely understood. To better understand the
influences of market makers on market quality, an analysis
concept capable of analyzingmarket quality based on differ-
ent data sources (e.g., trade or order book data) is needed. In
the following sections, we present a concept for measuring
the influence ofmarket makers onmarket quality. Moreover,
we explain how the analysis concept can be applied to ana-
lyze the influence of market makers on market quality.

Formalization and elucidation of the price model

Formal price model

We define the market impact function M as depending
explicitly on the net order volume ω (the part of the total
trade volume V , absorbed by the market makers). We relate
M to the price P as follows:

Pj = Pj−1 + �Pext
j + M(ω j , j) (1)

The price pair Pj−1 and Pj refer to the price “before” and
“after,” while “before-after” has two distinct meanings in the
following analysis. The firstmeaning is before and after event
j , respectively (e.g., a trade of net order volume ω j against
themarketmaker or order book). The secondmeaning relates
to a price at the beginning and end of a timeframe j (e.g.,
in 1-min trade data set). The effect of the value attribution
adaption related external price effects, discussed in Section
“Price discovery and market quality,” is represented twofold
in Eq.1. On the one hand, the price delta �Pext

j corresponds
to a shift of the reference price. An example is the shift of
the mid-price, the price halfway between the highest bid and
lowest ask price in order book-based exchanges due to order
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book position updates occurring independently from trades.
On the other hand, themarket impact functionMmaychange
its shape, which is indicated by the explicit dependency on j .
In the order book example, this corresponds to the change in
liquidity distribution due to order book updates.

A usual representation of price evolution is the normalized
price action referred to as return R:

R j = Pj − Pj−1

Pj−1
(2)

Applying our relation (1), it follows:

R j = 1

Pj−1

(
�Pext

j + M(ω j , j)
)

(3)

Linearizing the market impact function provides the rela-
tion to the price normalized slope S and liquidity L:

R j ≈ �Pext
j

Pj−1
+ ω j · 1

Pj−1
· ∂M

∂ω
|ω=0, j (4)

≈ �Pext
j

Pj−1
+ ω j · S j = �Pext

j

Pj−1
+ ω j · 1

L j
(5)

Note that the slope S and liquidity L absorbed the price
normalization 1/Pj−1, respectively.

In the following, we introduce two more concepts in the
above notation. One from financial markets analysis and one
fromAMM-basedDEX formalism.We do so to relate them to
liquidity and discuss the similarities, differences and which
parts can be extracted from the data analysis below.

In the context of trade data timeframe analysis, the concept
of illiquidity (I LL I Q) (Amihud, 2002) is commonly used:

I LL I Q j = |R j |
Vj

(6)

The concept of illiquidity can also be applied asmean over
a sequence of N events or timeframes:

I LL I QN = 1

N

N∑
j=1

|R j |
Vj

(7)

An established analysis, for example, is the yearly mean
illiquidity from daily returns and volumes. Illiquidity is often
used because it can easily be determined from price and total
volume information that is widely accessible for basically
any traded asset.

A standard term from the context of AMM-based DEX
formalism, related to return, is slippage (SLP):

SLPj = P̄j − Pj−1

Pj−1
(8)

P̄j refers to the mean execution price a trader trading
against an AMM experiences. The difference between slip-
page and return stems from the fact that the AMMs typically
apply a non-linear cost function prescribing a total amount
of value to be paid or received for an amount of asset traded
(usually referred to as swapped). When generalizing the cost
function as a market impact function defined over an abso-
lute inventory state� (denoted byM† in the following), and
assuming no parameter updates and adaptions to the liquid-
ity pool occurred (indicated by the superscript stat in the
following equation), the mean price can be given as:

P̄stat
j = 1

ω j

� j−1+ω j∫

� j−1

M†(�) d� (9)

Mapping parameter updates, change in liquidity pool vol-
umes, and liquidity distribution (for liquidity concentrating
AMMs) similarly to Eq. 1 provides:

SLPj = �Pext
j

Pj−1
+ 1

Pj−1ω j

� j−1+ω j∫

� j−1

M†(�, j) d� − 1(10)

Linearizing the market impact function as with Eq. 4,

SLPj ≈ �Pext
j

Pj−1
+ ω j

S†j
2

= �Pext
j

Pj−1
+ ω j

1

2L†
j

(11)

wi th

S†j = 1

Pj−1
· ∂M†

∂�
|� j−1, j (12)

, illustrates the similarity to return. In the linear case, the
difference lies only in a factor 1/2.

Model-based relation between CEX and DEX

The generalized formulas allow to map different AMM
types to standard exchanges: DEX parameter updates, adap-
tions to the liquidity pool volume (e.g., for function-based
liquidity-concentrating AMMs like Uniswap v2) and change
of liquidity distribution (e.g., for liquidity provider-based
liquidity-concentrating AMMs, like Uniswap v3) are implied
in the shape change of M (indicated by the explicit depen-
dence on j). This corresponds to the liquidity distribution
change in the previous order book example.

The price adopting step of accordingly labeled AMMs
(like Dodo) is mapped to �Pext

j , while this term vanishes
for price-discovering AMMs (e.g., Uniswap v2, v3).
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Elucidating price model terms and accessibility from
exchange data

The individual terms of the price model given in Section
“Formal price model” can be elucidated based on the real-
world effects and the accessibility from exchange data.

Data related to exchanges can be ordered in a sequence
of accessibility. Accessibility relates to principal availability,
paid access, and complexity of retrieval and processing, such
as retrieving historical DEX data from blockchain archive
nodes. In the following, a concise overview (also summarized
in Table 1) for discussing the identifiability of the basic terms
is provided. Details for the specific data used and its (pre-)
processing for the analysis are given in Section “Methods.”

CEX Basic time-frame cumulated trade data typically
provides price (P) and total volume (V ) and allows to deter-
mine return (R, Eq. 2) and illiquidity (I LL I Q, Eqs. 6 and
7). The concept of illiquidity and related input does not allow
to resolve for the external price effect (�Pext ) and market
impact function (M). In addition, illiquiditymay diverge for
small volumes and is therefore typically applied for wider
time-frames and to provide an easily accessible, coarse, typ-
ically noisy, and less accurate combination of relevant effects
(Amihud, 2002).

However, for trading timeframe length getting smaller and
individual order volume larger, it is increasingly improba-
ble that a matching counter-order occurs, hence the order
will mainly be absorbed by the market makers and V → ω.
Under this condition, and close to equilibrium (�Pext → 0),
the actual market impact function could, in principle, be
resolved. However, it would mean that specific large trade
events are required to exist and need to be isolated from the
data. In addition, the approach does not allow to explicitly
separate the net order volume dependence from the evolu-
tion over j (i.e., M(ω j , j)). The reason is that in order to
approximately resolve the ω dependence requires a set of
N “atomic” datasets sampling different ω values, however
also sampling different shapes ofM related to the explicit j
dependence. This is indicated by unresolved ω j , j in Table 1.

CEX timeframe cumulated, taker/maker volume enri-
ched tradedata adds additional information about the cumu-
lated taker volume, which enables resolving for the net order
trade volume (ω). Analyzing return vs. ω for a set of N
atomic datasets allows to determine an approximate, exter-
nal price effect noised market impact function, slope and
liquidity, respectively, therefrom. For close to equilibrium
conditions (i.e.,�Pext → 0), the actualmarket impact func-
tion can be resolved.

The noisiness of so determined market impact can indi-
cate the lead/following character of exchanges. As discussed
in Section “Price discovery and market quality," reference
price adaption and liquidity provisioning are a continuous,
complex, interwoven process. Information gathering about

reasonable pricing is partly trade external (mapped by�Pext

in the formalization) and partly from trade signals (reflected
in M, explicit dependency on j). Extracting the market
impact function from timeframe cumulated, taker/maker vol-
ume enriched trade data can, therefore, be expected to be
noisy, with the strength of noise being related to the underly-
ing adoption of value attribution. If the adaption is implicitly
contained in trade signals, the effect is more covered byM.

When comparing two exchanges of the types order book-
based CEXs or price adopting AMMs, one can, therefore,
expect that the exchange that has more of a lead character
to have a less noisy market impact function, compared to
the following exchange, when determined from timeframe
cumulated trade date. This is because the value attribution
adaption manifests implicitly in the trade data on the lead
exchange, which, however, makes it explicit. For exchanges
with more of a following character, the information then is
explicit and hence taken into account in the pre-trade order
book update or price adoption for price-adopting AMMs.
Therefore, the downstream price action on these exchanges
has a larger �Pext contribution, inducing a less well map-
ping of the return as a direct function of M and ω, hence a
more noisy market impact function when determined from
timeframe cumulated trade data.

CEXorder book-update event-resolved data permits to
access themarket impact function as it would be experienced
by a trader trading any directional trade volume against the
market makers. At any given point in time, the effect of trad-
ing a volume ω j against the order book. Hence, M(ω j , j)
can be calculated from the distribution of liquidity.

CEX trade event data allows to directly access the mar-
ket impact function as it was experienced by the trader trading
a specific directional trade volume. However, it does not
allow to explicitly separate the net order volume dependence
from the evolution over j (i.e.,M(ω j , j)).

CEX combined order book-update and trade event
data permits to differentiate the source of order book updates
in trade and non-trade-related price changes. The non-trade-
related change of, for example, the midprice is related to
�Pext . The order book adaption originating from trades and
the trade data, respectively, provide information about the
net order volume dependence of the market impact function
(i.e.,M(ω j )). The order book evolution after trade events is
related to the evolution of the market impact function (i.e.,
M( j)). Therefore, transitory price effects, such as the short-
term recovery of liquidity after trades and persistent changes,
can be resolved. This allows a comprehensive analysis of
micro market effects and market anomalies (Chordia, Sub-
rahmanyam, Tong, 2014; Amihud, 2002).

For AMM-based DEXs, in principle, all data is available
on a per-event basis due to the publicly distributed nature
of DLT systems. Given the exact AMM design and extract-
ing the (historic) on-chainAMM’s state allows reconstructing
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every detail. In the following, we group sensible combina-
tions based on the complexity of retrieval or reconstruction.

DEX with price-discovering AMM trade event data
allows to determine a noisy market impact function without
the need to know further parameters or AMM mechanisms.
However, noise does not come from external price effects but
from liquidity updates (�L), which cannot be extracted from
trade data alone. For diminishing liquidity updates (�L →
0), the market impact function can be determined exactly
because these types of AMMs determine prices strictly fol-
lowing the encoded market impact function (i.e., no price

jumps, �Pext != 0). This does not mean there exists no
external adaption of value attribution, but rather that such
AMMs map any price adaption onto movement along the
defined market impact function. See also the discussion of
the related implications on the rational economic limit of
these AMMs in Section “Discussion.”

DEX with price-discovering AMM full state recon-
struction corresponds to full trade and liquidity adoption
information. For price-discoveringAMMs, themarket impact
function is fully defined for every point in time (i.e.,
M(ω j , j)), allowing to determine the ω j dependence and
the time evolution. This makes DEX with price-discovering
AMMfull state reconstruction data comparable toCEX com-
bined order book-update event-resolved data.

DEX with price-adopting AMM trade event data does
neither allow to determine the external price effect fromprice
adoption (i.e., �Pext �= 0), nor liquidity updates. The situa-
tion is comparable to CEX trade event data.

DEX with price-adopting AMM full state reconstruc-
tion allows to extract full information, including liquidity
updates end external price effects, comparable to CEX com-
bined order book-update and trade event data.

Analysis concept

The analysis concept is based on the price model given in
Section “Formal price model” and measures the influence of
market makers on liquidity-related aspects ofmarket quality,
such as the market impact function and especially its slope.
The following subsections present the analysis concept for
the subset of aspects relevant to this context.

Determining liquidity from timeframe cumulated
taker/maker volume enriched trade data

Following the price model discussion given in Section
“Elucidating price model terms and accessibility from
exchange data,” analyzing the influence of net order vol-
ume (ω) on return allows to determine an approximate,
external price effect noisedmarket impact functionM, how-
ever, without the ability to separate the net order volume

dependence from the slope evolution over j (i.e.,M(ω j , j))
explicitly.

In order to sample a representative range of net order vol-
umes, an overarching set of N subsequent atomic datasets
(i.e., timeframe cumulated and indexed by j) is used as an
analysis basis. N might bewindows spanning over, for exam-
ple, �T = 6 h, while j relates to �t = 1 min cumulated
datasets.

More precisely, returns R j of all atomic timeframes j
within the overarching set can be grouped into uniformly
spaced ω-bins, based on the return’s associated net order
volumeω j to a collection RN = {(R0;ω0), (R1;ω1) . . . (Rn;
ωn)}.

The noisymarket impact functionMN can then be related
to the distribution of the per bin determined median values
R̃N (ω), while the per bin statistics, for example, inner quan-
tile range1 IQnR indicates the per bin representativeness of
such median values. The number of datasets per bin c can
be used to weight individual bins, for example, w = √

c
supposing normally distributed data.

Employing the linearization given inEq. 4 allows applying
a weighted straight line fit to R̃N (ω) and extracting the slope
S̃N . The weighted normalized mean squared error (WN-
MSE) can be used to evaluate the fit quality.

Determining liquidity from order book event resolved data

Given order book-update event-resolved data, the market
impact, as it would be experienced by a trader trading any
directional trade volume ω j against the market makers, can
be determined at any given point in time. Hence, M(ω j , j)
can be explicitly calculated from the limit order distribution.

A sensible approach for comparing trade with order book
data is to choose the same set ofω-bins for both. The resulting
collection of returns with one dataset per bin can then be
further processed just as the set of trade data returns discussed
above. To achieve relative importance of the individual bins
comparable to the trade data set, the respective weights of
timeframe cumulated trade data can also be used for the order
book data collection fit.

Rolling window-based time evolution

The time evolution of the (noisy2) market impact function
and slopes, determined following the approaches given in the
previous subsections, can be analyzed by applying a rolling
window of length �T for an analysis timeframe �T, for
example, spanning over several months. To indicate the vari-

1 a given range centered around the median, for example, 5 − 95%,
corresponding to the inner quartile range (IQnR) which is defined to
span over 25 − 75%
2 in case of timeframe cumulated trade data.
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ability of the calculated market impact function and slopes,
the fit quality, median, and IQnR values can be calculated
from the time evolution.

Methods

To demonstrate the utility of the developed analysis concept,
we analyzed the influenceofmarketmakers onmarket quality
using the analysis concept and actual data. In the following,
we describe how we proceeded in that analysis.

Data sources and preprocessing

To analyze liquidity provisioning of market makers in cryp-
toeconomic systems, we used historical trade data and order
book-update event-resolved data from CEXs (i.e., Binance
and Coinbase) and historical on-chain data from DEXs (i.e.,
Unsiwap v2 and Uniswap v3). To process the data, we used
standard Python libraries, such asmatplotlib, numpy, pandas,
and seaborn.

We analyzed representative CEX and DEX markets for
Bitcoin–US dollar and Ethereum–US dollar pairs in the most
liquid representation per market. We considered Wrapped
Ether and Ether to be on par, as well as USDT and USDC
withUSD. The exchanges and pairs have been selected based
on trade volume and largest value locked, where applicable
(i.e., liquidity pool-based AMMs). Table 2 shows the ana-
lyzed trading pairs and their 24-hour volumes.

Our analysis focuses on the liquidity-related influence of
market makers on market quality. We selected two major
CEXs, namely, Binance and Coinbase. The historical trade
event data forCEXswasprovidedby tardis.dev. Based onhis-
torical trade event data, we calculated timeframe cumulated
open, high, close, and low prices (OHCL data). We enriched
this data by volume and net order flow (ω j ), based on the
individual trades executed on the CEXs. We used 1-minute
timeframes to sample the trade data for the analysis.

To reconstruct the past order book for the analysis of order
book-update event-based data, we used historical incremen-
tal order book data. We took snapshots of the order book
everyminute. Each snapshot represents the states of the order
book at a specific time, including the maximum bid/ask lev-

els available at snapshot time. We calculated returns, log
returns, and illiquidity for a range of artificial net order vol-
umes executed against the order book at every snapshot to
resolveM(ω j , j) and stored this data. If the liquidity in the
order book was not sufficient to satisfy large trade volumes,
we asserted warnings and returned NaN values.

Next, we downsampled the returns, log returns, and illiq-
uidity of the 1-minute lower resolution time frames by
calculating the median values over 1-hour for speeding up
the subsequent data processing to conduct our analysis.

We selected Uniswap v2 and Uniswap v3 as AMM-
based DEXs to be analyzed in this work. The AMMs used
in those DEXs represent common implementations of two
different liquidity provisioning approaches: function-based
liquidity concentration (used in Uniswap v2) and liquid-
ity provider-based liquidity concentration (used in Uniswap
v3). Given full state reconstruction (see Section “Elucidating
price model terms and accessibility from exchange data”),
the difference in price determination in AMM-based DEXs
(i.e., price-discovering and price-adopting) plays a subor-
dinate role in this work because price-adoption is related
to the external price effect �Pext

j . Therefore, in our anal-
ysis, Uniswap v3, a price-discovering AMM with liquidity
provider-based liquidity concentration, is representative also
for price-adopting liquidity pool-based AMMs with auto-
matic liquidity concentration, such as Dodo.

To sufficiently reconstruct AMM states for the timeframe
in the scope of the analysis, we gathered on-chain data related
to state variables of smart contracts used in Uniswap v2 and
Uniswap v3. For Uniswap v2, we gathered data on the actual
reserves of token0 and token1. For Uniswap v3, we gathered
the slot0 data (e.g., sqrtPriceX96 and tick), and current liq-
uidity. Moreover, we gathered data of all neighbor ticks up to
a price change of plus-minus 3% of the state’s current token
price, resulting in 300 ticks with a tick spacing of 10 for the
WETH/USDC pair. Because liquidity is less likely to fluctu-
ate on Uniswap v2 and Uniswap v3, we reconstructed AMM
states hourly within our analysis timeframe.

We analyzed BTC and ETH as the tokens with the largest
trading volume. We selected the trading pair with the highest
trading volume on the individual exchange. For exam-
ple, Binance has pairs such as BTC/USDT, BTC/USDC,
BTC/BUSD, and BTC/TUSD. There, we selected the pair

Table 2 Overview of the
analyzed historical exchange
data per trading pair

Exchange Pair Data type Sampling Average 24h Volume

Binance BTC/USDT trade, order book 1 min, 1h 5365.7M USD

Binance ETH/USDT trade, order book 1 min, 1h 786.6M USD

Coinbase BTC/USD trade, order book 1 min, 1h 494.0M USD

Coinbase ETH/USD trade, order book 1 min, 1h 433.8M USD

Uniswap v2 WETH/USDC full state reconstruction 1h 3.1M USD

Uniswap v3 USDC/WETH full state reconstruction 1h 40.1M USD
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with the highest 24-hour trading volume. For Uniswap v2
and Uniswap v3, we used pairs with Wrapped ETH because
the trading volume was higher than with native ETH.

We use the WN-MSE to quantify the fit quality of the
market impact function linearization to the sampled market
impact at time j . TheWN-MSE uses trading net order volume
dispersion and emphasizes outlier impact, providing a com-
prehensive efficacymeasure of themarket impact functionfit.
The fit of the market impact function is weighted based on
trading activities. Relative errors allow to compare the effec-
tiveness of the fit of the market impact function between
different timeframes and datasets. Additionally, taking the
mean of squared errors helps to compute a singular, over-
all indicator of the fit quality. The mean of squared errors
places greater emphasis on outliers, and negative values are
eliminated. This multifaceted approach helps to compute a
detailed and accurate assessment of how well our fit of the
market impact function represents the real market impact
function.

Timeframe selection

To demonstrate the applicability of our analysis concept and
measure the influence of different market makers on market
quality in cryptoeconomic systems, we selected a 6-month
time frame (�T = 6M) from 2022-09-01 to 2023-02-28
for our analysis. The timeframe includes mostly sideward
movements of Bitcoin and Ether prices in 2022-09, 2022-
10, 2022-12, and 2023-02, while it also covers the FTX

bankruptcy in 2022-11 as a black swan event with a mas-
sive downturn of 26% for Bitcoin and 35% for Ether within
three days. Bitcoin and Ether prices fully recovered in 2023-
01. The time frame of the FTX bankruptcy in 2022-11 can be
regarded as a moment of non-equilibrium for Bitcoin, Ether,
and other tokens of cryptoeconomic systems.We assume that
the selected timeframe is suitable for analyzing the influ-
ence of different market makers on market quality because
this timeframe covers moments of equilibrium and non-
equilibrium

Liquidity-based influences of market makers
onmarket quality in cryptoeconomic
systems

This section presents the results of the analysis concept’s
utility demonstration. First, we show the fit quality that is
achieved by our analysis concept to validate its suitability.
Second, we present the time evolution of the market impact
function’s slope based on different types of data. Finally, we
compare the influence of conventional and automatedmarket
makers on slope evolution and, hence, market quality.

Validating derivedmarket impact functions and
slopemetrics

Figure 1 illustrates fitted market impact functions, net order
volume distributions as bar plots, and WN-MSE values for

boxplot of price return fitted market impact function number of trades in timeframe per bin

Fig. 1 Return over net order volume ω with fitted market impact functions weighted on the prevalence of ω for the ETH/USD pair. Horizontal:
Binance, Uniswap v2, and Uniswap v3. Vertical: timeframes 2022-09-01 to 2023-02-28 (full timeframe), 2022-11-04 to 2022-11-05 (before FTX
bankruptcy), and 2022-11-11 to 2022-11-12 (apex of the FTX bankruptcy)
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Binance, Uniswap v2, and Uniswap v3, examined at three
distinct timeframes: full 6 months, 1 day before, and 1 day
during the FTX bankruptcy. The vertical lines illustrate the
95% IQnR of the number of atomic datasets per ω-bin,
indicating the region of main trading activity. The three time-
frames sample overall, normal, and extreme price actions and
can be regarded as representative of equilibrium and non-
equilibrium conditions.

The results illustrated in Fig. 1 offer evidence for the con-
sistent fit quality that is achieved by applying the analysis
concept (see Section “Analysis concept”). This validates the
chosen approach. achieved by and, hence, the validity of
the chosen approach. Figure2 shows the results of the WN-
MSE for the fitted market impact function over time for the
BTC/USD pair on Binance. The fit quality is sufficient for
our analysis even duringmoments of strong non-equilibrium,
as evidenced during the FTX bankruptcy (in early 2022-11).
Here and for the following analyses, we indicate the fitting
precision by analyzing the WN- MSE’s median and 95%
IQnRs. Subsequently, we report the WN-MSE median and
IQnR of the WN-MSE.

Results from time evolution of themarket impact
function’s slopemetric

In the following subsections, we present the results from ana-
lyzing the time evolution of the market impact function’s
slope metric.

Market impact function’s slopemetric is in line withmarket
microstructure theory
Figure 3 illustrates the evolution of the market impact func-
tion’s slope for timeframe cumulated maker/taker enriched
trade data (first row), order book event-resolved data (second
row), and the log price (third row) for the BTC/USDpair. The
left and right columns juxtapose data from two conventional
market makers of major CEXs: Binance (left) and Coinbase
(right). The dashed lines indicate the respective median val-
ues over the complete analysis timeframe.

Regarding the slope metric, Figs. 1 and 3 show that the
market impacts function’s slope is positive for all timeframes
T . This empirical finding is in line with the basic hypothesis
widely accepted in market microstructure economic litera-
ture: a positive net order volume, indicating a predominance
of buy over sell orders, tends to exert upward pressure on
prices and vice versa (Madhavan, 2000). This relationship
underscores the interplay between market behavior and price
evolution.

Median slopes from trade and order book data are compa-
rable
The median slopes determined from timeframe cumulated
maker/taker enriched trade data approximates the median
slopes of order book-update event resolved data. For Binance

(top and middle in the left column of Fig. 3), the median
slope values are closer (0.56e-9 trade vs. 0.65e-9 order book
data) than with Coinbase (1.43e-9 trade vs. 1.16e-9 order
book data). Overall, Binance has a 2.56 times flatter slope of
the market impact function, indicating higher liquidity than
Coinbase. This finding aligns with the more noisy trade data-
derived slope of the market impact function for Coinbase.
This present noise causes the large deviation of the mar-
ket impact function slopes’median values for Coinbase. The
higher liquidity and the larger trade volume at Binance com-
pared to Coinbase indicate that Binance could be regarded
as a lead market. We discuss this observation in more detail
in the following subsections.

Order book event-resolved data provides an accurate rep-
resentation of the market impact function
For Binance, the time evolution of slopes derived from time-
frame cumulated trade data and book-update event-resolved
data (illustrated in Fig. 3) shows remarkable similarities. This
indicates that the noisymarket impact function approximates
the real market impact function. Therefore, as discussed in
Section “Elucidating price model terms and accessibility
from exchange data,” the effects from value attribution adap-
tion leading to external price effects �Pext and market
impact function shape change can be assumed to be small
in cumulated maker/taker enriched trade data on Binance.
In contrast, the noisy market impact function on Coinbase
strongly deviates from the non-noisymarket impact function
derived from order book-update event-resolved data. There-
fore, the external price effects are larger on Coinbase.

Overall, the analyses support the price model-based argu-
mentation given in Section “Elucidating price model terms
and accessibility from exchange data.” The order book event-
resolved data provides a more accurate representation of the
market impact function’s slope. Order book snapshots offer
a clearer insight into the exchange-local market’s intrinsic
behavior by focusing on immediate market conditions and
excluding external effects.

Lead markets can be identified via noisiness of the market
impact function
The larger volume, higher liquidity, and smaller noise of the
trade data derived slope for Binance, compared to Coinbase,
is in line with the predictions based on the price model given
in Section “Elucidating price model terms and accessibility
from exchange data.” Consequently, the theoretical and data-
based analyses imply that Binance potentially assumes the
role of a lead market for Bitcoin, while Coinbase appears to
act as a following or reactive market.

Market makers avert adverse selection costs—liquidity is
reduced in non-equilibrium
When examining the timeframe cumulated maker/taker
enriched trade data for CEXs (e.g., Binance and Coinbase)
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Fig. 2 Slope evolution of the
market impact function over
time (first row). WN-MSE with
median and 95% quantiles lines
(second row). Log-price
evolution (third row). The
BTC/USD pair on Binance with
�T = 6M (2022-09-01 to
2023-02-28) and �T = 1d

95% quantiles
mean value

illustrated in Fig. 3, notable peaks in the slope of the market
impact function can be observed in early November 2022.
Those peaks correspond to an increased slope of the mar-
ket impact function, indicating reduced market liquidity. The
peak in early November is particularly noteworthy because
it aligns with a significant downturn in Bitcoin’s logarith-
mic price due to the FTX bankruptcy event. The correlation
underscores the sensitivity of the market impact function’s

slope to major market events, leading to liquidity shifts. This
shows that market makers remove liquidity in moments of
non-equilibrium to avert adverse selection costs.

Function-based liquidity-concentratingAMMsprovide inf-
erior average liquidity and market quality
Figure 4 provides a detailed visualization of the evolution
of the market impact function’s slope (first row) for order
book-update event resolved data on Binance (orange lines),

Fig. 3 Slope of market impact function for timeframe cumulated maker/taker enriched trade data (first row). The slope of market impact function
for order book event resolved data (second row). Log-price evolution (third row). The BTC/USD pair on Binance (left) and Coinbase (right) with
�T = 6M (2022-09-01 to 2023-02-28) and �T = 1d
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Fig. 4 Slope ofmarket impact function for order book event resolved data with median lines (first row), IQnR of returns (second row) and log-price
evolution (third row) for the ETH/USD pair on Binance (left, orange), Uniswap v3 (left, green) and Uniswap v2 (right, blue) for a rolling window
width �T = 1d over the analysis period 2022-09-01 to 2023-02-28 �T = 6M

Uniswap v2 (blue lines), andUniswap v3 (green lines) for the
ETH/USD pair. The second row illustrates the corresponding
95% IQnRs of the respective slopes. The log price of Ether
is given in the third row.

Uniswapv2 is a representative of function-based liquidity-
concentrating AMM implementations, which were invented
way before the liquidity provider-based liquidity-concentrat-
ing AMMs. Therefore, we first compare Uniswap v2 against
Binance. The median slope of the market impact function
of Uniswap v2 (1.32e-7), compared to Binance (1.09e-9),
is approx. 120 times larger. This indicates inferior average
liquidity and market quality on Uniswap v2..

Function-based liquidity-concentrating AMMs show less
detrimental external price effect-based liquidity dynamics
Although Uniswap v2 provides inferior average liquidity
compared toBinance, it showsmuch smaller relative changes
in liquidity over time (see the middle row in Fig. 4). These
changes are uncorrelated to external events (e.g., the FTX
bankruptcy). Obviously, the sharp changes in the market
impact function slope on Uniswap v2 are caused by major
liquidity providers temporarily removing their liquidity. In
contrast, minor changes in themarket impact function’s slope
on Uniswap v2 are correlated with external price-based trad-
ing against the AMM and follow the convex shape of the
programmed market impact function.

One could, therefore, argue that function-based liquidity-
concentrating AMMs, such as Uniswap v2, have the potential
to provide more reliable liquidity to the market, especially in
strongly non-equilibrium conditions, thereby ensuring cer-
tain levels of market quality. Nevertheless, the liquidity on

Uniswap v2 was way lower (approx. factor 120) than with
Binance, even under strong non-equilibrium conditions with
the FTX bankruptcy.

Liquidity provider-based liquidity-concentrating AMMs
potentially provide CEX-competitive overall market qual-
ity, however may suffer stronger adverse selection costs
Function-based liquidity-concentrating AMMs (e.g., Uniswap
v2) persistently distribute liquidity across the AMMs price
range based on the implemented function. This differs from
liquidity provider-based liquidity-concentratingAMMs (e.g.,
Uniswap v3). In these AMMs, liquidity providers have more
individual influence on the liquidity distribution, for exam-
ple, by specifying price ranges in which their liquidity will
actually be distributed.

With a deviation of about a factor of 2.06, the median
slope of the market impact function of Uniswap v3 (top-
left subfigure, green line in Fig. 4) is about two orders of
magnitude closer to Binance’smarket impact function slopes
compared to Uniswap v2.

The slope’s time evolutions of Binance and Uniswap v3
show similarities. However, the slope evolution for Uniswap
v3 is more dynamic. This similarity indicates that liquidity
providers of Uniswap v3 avert adverse selection costs by
redistributing their liquidity, similar toCEXs. Therefore, one
could argue that liquidity providers on liquidity provider-
based liquidity-concentrating AMMs could pursue similar
market making strategies as on order book-based exchanges
through frequent liquidity reallocation. Such AMM designs
inherit the disadvantages of conventional market makers,
such as liquidity removal in moments of non-equilibrium to
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avert adverse selection costs. The effect of liquidity removal
in moments of non-equilibrium can be seen in the second
row when looking at the IQnR of returns. For Binance and
Uniswap v3, returns show a large per bin dispersion (large
IQnR values), indicating large liquidity changes. In contrast,
the IQnR of returns for Uniswap v2 show a small dispersion,
indicating small liquidity changes, especially compared to
Binance and Uniswap v3.

Depending on the AMM design, frequent liquidity reallo-
cation can lead to even stronger overall liquidity fluctuation
than on CEXs, as is the case for Uniswap v3. This worsens
the market quality for such AMMs, especially in moments
of non-equilibrium.

Discussion

Principal findings

Although AMM-based DEXs seem promising to tackle chal-
lenges ofCEXs (e.g., separation of concerns, transparent and
persistent liquidity provisioning), the extent to which AMMs
operated in DEXs can enhance market quality compared to
conventionalmarketmakers used inCEXs remains unknown.
This makes the targeted use of AMMs and conventionalmar-
ket makers in cryptoeconomic systems to reach high market
quality difficult. To analyze the influence of market makers
on market quality in cryptoeconomic system markets, we
present a formal price model and derive an analysis concept.
We demonstrate the utility of our analysis concept by analyz-
ing and comparing AMMs operated in DEXs (i.e., Uniswap
v2, Uniswap v3) and conventional market makers on CEXs
(i.e., Binance and Coinbase).

The analysis results show that trade data includes external
price effects leading to noisy market impact functions. This
is particularly observable in the comparison between mar-
ket impact functions derived from cumulative maker/taker
enriched trade data and order book-update event-based data
(see Section “Results from time evolution of the market
impact function’s slope metric”).

In the analysis of external price effects and the noisiness of
the market impact function for Bitcoin, we observed that the
slope of the market impact function on Binance is much less
noisy than the slope of the market impact function on Coin-
base. This indicates that for Bitcoin, external price effects on
Binance are smaller, compared to Coinbase. Binance can be
supposed to form a lead market and Coinbase a following
market. This is supported by the overall smaller slope of the
market impact function and larger trade volume on Binance.

For AMM-based DEXs, the analysis results show a sub-
stantially larger slope of the market impact function for
function-based liquidity-concentratingAMMs (e.g.,Uniswap
v2). We argue that the slope and, hence, the cost of liquidity

of these AMMs will, in principle, always be larger compared
to sufficiently adopted CEXs and DEXs with other AMM
designs. The reason lies in the price discovery combined
with the inherently opposed relationship between experi-
enced divergence loss and retrieved surplus from market
making: increasing the pool size decreases the slope of the
market impact function, which is desirable in equilibrium
conditions3. However, in non-equilibrium conditions, when
price adaption to external value changes is necessary, a larger
amount of assets is required to be traded at economically dis-
advantageous prices. Thereby, the absolute divergence loss
increases with pool size. In contrast, the absolute surplus
from market making, which depends on the trading volume
transacted by the AMM, is unlikely to increase accordingly.
Thus, if the liquidity provided increases more than the trans-
acted volume, the liquidity providers receive less reward per
deposited value unit, and a rational economic limit to pool
size exists, which in turn hinders adoption and increase of
trade volume.This chicken-egg problemprevents the slopeof
the market impact function from growing comparably small
to CEXs and other AMM designs.

Contributions to research and practice

To support analyses of the influences of market makers on
market quality, we applied concepts established in finance
literature on market microstructure to cryptoeconomic sys-
tems. Thereby, we offer a novel theoretical lens for analyses
of the performance of market makers in terms of their influ-
ences on market quality. In particular, we contribute to the
better analysis and design of market makers for cryptoeco-
nomic systems in four ways.

First, we present a formal price model based on well-
established concepts in finance literature. Thereby, we offer
a foundation to better understand price formation in markets.
This supports market participants in analyzing the different
components of price evolution.

Second, we present an analysis concept that uses the for-
mal pricemodel to investigate the influence ofmarket makers
onmarket quality in cryptoeconomic systemmarkets. This is
useful to assess and compare market quality and liquidity on
different CEXs and DEXs. For example, market participants
can assess lead markets and following markets by analyzing
the external price effects and noisiness of the market impact
functions.

Third, we describe how to use the analysis concept to ana-
lyze the influences of conventionalmarketmakers andAMMs
on market quality by applying our formal price model and

3 For example, for Uniswap V2 to reach comparable market quality
to Binance CEX, the pool size would have to grow by approximately
factor 120, see Subsection “Results from time evolution of the market
impact function’s slope metric” for details.
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analysis concept on historical data. Through that analysis,
we show the influences of differentmarket makers onmarket
quality in cryptoeconomic systems. This supports practition-
ers in using the analysis concept for future analysis ofmarket
quality.

Fourth, by offering evidence for theoretic assumptions on
conventional market makers, we support assessing market
impact, market quality, and liquidity in cryptoeconomic sys-
tem markets. This is useful to predict market quality and
associated risks of trade execution. Thereby, they can opti-
mize trade execution and reduce trade risks.

Overall, this work lays a foundation for analyzing and
comparing CEXs and DEXs in terms of their influences on
market quality. This helps understand the origins of benefits
and drawbacks of AMMs compared to conventional market
makers and helps guide the future design of AMMs.

Limitations

In the scope of this work, we focused on the largest two
CEXs (i.e., Binance and Coinbase) by 24-h trading volume
becauseweassumed thoseCEXs to be themost representative
conventional market makers. Conventional market makers
used in other CEXs (e.g., Kraken, KuCoin, and OKX) may
apply other market making strategies. Therefore, the pre-
sented findings on CEXs apply to Binance and Coinbase at
the time of observation but cannot ultimately be generalized
to any CEXs.

Even though we used extensive data for themarket maker
analysis, we did not differentiate betweenmarket makers and
regular traders. We assumed that all market participants who
place limit orders into the order book act as market mak-
ers. Thus, our results do not examine individual institutional
market makers, but the collective behavior of market mak-
ers and market participants. This approach seems reasonable
because, to the best of our knowledge, liquidity is mainly
influenced by this collective behavior.

To compare conventional market makers with AMMs, we
analyzed Uniswap v2 and Uniswap v3 as representatives
of function-based and liquidity provider-based liquidity-
concentration AMMs. We selected these AMM-based DEXs
because they have the highest 24-hour trading volume, which
is, at least, partially comparable to the 24-hour trading vol-
ume of CEXs.

Recent developments brought forth new AMM designs
with unique characteristics. For example, supply-sovereign
AMMs are promising to overcome the dependence on liq-
uidity providers and the liquidity problem related to adverse
selection cost by design. However, we do not provide any
analyses for supply-sovereign AMMs. The reason is that to
date, to the best of our knowledge, no sufficiently adopted
real-world implementation exists.

Future research

Supply-sovereign AMMs seem promising to overcome the
dependence of AMMs on liquidity providers. However,
supply-sovereign AMMs are not intended to provide a means
of exchange for arbitrary assets. Instead, supply-sovereign
AMMs are envisioned to control the token supply of cryp-
toeconomic systems to issue and trade those tokens. By
controlling the token supply, supply-sovereign AMMs can
overcome the adverse selection cost of liquidity problem by
design. This is because the AMM as issuer can guarantee
liquidity without depending on external liquidity providers.
Supply-sovereign AMMs form the lead market by design,
with a market maker guaranteeing liquidity based on their
transparent market impact function. In contrast, liquidity
provider-based AMMs (e.g., Uniswap v2, Uniswap v3) must
follow the lead market, typically located elsewhere due to
the rational economic limit of market impact function’s
slope. Thereby, liquidity providers on liquidity provider-
based AMMs suffer losses from buying and selling tokens
at disadvantageous prices to arbitrageurs exploiting price
discrepancies between the AMM and the lead market. With
supply sovereign AMMs, the previous drawback is resolved
in a twofold way. No liquidity providers are averting adverse
selection risk and divergence loss, and there is no need to fol-
low an external lead market. This can help to greatly enhance
market quality, especially in non-equilibrium conditions.

Due to the principal differences between supply-sovereign
AMMs and AMMs with other designs (e.g., Uniswap v2,
Uniswap v3) and the lack of supply-sovereign AMMs imple-
mentations, a detailed analysis of possible advantages and
drawbacks should be better understood in future analyses of
influences of supply-sovereign AMMs on market quality. We
plan to perform such analyses in subsequent work.

Conclusions

Conventional market making and exchange operations entail
risks of lowmarket quality. This can facilitate market manip-
ulation by fraudulent entanglement of exchanges, market
makers, and underwriters, harming honest market partic-
ipants. AMM-based DEXs operating in cryptoeconomic
systems seem to tackle those challenges, by employing per-
sistent and transparent market making strategies. However,
the extent to which AMMs can help improve market quality
compared to conventional market makers is barely under-
stood.

Drawing fromfinance literature onmarketmicrostructure,
we developed a formal price model and an analysis concept
for market quality. The analysis concept allows to analyze
and understand the influence of market makers on market
quality in cryptoeconomic systems.
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We show that, depending on AMM designs, AMMs oper-
ated in DEXs have the potential to provide CEX-competitive
market quality. However, the problem of low market quality
due to the significant removal of liquidity in non-equilibrium
conditions remains unsolved. The root cause of liquid-
ity removal lies in adverse selection costs that strongly
influence the economic sustainability of market making
strategies. Considering fundamental economic principles, it
seems plausible that these drawbacks will not be overcome
with approaches for which adverse selection costs of liquid-
ity are a major concern.

Supply-sovereign AMMs focus on the issuance and trad-
ing of own tokens of cryptoeconomic systems, while the
AMM controls the supply. Supply-sovereign AMMs elim-
inate dependence on liquidity providers. This can help
overcome the liquidity problem related to adverse selection
cost by design. Thus, supply-sovereign AMMs are promis-
ing to become state of the art for new projects that envision
keeping sovereignty over their tokens and offer markets with
high liquidity and market quality. This can be regarded as
well aligned with the core idea of cryptoeconomic systems
to create decentralized, self-sovereign systems without the
need for central authorities.
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