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Abstract We consider a market where buyers can access
unbiased samples of private data by appropriately compen-
sating the individuals to whom the data corresponds (the
sellers) according to their privacy attitudes. We show how
bundling the buyers’ demand can decrease the price that
buyers have to pay per data point, while ensuring that sell-
ers are willing to participate. Our approach leverages the
inherently randomized nature of sampling, along with the
risk-averse attitude of sellers in order to discover the mini-
mum price at which buyers can obtain unbiased samples. We
take a prior-free approach and introduce a mechanism that
incentivizes each individual to truthfully report his prefer-
ences in terms of different payment schemes. We then show
that our mechanism provides optimal price guarantees in
several settings.
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Introduction

As the great value of big data is being recognized and the
cost of computer memory keeps dropping, the amount of
personal information gathered about individual consumers
has reached unprecedented levels. The economic value of
this data is reflected in the success of many Internet com-
panies, from search engines to social media sites and data
repositories which routinely sell this information.

Still, large amounts of potentially useful private data can-
not be accessed by interested parties due to privacy concerns
(Haddadi et al. 2012). In particular, a number of companies
and entities gather lots of data about groups of individuals
that would be very useful to third parties. For instance, a
hospital may have information about individuals with a cer-
tain disease that a pharmaceutical company or a researcher
would like to know, or a cable provider may have infor-
mation about the viewing habits of a certain demographic
of interest to a TV channel. However, these entities are
often reluctant to allow others to access such data because
of the privacy concerns of the corresponding individu-
als. At the same time, individuals’ data is being bought
and sold by data brokers, such as Acxiom, often without
the knowledge of the individuals that the data pertains to
Singer (2012).

One solution that would alleviate part of this controversy
would be the creation of a market for private data through
which buyers can pay individuals (sellers) in exchange for
obtaining access to their private data. Sellers can then opt
in to this market if the price is high enough. This approach
has the potential to make useful data repositories accessi-
ble to interested parties while respecting the preferences and
privacy attitudes of individuals.

In this work, we present mechanisms that facilitate this
exchange while satisfying a collection of desired properties.
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We consider settings where each buyer is interested in a spe-
cific attribute of a representative subset of individuals with
certain characteristics (and not in the private data of specific
individuals). For example, a company that designs games
might be interested in how much time Facebook users who
are in their twenties spend playing games online. This can
be achieved by giving each buyer access to an unbiased sam-
ple of a certain size, that is, to the values of this attribute for
a subset of individuals who are chosen uniformly at random
from the set of all individuals with the characteristics the
buyer is interested in. Such a sample will typically be repre-
sentative because of the Law of Large Numbers as long as
a representative subset of individuals chooses to participate
in the market.

Different individuals may have diverse privacy attitudes,
and as a result they may be willing to participate in the mar-
ket for different prices (Carrascal et al. 2013). Quite often
one’s privacy attitude is correlated with the value of the
attribute that a buyer may be interested in (Huberman et al.
2005). In order to minimize this bias one needs to set the
price high enough so that almost all the individuals choose
to participate in the market. This implies that the cost of a
truly unbiased sample can be extremely high even if just a
few of the individuals are very concerned about their pri-
vacy. Even though we anticipate that this effect will be less
pronounced for the types of queries that we consider, this
is an intrinsic problem that all mechanisms aiming to elicit
unbiased samples face. In order to alleviate this problem,
our mechanisms provide the market maker with the ability
to control the extent to which bias is introduced into the
sample in exchange for decreased cost. Our goal is to min-
imize the expected value of the price that the buyers are
asked to pay for the samples. This way, we can increase the
buyers’ interest in the market and hence the market’s chance
for adoption, while ensuring that the sellers are willing to
participate in the market.

The individual sellers may also differ with respect to
their attitude towards risk. A risk-averse individual prefers
a guaranteed payment to a risky one with the same or even
larger expected payment. One can take advantage of the risk
aversion of some sellers to set a price per data point that is
lower than the price that the most privacy concerned sellers
are willing to accept (Aperjis and Huberman 2012).

In this paper we show that appropriately bundling the
buyer demand can significantly decrease the price of unbi-
ased samples. We first demonstrate how bundling the
buyer requests can amplify the benefits from risk aversion
described in Aperjis and Huberman (2012) by leveraging
the fact that individuals tend to exhibit more risk aversion
for higher payments (Holt and Laury 2002). More specifi-
cally, we identify the optimal way to bundle demand so as
to minimize the expected payment to a risk averse seller.
We then show that the same demand bundling technique

also provides optimal worst-case guarantees in different set-
tings. Throughout this paper, we take a prior-free approach
and assume no knowledge of the distribution of the sellers’
privacy and risk attitudes.

Markets for private data have been previously studied
in the setting of a buyer interested in estimating a certain
statistic property of a set of private data, such as the aver-
age of some value, the sum, or the weighted sum (Roth
and Schoenebeck 2012; Ghosh and Roth 2011; Dandekar
et al. 2012; Cummings et al. 2015). In contrast to that work,
we consider a scenario where buyers pay for access to raw
anonymized data instead of just an estimate for its statistical
value. The selling of raw private data has been previously
considered (e.g., (Riederer et al. 2011)) but not for unbiased
samples, which is the focus of this paper.

A relevant line of work studies how to estimate certain
statistics in the context of differential privacy (Ghosh and
Roth 2011; Dandekar et al. 2012). The approach that the
literature on differential privacy follows is to add unbiased
noise to the information that is being sampled in an attempt
to minimize the chance that any individual records can be
identified. A drawback of the differential privacy approach
is that in order to achieve a reasonably accurate estimate the
buyer needs to use data from the majority of individuals in
the subset of interest, which can possibly render this mech-
anism very expensive for the buyer. Our approach avoids
this problem by using an unbiased sampling technique; this
technique induces small unbiased subsets of the data that a
buyer can then use to compute statistics about them. In con-
trast to the differential privacy literature, our approach does
not add any noise to the data.

More recently, Roth and Schoenebeck (2012) have shown
how to estimate the average of a set of private values using
the Horvitz-Thompson estimator. This approach assumes
that the mechanism has access to the distribution from
which the sellers’ privacy attitudes are generated. In con-
trast, we take a prior-free approach with respect to sellers’
privacy attitudes.

In the following section, we provide a more detailed
description of the structure of this market, of our objectives,
and of the barriers that we faced.

The market

Consider a data repository that contains information on n

individuals (the sellers). For instance, this repository could
contain information obtained by a company which pro-
vides its customers with access to streaming movies on the
web. As the customers use this service, the company col-
lects information about their viewing habits. A buyer is a
third party interested in obtaining access to a representa-
tive sample of a subset of this data; in this example a buyer
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Fig. 1 The market-maker facilitates interactions between buyers and
sellers

could be a TV channel that is interested in the amount of
time that a certain demographic spends watching movies,
or in the average rating of a movie by this demographic. A
buyer like this would therefore be willing to pay in order
to gain access to the corresponding information of an unbi-
ased, and thus representative, sample of individuals from
that demographic.

Such efforts from companies to gather information about
their target group of customers, known as market research,
is not a new trend. Traditionally, the acquisition of this type
of information took place via polls and surveys, but these
methods now seem inefficient in light of the unprecedented
amount of relevant information that is being collected
online. On the other hand, when a data-repository sells this
information to the interested buyers without the permission
of the users that this data pertains to, the privacy of these
individuals is breached. The users may be reluctant to allow
access due to privacy concerns, but they may be willing to
reconsider if the potential rewards are high enough.

We envision that a market-maker facilitates the interac-
tions between buyers and sellers, as shown schematically in
Fig. 1. The role of the market-maker could, for example, be
played by the company that owns the data repository. The
market-maker can set the price that a buyer needs to pay
per individual seller in order to obtain access to an unbiased
sample, while ensuring that a representative set of individ-
uals choose to opt in to this market. The buyer pays the
market-maker and the market-maker uses the buyer’s pay-
ment to appropriately compensate the sellers, while keeping
a cut for himself.

In this work, we approach this problem from the market-
maker’s perspective, aiming to minimize the expected pay-
ment that the sellers will receive, while ensuring that these
sellers still choose to opt in to the market. Seeking to min-
imize this expected payment, one may be tempted to use a
mechanism along the lines of a reverse auction: ask each
seller to report the minimum price for which he would allow
a buyer to access his data, and then sell a buyer access to
the data of the sellers who reported the lowest prices. Such
an approach would not give an unbiased sample though,
since the value of the attribute that the buyers are interested

in will often be correlated with the corresponding seller’s
privacy attitude (Huberman et al. 2005). The requirement
of an unbiased sample implies that each individual should
be selected with the same probability, independently of how
much he values privacy.1

Privacy attitudes Apart from the need to ensure that the
samples provided to the buyers will be unbiased, the market-
maker faces a much more important barrier: different indi-
viduals have different privacy attitudes (Huberman et al.
2005; Acquisti et al. 2013; Cvrcek et al. 2006; Hann et al.
2007), and the market-maker does not have a prior regard-
ing the privacy attitudes of the sellers. For instance, some
individuals may not be concerned about privacy and would
allow a buyer to access their data in exchange for a few
cents, whereas others may only consent if paid at least $10.
Since all individuals prefer to be paid more though, even
those unconcerned about their privacy may pretend that
they are if they expect that this will result in getting higher
payments. Therefore, our goal is to design truthful mecha-
nisms that the market-maker can use, i.e., mechanisms that
incentivize the sellers to always report their true privacy
related preferences. Also, to ensure that no seller regrets
participating in the market, we restrict ourselves to individ-
ually rational mechanisms; that is, mechanisms that always
reward each seller at least as much as the privacy cost that
he suffered. Note that this private data is already stored and
the individuals cannot change it, so the market maker does
not need to worry about eliciting the true value of the data
as well.

Example 1 Consider a company which has 1000 sub-
scribers and knows the value of some attribute α for each
one of them. Some third party is interested in buying access
to values of attribute α from an unbiased sample of 100 out
of the 1000 subscribers (without knowing which 100 sub-
scribers participate in the sample). Each subscriber may be
willing to be part of the sample for a different compen-
sation, but nobody, except the particular subscriber, knows
how high this compensation is. For simplicity, assume that
300 of the subscribers would not want to be part of the
sample unless they receive an payment of at least $10 and,
among the remaining 700 subscribers, 300 require at least
$5, and 400 do not care about their privacy and would
not really mind being in the sample even if they are not
compensated. How can a market maker incentivize each
subscriber to report the truth regarding his privacy attitude
while choosing an unbiased sample and ensuring that every
sampled subscriber is happy with his compensation?

1It is possible to produce an unbiased statistic from a biased sample
(e.g., with the Horvitz-Thompson estimator), but here we take a prior
free approach and do not restrict attention to a specific statistic. It is
thus natural in our setting to aim for unbiased samples.



112 V. Gkatzelis et al.

A Solution In light of the restriction to truthful, individually
rational mechanisms, and given the fact that the market-
maker does not have a prior regarding the sellers’ privacy
attitudes, the number of interesting solutions is very lim-
ited. In fact, no mechanism can avoid introducing some
bias to the samples unless it assumes that the market-maker
knows a price which is high enough to attract all the sell-
ers. Nevertheless, even without this assumption, there is a
natural mechanism that only introduces a negligible amount
of bias. The mechanism first asks each seller to report
the minimum price for which he would allow a buyer to
access the value of his α attribute. Then, among the sell-
ers that reported the maximum price, cmax , one of them
is chosen uniformly at random and he is discarded from
the set (in Example 1, cmax =$10 and one of the 300
subscribers who would request this compensation is dis-
carded). A random sample of sellers is then selected from
the remaining set (in Example 1, 100 subscribers would
be chosen randomly among the 999 non-discarded ones).
Each sampled seller gets paid cmax in return, and the sam-
ple is sold to the interested buyer. Assuming that the initial
set of sellers was large enough, and for most interesting
statistics, the fact that just one seller was discarded based
on his reported privacy attitude introduces only a negligi-
ble bias. Also, as we show, this mechanism is both truthful
and individually rational. The mechanism described above,
which we call the Baseline Mechanism (for more details
see Section “Baseline mechanism for linear costs”),
provides a first way to satisfy the truthfulness and
individual rationality constraints, but it does not do much in
terms of minimizing the expected payment that is offered to
the sellers.

Risk aversion Observe that with the aforementioned mech-
anism, a seller receives a high payment (cmax) if he is
sampled and no payment otherwise. Consider a seller that
is not concerned about privacy and would be willing to give
access to his data if paid any positive amount. Then, for this
seller the mechanism is equivalent to a lottery which gives
him a high payment (cmax) with probability equal to the
proportion of sellers that will be sampled and no payment
otherwise. If the seller is risk-averse, he will prefer to get a
certain payment with lower expected value rather than par-
ticipate in the lottery. The market-maker can then offer this
seller an appropriate certain payment instead of the lottery
and thus reduce the expected payment of the buyer. Simi-
larly, other risk averse sellers may also be willing to replace
the lottery with a less risky lottery that has a lower expected
payment. We leverage this fact by designing mechanisms
that allow each seller to replace the initial lottery with less
risky ones that lead to a decrease in the expected payment;
more importantly we also show how to bundle the buyers’
requests in order to amplify the effect of risk aversion.

Example 2 Expanding on Example 1, assume that, among
the 400 subscribers that do not care about being sampled,
half of them are risk-averse. In particular, assume that if
these bidders were provided with the option of receiving¢70 irrespective of whether they are sampled or not, and
the option of receiving $10 if they are sampled (which hap-
pens with probability around 0.1) and $0 otherwise, then
they would prefer the first option. Note that a risk-neutral
subscriber would prefer the latter option whose expected
payment is $1. Using this observation, instead of just using
the Baseline mechanism described above, we could also
offer to each subscriber the option of receiving a certain
payment of ¢70 before the sample is chosen. This way, the
risk-averse subscribers would be able to increase their hap-
piness by opting to use this alternative compensation option,
while the expected cost of the sample would drop from
$1000 ($10 per sampled subscriber) to $940. Each of the
200 risk-averse subscribers would receive ¢70, irrespective
of whether he is sampled or not (a total cost of $140), and
each one of the remaining 800 subscribers would receive
$10 only if sampled, which happens with probability 0.1
each (a total expected cost of $800).

Bundling buyers’ requests It is known that individuals tend
to exhibit more risk aversion for higher payments (Holt and
Laury 2002). This suggests that, if there happen to exist such
risk averse individuals in the market, it may be possible to
further reduce the price per data point by bundling the buy-
ers’ demand. For instance, the market-maker may choose
to sample sellers in a way such that a seller’s data is either
accessed by a large number of buyers in return for a large
payment or by no buyer in return for no payment. In effect
we choose to correlate the samples of different buyers in
order to induce lotteries with higher risk; as a result, in order
to avoid this risk, the risk-averse sellers prefer risk-free
alternatives, even if the expected payment is substantially
smaller. Note that this approach does not assume or require
that the majority of the sellers are risk averse. Having said
that, the more such individuals exist, the more substantial
the improvement on the expected payment. Also, note that
the bundling we do here is different than product bundling
where several products are offered for sale as one combined
product; here we bundle buyers’ request, i.e., the demand.

Example 3 The examples discussed above treat each third
party interested in buying samples independently. Suppose
there is a total of m = 150 interested buyers, such that
50 buyers want a sample of 50 sellers and 100 buyers
want a sample with 200 sellers. In this case, repeatedly
using the Baseline mechanism for each one of these buyers,
would yield a total expected payment of $250 for each sub-
scriber (an expected payment of $1 from each of the first
type of buyers and $2 from the second type). The first
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observation is that, with such higher payments, the risk-
aversion effects become significantly more pronounced.
The second observation, which is the main focus of this
paper, is that correlating the samples that these buyers
receive can increase the effects of risk-aversion even fur-
ther. If we choose a different sample independently for each
buyer, then the probability that a subscriber never gets sam-
pled, and hence receives no payment, is extremely small.
If, on the other hand, we choose a random ordering of the
subscribers once, and then each buyer seeking a sample of
size d receives the attribute values of the first d subscribers
according to the ordering, this probability remains high. In
our example with the 150 buyers, for instance, the probabil-
ity that a subscriber receives no payment would be 0.8, i.e.,
the probability that the subscriber would not be among the
first 200 in the ordering. If the subscriber was among the
first 100 in the ordering (with probability 0.1), he would be
sampled 150 times, leading to a payment of $1500! Finally,
subscribers that are in the top 200, but not top 100, positions
in the ordering, would be sampled 100 times for a payment
of $1000. As we show in this paper, a risk-averse subscriber
facing this more extreme lottery would be much more likely
to settle for a guaranteed payment which is significantly
lower than the expected payment of $250. In particular, we
show that correlating the samples in the fashion described
above guarantees some highly desirable properties.

Paper Structure In Section “Model”, we provide the for-
mal definitions and the assumptions of our model. For the
first set of results, in Section “Linear costs”, we assume
that the minimum payment that the sellers request is lin-
ear in the number of buyers gaining access to their data. In
other words, if k buyers gain access to some seller’s data,
the minimum payment that the seller requests is exactly k

times the minimum payment that he requests if just one
buyer gains access. In Section “General costs” we also con-
sider the non-linear case, for which, even adapting the idea
of the Baseline Mechanism described above is not obvious
(we address this issue in more detail in Section “General
costs”). Nevertheless we show that an adaptation of the
Baseline Mechanism, combined with the bundling method
mentioned above provides an optimal worst-case guarantee
with respect to the expected payment minimization objec-
tive. Finally, in Section “Discussion”, we conclude this
work with a discussion regarding the contributions and the
limitations of our results.

Model

Buyers We use B to denote the set of m buyers that are
interested in acquiring access to the data of representative
sets of the sellers. Each buyer b ∈ B reports his demand
db, which represents the size of the unbiased sample that

he wishes to buy access to. We assume that the demand is
price-insensitive; that is, buyer b wants to get an unbiased
sample of db individuals irrespectively of the price.2

Furthermore, for expository ease we assume that all buyers
are interested in individuals with the same characteristics.
We note, however, that our results can be directly applied
to the general case where each buyer may define a large
enough subset of sellers that he is interested in; one simple
way to do this would be to use our mechanisms for each one
of these subsets separately.

Sellers Let N denote the set of n sellers who are willing to
sell access to their private data. Each seller i ∈ N is char-
acterized by two functions representing his privacy and risk
attitudes. The privacy attitude of seller i is modeled with
a non-decreasing cost function ci : N → R, where ci(k)

represents the smallest payment for which seller i would
allow exactly k buyers to access his data. We assume that
ci(0) = 0. We model the risk attitude of seller i with a non-
decreasing utility function ui : R → R with ui(0) = 0.
Both ci(·) and ui(·) are private information of seller i, so
only he knows these functions. We make the following
assumption:

Assumption 1 The utility of seller i for obtaining a mone-
tary payment x while allowing k buyers to access his data is
equal to ui(x − ci(k)).

The intuition behind this utility function is that, since the
value of the cost ci(k) that the seller suffers is based on a
monetary measure, the seller’s utility depends on the dif-
ference between the payment that the seller receives and
the privacy cost he incurs. In what follows, we refer to
the difference x − ci(k) as the seller’s profit. The utility
of the seller is therefore a non-decreasing function of this
profit. Formally, some seller i is risk-averse if his utility
function ui(·) is concave. Alternatively, a seller may be risk-
neutral (which corresponds to a linear utility function) or
risk-seeking (corresponding to a convex utility function).
When faced with randomness with respect to the payment
or the number of buyers that will access his data, we assume
that each seller aims to maximize the expected value of his
utility (Mas-Colell et al. 1995).

Given any subset of sellers N ′ ⊆ N and a set of sam-
ple size requests db, one from each buyer b ∈ B, there
are many different ways in which one can generate a set of
unbiased samples of the requested sizes using sellers in N ′.
More formally, one can think of sampling as a probability

2This implies that the value that buyer b sees in obtaining access to
an unbiased sample of db individuals is higher than the price that he
is asked to pay. Our mechanisms work more generally for settings
where the demand does not change drastically with the price or the
market-maker has a good estimate of the right range for the price. See
(Gkatzelis et al. 2012) for details.
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distribution over all possible outcomes. Let �(N ′) denote
the set of all such distributions that produce the requested
unbiased samples from N ′; for notational simplicity, we
suppress the dependence of � on the buyers’ requests.
Given a distribution ψ ∈ �(N ′) representing the sampling,
let pψ(k) be the probability that the data of some seller is
sold to exactly k buyers. Thus, pψ represents the distribu-
tion of the number of times that a seller will be sampled.
Clearly, if ψ ∈ �(N ′), the fact that ψ is unbiased implies
that the distribution pψ is the same for all sellers in N ′.

If k buyers gain access to the data of seller i, this seller
will be compensated with some payment, which we denote
by πi(k). In contrast to the probability that k buyers gain
access to one’s data, the corresponding payment may vary
across sellers. We restrict our attention to payment functions
πi(·) that are deterministic; that is, the value of πi(k) for
every seller i and every k ≤ m is decided before the sam-
pling begins and is independent of ψ . Then, the expected
utility of seller i for a given distribution pψ and a payment
function πi(·) equals
m∑

k=0

pψ(k)ui(πi(k) − ci(k)).

Similarly, the expected total payment (over all sellers) is
equal to

n∑

i=1

m∑

k=0

pψ(k)πi(k), (1)

Since we are assuming that the demand is fixed, the market-
maker’s objective is to minimize the value of Eq. 1. In our
attempt to optimize this objective, we restrict ourselves to
mechanisms that are dominant strategy truthful, that is, for
each seller it is a dominant strategy to report his true privacy
and risk attitudes. Moreover, our mechanisms are ex post
individually rational, that is, every seller experiences a non-
negative utility at each possible outcome.

Suppose that we fix some distribution ψ and payments
πi . We write (pψ, πi) to denote the lottery according to
which the number of buyers that get access to one’s data
is drawn from the distribution pψ , and seller i is compen-
sated according to the payment function πi . The concept of
the certainty equivalent, which we define next, is crucial for
some of our mechanisms.

Definition 3.1 The certainty equivalent of seller i for lot-
tery (pψ, πi), denoted ei(pψ, πi), is the amount of profit
for which seller i is indifferent between receiving the
expected profit of (pψ, πi) and receiving a certain profit of
ei(pψ, πi); that is,

ui(ei(pψ, πi)) =
m∑

k=0

pψ(k)ui(πi(k) − ci(k)).

We assume that buyers are risk-neutral. However, this
assumption is not essential for our mechanisms as long as
the market-maker is risk-neutral.

Linear costs

In this section, we focus on the case when the sellers’ cost
functions are linear, and we refer to the value of ci(1) by ci .
Linearity implies that the cost function of seller i is of the
form ci(k) = k · ci , and hence ci is the single parameter
that characterizes his privacy attitude and that our mecha-
nisms need to elicit. We begin by discussing the Baseline
Mechanism, which we mentioned in Section “The market”.
In Section “General costs”, we extend this Baseline Mech-
anism to a setting with general (not necessarily linear) cost
functions.

Baseline mechanism for linear costs

The Baseline Mechanism begins by asking each seller i to
report his parameter ci ; let cmax be the highest reported
value. The mechanism then chooses some seller ĵ uniformly
at random among the ones that reported a parameter value
equal to cmax , and it discards this seller. Finally, the mech-
anism uses some distribution ψ ∈ �(N \ {ĵ}) in order
to generate the requested samples excluding seller ĵ , and
each time some seller is sampled, he receives a payment
equal to cmax . The following Theorem shows two important
properties of the Baseline Mechanism.

Theorem 4.1 The Baseline Mechanism for linear costs is
dominant strategy truthful and ex-post individually rational.

One natural concern about this mechanism is that,
although Theorem 4.1refBLtruth shows that the mechanism
is dominant strategy truthful, it is nevertheless not collusion-
resistant: two sellers can agree that one of them will report
an artificially high price in order to increase the payment
cmax that the other seller might receive if he is sampled,
in which case the two sellers can share this high payment.
However, in order to prevent such a collusion among at
most x sellers, the mechanism can simply discard the sell-
ers that reported the top x prices and define cmax to be
the x-th highest reported price instead. This variation of the
mechanism provides a very natural tradeoff between collu-
sion resistance and the introduction of bias to the samples.
Alternatively, one could also choose the value of x in a ran-
domized fashion in order to introduce more uncertainty and
deter sellers from colluding.

Observe that there are many unbiased distributions in
�(N \ {ĵ}) that the mechanism can use. One choice is to
produce independent samples for each buyer b; i.e., for each
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buyer b, sample db sellers fromN\{ĵ} uniformly at random.
Alternatively, one could bundle the demand from some buy-
ers together and then do the sampling; e.g., if db = db′ for
buyers b and b′ we could sample uniformly at random once
(instead of twice) and give both buyers access to the same
sample of sellers. Since the payment for each sampled seller
is always cmax , irrespective of the distribution ψ , the total
payment of the market-maker is unaffected.

With the Baseline Mechanism, a seller may be sampled
multiple times (i.e., for multiple buyers in B). The total pay-
ment to seller i is equal to the product of cmax and the
number of buyers that obtain access to i’s data. As a result,
the utility that seller i derives depends on the number of
times that he is sampled. In particular, if seller i is sam-
pled k times he derives utility ui(k(cmax − ci)). Hence, if
ci < cmax , then seller i strictly prefers to be sampled as
many times as possible.

One of the major drawbacks of the Baseline Mechanism
is that prices may be high, and very high prices could deter
buyers from participating in the market. We thus aim to
decrease prices — while ensuring that sellers are still will-
ing to participate — in order to increase the chance that
buyers are willing to participate in the market. A useful
implication of Definition 3.1 is that, given some distribu-
tion pψ , seller i is indifferent between being compensated
according to some payment function πi(·) and being com-
pensated according to π ′

i (·), where π ′
i (k) ≡ ei(pψ, πi) +

ci(k). If some seller is risk-averse, then his utility function
is concave, and hence the certainty equivalent of a lottery is
smaller than its expected value, i.e.

ei(pψ, πi) <
∑

k

pψ(k)(πi(k) − ci(k)).

As a result, if some seller i is risk-averse, then the expected
payment under π ′

i (·) is smaller than the expected payment
under πi(·). In other words, a risk-averse seller would pre-
fer a smaller payment in expectation that is appropriately
distributed among the potential outcomes. Since we have
assumed that buyers are risk-neutral, the seller’s indiffer-
ence between πi(·) and π ′

i (·) provides room for decreasing
the price that a buyer has to pay. In the next section, we
introduce the Certainty Equivalentmechanism that uses this
fact in order to reduce the expected price that buyers will
pay.

CE mechanism for linear costs

The Certainty Equivalent (CE) Mechanism, just like the
Baseline Mechanism, uses some unbiased distribution ψ ∈
�(N \ {ĵ}) in order to generate the samples, but, unlike the
Baseline Mechanism, it essentially offers to each seller two
different payment function options instead of just one. The
first payment function, πmax(·), is equivalent to that of the

Baseline Mechanism, i.e. πmax(k) = cmax ·k, while the sec-
ond one, π ′

i (·), is tailored to seller i’s cost function and it
guarantees seller i a certain risk-free profit, irrespective of
the outcome of ψ .

Following the same steps as the Baseline Mechanism,
the CE mechanism also asks each seller i to report his cost
parameter ĉi and it discards one of the sellers that reported
the highest parameter value. In contrast to the Baseline
mechanism though, in order to know which one of the two
payment functions the seller would prefer, the mechanism
presents each seller i with the lottery (pψ, πmax), and asks
him to report his certainty equivalent êi for this lottery (for a
discussion regarding the incentives of the seller in reporting
his certainty equivalent truthfully, see the detailed descrip-
tion of the mechanism following its formal definition). In
order to attract a risk-averse seller to choose the risk-free
payment function π ′

i (·) instead of the lottery (pψ, πmax),
this payment needs to be at least π ′

i (k) = êi + ĉik for all
k, thus ensuring that the seller will experience a profit of at
least êi no matter what the outcome of ψ will be. If we let

w ≡
∑

k

pψ(k)k

denote the expected number of times that a seller is sam-
pled, and using (1), we get that the expected total payment
for seller i if he was offered π ′

i (·) would be r̂i ≡ êi + ĉiw. In
other words, apart from the profit of êi that the seller needs
to experience, the payment needs to also cover the seller’s
expected costs whenever the seller is sampled. Of course,
the CE mechanism only offers risk-free payment alterna-
tives that lead to a lower expected total payment compared
to πmax(·), i.e. r̂i < cmaxw. As a result, these alternatives
may only attract risk-averse sellers and the CE Mechanism
is equivalent to the Baseline Mechanism for the rest. As a
result, the expected payment of the CEMechanism is always
at most as much as that of the Baseline Mechanism, and
the more pronounced the risk-aversion attitude of the sellers
is, the smaller the expected payment of the CE Mechanism
compared to that of the Baseline.

The mechanism then defines what the risk-free alterna-
tive payment π ′

i (·) for each seller will be. More specifically,
the mechanism decides what the expected payment r of
this alternative payment will be, and then, for each bidder
i, the alternative payment function appropriately distributes
this expected payment in order to guarantee some risk-free
profit. Formally, this means that π ′

i (k) = r + ĉi (k − w),
which implies that, for every k, the profit of the bidder
equals

π ′
i (k) − ĉi · k = r − ĉi · w,

which is independent of k. Depending on whether r̂i is
smaller than r or not, the mechanism then knows whether i

prefers this risk-free alternative payment or not, and chooses
the preferred payment function on his behalf (Step 3 below).
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Finally, the CE Mechanism produces unbiased samples
from the set N ′ = N \ {ĵ} according to distribution ψ , as is
the case with the Baseline Mechanism. However, in contrast
to the Baseline Mechanism, each seller is paid according to
the corresponding payment function that was chosen on his
behalf before the sampling. It is important to point out that
the distribution ψ is not affected by the payment choices
in any way; that is, how often a seller will be sampled is
independent of the payment function that was chosen for him.

What follows is the sequence steps of the CEMechanism:

(1) Ask every seller i to report the parameter ci .

• Denote the reported values by ĉi .
• Define cmax ≡maxi{ĉi} and someĵ ∈ argmaxi{ĉi}.

(2) Ask every seller i to report his certainty equivalent
for (pψ, πmax), where πmax(k) ≡ cmax · k, and let
êi denote the reported value. An expected payment of
r̂i ≡ êi + ĉiw is needed to guarantee i a profit of êi .

(3) Let r ≡ argmax{f (r)(cmaxw − r)}, where f (r) ≡
|{j ∈ N \ {ĵ} : r̂i ≤ r}|. For every seller i and for
k ≤ m, choose i’s preferred payment function πi(·):

Set πi(k) ≡ r + ĉi (k − w) if r̂i < r , or
Set πi(k) ≡ πmax(k) otherwise.

(4) Produce unbiased samples using some distribution
ψ ∈ �(N \ {ĵ}). Pay each seller i according to the
πi(·) that was chosen for him in Step 3:

• If sampled exactly k times seller i receives a
payment of πi(k).

We conclude the description of the CE Mechanism by
explaining Step 3 in more detail. Observe that the expected
payment to each seller from lottery (pψ, πmax) is cmaxw.
The market-maker wishes to reduce this amount for some
risk-averse sellers by offering them a risk-free payment
option with a lower expected payment. In choosing the
value of r , the expected payment of the risk-free alterna-
tive payments, the market-maker is faced with the following
tradeoff: if the value of r is small, the benefit from the sell-
ers that choose it will be greater, but the number of sellers
it would attract might be smaller; similarly, setting r to be
closer to cmaxw may increase the number interested sellers,
yet the benefit from each one of these sellers will be smaller.
In order to maximize the expected benefit, the market-
maker then sets r equal to the value of r that maximizes
f (r)(cmaxw − r), where f (r) ≡ |{j ∈ N \ {ĵ} : r̂i ≤ r}|.
The value of f (r) corresponds to the number of sellers who
would be interested in the risk-free payment alternative with
an expected payment of r , and (cmaxw − r) corresponds to
the expected benefit from each one of these sellers.

This approach can be used in a setting where the sell-
ers are expected to be non-strategic when reporting their
certainty equivalents in Step 2, but it does not guarantee

truthful reporting when sellers are strategic in reporting
their certainty equivalent value as well. More specifically,
although the sellers prefer that the mechanism knows their
true certainty equivalent when choosing between two pay-
ment functions on their behalf, one can come up with exam-
ples where some bidder might misreport his certainty equiv-
alent in order to increase the value of r . To guarantee truthful
reporting, the market-maker can choose a value ri for
each seller i which instead maximizes f−i (r)(c

maxw − r),
where f−i ≡ |{j ∈ N \ {i, ĵ} : r̂i ≤ r}| is determined
by all sellers other than i. This way, ri does not depend on
the value êi that he reported. We note that in some instances
this approach sets different thresholds for different sellers
and may result in a suboptimal solution where the total
expected payment (over all sellers) is not minimized. How-
ever, this is something that cannot be avoided in general
while guaranteeing truthful reporting.3

We next show that, after this modification, the CE Mech-
anism has the desirable properties of dominant strategy
truthfulness and individual rationality.

Theorem 4.2 If every seller is either risk-averse or risk-
neutral, the CE Mechanism for linear costs is dominant
strategy truthful and ex-post individually rational. If some
sellers are risk-seeking, a variation of the CE Mechanism
for linear costs is dominant strategy truthful and individu-
ally rational.

The CE Mechanism takes as input a distribution ψ ∈
�(N ′) that for each buyer b ∈ B produces an unbiased sam-
ple sb of size db from the set N ′. Since there are many such
distributions, we are interested in the one that results in the
lowest price for the buyers. This is in contrast to the Base-
line Mechanism for linear costs, where the price is the same
(and equal to cmax) for any distribution.

It is useful to note that w, the expected number of times
that a seller is sampled, does not depend on the choice of
ψ ∈ �(N ′).

Lemma 4.3 Let n′ denote the number of sellers in N ′. If
ψ ∈ �(N ′), then

w =
m∑

k=0

kpψ(k) = 1

n′
∑

b∈B

db.

Given a set of buyer requests, the expected payment gen-
erated by the CE Mechanism for these buyers is minimized

3In order to verify this fact, note that the value r which maximizes
f (r)(cmaxw−r) will always correspond to the r̂i value for some seller
i. If this were not the case, then slightly decreasing the value of r would
not affect f (r), but it would increase (cmaxw − r), a contradiction.
Hence, in order to avoid suboptimality, the value of r would in general
be “controlled” by some seller i for whom r = r̂i . This seller can, in
general, increase r by lying in order to slightly increase r̂i .
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when the certainty equivalent values of the risk-averse bid-
ders are as small as possible. In the rest of this section, we
show that we can actually identify the distribution that min-
imizes the certainty equivalent of every risk averse seller
for the lottery (pψ, πmax), over all possible distributions
ψ ∈ �(N ′). This distribution ψ∗ ∈ �(N ′) leads to a lot-
tery (pψ∗ , πmax) that essentially maximizes the risk while
the expected payment remains the same.

We next define the ordering distribution ψ∗, which ran-
domly orders the sellers once and then uses this ordering to
determine the sample for each buyer. The earlier a seller is
in the ordering the more samples he will be in. The order-
ing distribution produces unbiased samples from N ′; thus,
ψ∗(N ′) ∈ �(N ′).

Definition 4.4 Given a set of sellers N ′, the ordering distri-
bution ψ∗(N ′) produces unbiased samples of sizes {db, b ∈
B} as follows: First, order sellers in N ′ uniformly at ran-
dom once. Then, for each buyer b ∈ B return a sample that
consists of the first db sellers in the ordering.

Observe that if two buyers request samples of the same
size, then the ordering distribution will give them the same
sample of sellers. In this sense, the ordering distribution is
bundling buyers’ demand. In the extreme case that all buy-
ers demand samples of the same size (i.e., db = db′ for all
b, b′ ∈ B), the ordering distribution will effectively produce
one unbiased sample of sellers in N ′.

We now show that the ordering distribution minimizes
the certainty equivalent that a risk-averse seller will report in
the CE mechanism. In other words, the ordering distribution
minimizes the expected payment for which a risk-averse
seller is willing to participate in the market, when the CE
Mechanism is used.

Theorem 4.5 If g : N → R is concave and non-decreasing
function, then, among all ψ ∈ �(N ′), function G(ψ) ≡∑m

k=0pψ(k)g(k) is minimized at ψ = ψ∗.

But, from Definition 3.1, we know that the following is
true for the certainty equivalent ei(pψ, πmax) of seller i

facing lottery (pψ, πmax) is

ui(ei(pψ, πmax)) =
m∑

k=0

pψ(k)ui((c
max − ci)k).

Theorem 4.5, shows thatψ∗ minimizes this value when ui is
concave, and, since ui is non-decreasing, it also minimizes
the value of the certainty equivalent.

Corollary 4.5 For any seller with a concave utility func-
tion ui , among all distributions ψ ∈ �(N ′), the certainty
equivalent ei(pψ, πmax) is minimized at ψ = ψ∗.

Examples

Suppose that out of m = 200 buyers, 50 have asked for
samples with db = 100 sellers and 150 have asked for sam-
ples with db = 200 sellers. Furthermore, assume that when
we remove the seller who reported that his cost is equal to
cmax , we have 1000 sellers left: half of these sellers are risk-
neutral or risk-seeking and the other half that are risk-averse
with ui(x) = 1 − e−0.002x and ci = 0.

CE Mechanism with ordering distribution If the ordering
distribution is used for the sampling, then the number of
buyers that get access to the data of a specific seller may be
200, 100 or 0. Using the ordering distribution with the CE
Mechanism yields a price of $6.53 per seller, which is sig-
nificantly lower than the price of the Baseline Mechanism.

CE Mechanism without bundling To demonstrate the
importance of the ordering distribution, we note that using a
different distribution with the CE Mechanism may result in
a price that is very close to the price of the Baseline Mech-
anism. In particular, if the samples of different buyers are
independent, the resulting price is $9.96; even though there
is a decrease in price compared to the Baseline Mechanism
because of risk-aversion, the effect is very small.

Estimating the certainty equivalent The certainty equiv-
alent of seller i for the lottery (pψ∗ , πmax) depends on
the buyers’ demand, the payment cmax , and the number
of sellers n, so the market-maker needs to communicate
this information to the sellers when requesting their cer-
tainty equivalent estimates. The market-maker can easily
communicate the values cmax and n to the seller. One way
of communicating the buyers’ demand is through the his-
togram of sample sizes that buyers have requested (see, for
example, the histograms in Figs. 2a and 2b). Alternatively,
the market-maker can help a seller determine his certainty
equivalent for the lottery (pψ∗ , πmax) by showing him a
graph that represents how many times the seller’s data will
be sold as a function of his position in the ordering. Know-
ing that each position is equally likely and that he will be
paid cmax every time he is sampled, the seller can determine
his certainty equivalent. Figure 2a shows (i) the histogram
of buyers’ demand and (ii) the number of times sampled as a
function of the position in the ordering for the example dis-
cussed above. Figure 2b shows the same plots for a different
distribution of buyers’ demand.

In practice, we expect that the market-maker will give
buyers predefined sample size options to choose from. As a
result, the set of distinct values of sample sizes representing
buyers’ requests will be small (similarly to the examples in
Fig. 2) and it will be relatively easy for a seller to determine
his certainty equivalent.
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(a) Demand histogram and sampling of ordering distribution when 50 buyers have chosen db = 100 and
150 buyers have chosen db = 200.
 

(b) Demand histogram and sampling of ordering distribution when 40 buyers have chosen db = 100; 30
have chosen db = 200; 20 have chosen db = 300; and 10 have chosen db = 500.

Fig. 2 Two examples of buyer requests and the corresponding sampling of the ordering distribution

General costs

In the previous section we considered the case of linear
cost functions and introduced two mechanisms, the Baseline
Mechanism and the CE Mechanism, that the market-maker
can use to facilitate interactions between buyers and sellers.
In this section we extend the Baseline Mechanism to a set-
ting with general cost functions and show that the ordering
distribution has good properties in this more general setting.
In the full version (Gkatzelis et al. 2012), we also extend the
CE Mechanism.

Even though the mechanisms we introduce can be used
for any cost functions, a specific class of interest is that of
concave functions. We believe that concavity is a realistic
property for a cost function ci because we expect that the
marginal cost that the seller suffers by providing access to
his data to k + 1 buyers instead of k should not increase as
k increases. Even more so when it is exactly the same data
revealed to each one of the buyers.

We first note that for a special class of concave cost
functions, the mechanisms of Section “Linear costs” can be
applied with only minor modifications. In particular, this is
the case if the privacy attitude of seller i can be represented
by a function of the form ci(k) = ci · h(k), where ci can be
different for each seller, and h is a known increasing con-
cave function with h(0) = 0. Then, as in the case of linear
costs, the market-maker can ask each seller to report his sin-
gle parameter, ci , and the payment πmax is determined by
the maximum reported parameter. In this case, the order-
ing distribution is optimal for both the Baseline and the CE
Mechanism.

In the more general case where sellers have arbitrary cost
functions though, these mechanisms are not well defined:
the sellers cannot be ordered based on their cost functions
anymore; in particular, for two sellers i and j , it could be
that ci(k) > cj (k) and ci(k

′) < cj (k
′) for k 	= k′.4 Hence,

4For instance, this is the case if ci(k) = k and cj (k) = 2
√

k.
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we consider the following generalization of the Baseline
Mechanism for linear cost functions:

Baseline Mechanism for General Costs Each seller i is
asked to report the values ci(k) for k = 1, 2, ..., m.5 Denote
the reported values by ĉi (k) and set πmax(k) ≡ maxi ĉi (k).
Then, for each buyer b ∈ B the mechanism produces a
sample of size db. A seller who is sampled exactly k times
receives a payment of πmax(k).

In the Baseline Mechanism for linear costs, the seller that
reported the maximum cost was excluded from the sam-
pling in order to guarantee truthfulness. With arbitrary costs,
different sellers may correspond to the maximum cost for
different values of k. In Gkatzelis et al. (2012) we discuss
how the sampling can be done in a way that guarantees
truthfulness, focusing on a variation of the ordering distribu-
tion. However, for the purposes of this paper we ignore this
issue and assume for ease of exposition that the mechanism
produces unbiased samples from the set of n sellers. As a
result, the set of distributions we consider for the sampling
is �(N).

Now, �(ψ) ≡ ∑m
k=0pψ(k)πmax(k) is the expected pay-

ment per seller when payments are given by πmax and
the sampling is according to ψ . In order to minimize the
expected price of the Baseline Mechanism, we need to min-
imize �(ψ) over all ψ ∈ �(N). In the case of linear costs,
πmax is linear and, by Lemma 4.3, �(ψ) obtains the same
value for every ψ ∈ �(N). With arbitrary cost functions
though, πmax may not be linear and the value of �(ψ) may
be different for different ψ ∈ �(N). Therefore, our goal
is to choose a distribution that minimizes this value. In the
special case when πmax is concave, Theorem 4.5 implies
that the ordering distribution ψ∗ is optimal one. Note, how-
ever, that concavity of ci(·) for all sellers i does not imply
concavity of πmax ≡ maxi ĉi (k).

For the case when πmax is not concave, we are interested
in distributions that are oblivious to πmax in the sense that
they do not depend on the values πmax(k).6 As a bench-
mark we consider the minimum value of �(ψ) that can
be attained when we choose a distribution ψ ∈ �(N)

5We can significantly reduce the number of values that a seller needs
to report (1) if the sampling is based on bundling buyers’ demand (e.g.,
if we use the ordering distribution) and (2) if there are relatively few
different sample sizes requested by buyers, e.g., because buyers choose
from predefined sample size options.
6It is unrealistic to assume that the mechanism will choose the distri-
bution for the sampling as a function of the values that sellers report
because then πmax cannot in general be elicited truthfully.

knowing πmax ; denote this value by �OPT. We note that
�OPT is generally unattainable by a distribution that is
oblivious to πmax . The following theorem shows that a
distribution that is oblivious to the values of πmax cannot
guarantee a better than 2 approximation factor of�OPT. The
proof is provided in the appendix.

Theorem 5.1 No ψ ∈ �(N) that is oblivious to πmax can
guarantee �(ψ) ≤ (2− ε)�OPT for ε > 0. This holds even
if every seller’s cost function is concave.

We have shown that a πmax-oblivious distribution can-
not approximate �OPT within a factor better than 2. The
following theorem shows that the ordering distribution ψ∗
actually guarantees an approximation factor of 2. We pro-
vide a sketch of the proof in the Appendix; see (Gkatzelis
et al. 2012) for the detailed proof.

Theorem 5.2 If every seller’s cost function is concave, then
�(ψ∗) ≤ 2�OPT.

Thus, the ordering distribution achieves the best possible
worst-case guarantee within the class of distributions that
are not aware of the function πmax a priori.

Discussion

In this paper we studied a market for private data where buy-
ers can obtain access to unbiased samples of some private
attribute value by appropriately compensating the individ-
uals to whom this attribute values correspond (the sellers).
A market-maker facilitates the interactions between the two
sides of the market. We focused on how bundling the buy-
ers’ demand can decrease the price that buyers have to
pay per individual, while ensuring that sellers are willing
to participate. Throughout the paper we took a prior-free
approach and assumed no knowledge of the distribution of
the seller’s privacy and risk attitudes. We then constructed
mechanisms that the market-maker can use to elicit sell-
ers’ privacy and risk attitudes truthfully, and showed that
our mechanisms provide optimal price guarantees in several
different settings.

One important limitation of our approach is that it may
require some non-trivial effort from the side of the sellers.
More specifically, our mechanisms need to ask each seller
several questions regarding both his privacy attitude and his
attitude toward risk. As we prove, answering these questions
accurately is to the seller’s benefit, since this is how he can
maximize his utility. In order to motivate the seller to par-
ticipate though, we need to assume that the reward is high
enough to cover for the additional cost that he suffers in
order to accurately report his preferences. This may not be



120 V. Gkatzelis et al.

the case initially if the demand is low, but it would be to the
market-maker’s best interest to subsidize this market until it
gets adopted, which can then lead to significant benefits for
all sides involved.

Finally, in order to derive our formal results we assumed
that the demand is price-insensitive and known by the
market-maker. That is, buyer b is interested in obtaining
access to an unbiased sample of db individuals regardless of
the price he has to pay per individual. Given the distribution
he will use for producing the samples, the market-maker
elicits sellers’ preferences with respect to two different
pricing schemes: the first is risky, the second one is not
but yields a lower expected payment. The sellers’ choices
determine the price. Since demand is assumed to be price-
insensitive, each buyer b will still be willing to obtain an
unbiased sample of size db for the derived price.

More generally, the size of the unbiased sample that a
buyer may want to get access to could be a function of
the price. In that case, we get a “cycle”: for a fixed price
the market-maker can learn the buyers’ demand; on the
other hand, for fixed demand the market-maker can use our
bundling mechanisms to derive a good price for the buyers
while ensuring that sellers are willing to participate in the
market. If the derived price gives rise to the same demand
that the market-maker started with in order to derive the
price (as in the case when demand is price-insensitive), then
the market clears.

We note that there always exists a price at which the mar-
ket clears, even if the demand is price-sensitive; for instance,
this is the case for a price corresponding to our Baseline
Mechanism. An open question is under what conditions,
e.g., in terms of how demand depends on the price, a lower
such price exists with the market-maker taking advantage of
the risk aversion of some sellers. A related question is what
processes the market-maker could use to converge to such a
low price.

The “cycle” that arises in our market for private data dis-
tinguishes it from standard markets, where for a fixed price
both demand and supply can be determined and the mar-
ket clears if demand meets supply. Our setting is different
because (1) buyers are interested in obtaining unbiased sam-
ples and, as a result, the market-maker needs to make sure
that all sellers are willing to participate, and (2) the market-
maker tries to take advantage of the inherently randomized
nature of sampling and the risk aversion of some sellers to
find a lower price (in expectation) per seller, rather than the
one that the most privacy-concerned sellers require.

In this paper, we chose to “break the cycle” by assuming
that demand is known and price-insensitive. In addition to
price-insensitive settings, this is also a reasonable assump-
tion for settings where demand does not change drastically
with the price and/or the market-maker has a good estimate
of the right range for the price (e.g., from past experience).

Alternatively, the market-maker could “break the cycle”
by relying on sellers’ beliefs about demand — instead of
explicitly giving sellers information on demand as in Fig. 2
—when eliciting the certainty equivalents. The mechanisms
discussed in this paper would still work in this case. How-
ever, a potential drawback of relying on sellers’ beliefs on
demand is that the seller experience could be less simple.

Markets for private data such as the one we presented
are quite realistic. Given the great value of big data and the
clamoring from the general public for a certain degree of
control over its trading, it is not unreasonable to expect that
such markets will become operational, thus benefiting both
the sellers and the buyers of big data.

Appendix: A Proofs

We now provide the proofs of the results that were omitted
from the main section.

Proof of Theorem 4.1 Consider some seller i and first sup-
pose that ci < maxj 	=i ĉj . We observe that reporting any
ĉi < maxj 	=i ĉj will not make a difference in the util-
ity of seller i regardless of the outcome of the sampling;
furthermore, he will derive a strictly positive utility every
time seller i is sampled. On the other hand, if he reports
ĉi > maxj 	=i ĉj , then seller i will be excluded from the sam-
pling and derive zero utility. The second case to consider
is that ci > maxj 	=i ĉj . Then, by reporting ĉi = ci , seller
i’s utility is equal to zero. However, there is no way of get-
ting positive utility in this case. In particular, by reporting
ĉi < maxj 	=i ĉj , seller i will get negative utility whenever
he is sampled.

Thus, reporting ĉi 	= ci can never increase the utility of
seller i but in some circumstances may actually decrease
it. This shows that truthful reporting is a dominant strategy
for each seller. To show ex-post individual rationality, we
observe that by reporting ĉi = ci seller i gets a positive
utility whenever sampled and zero utility otherwise.

Proof of Lemma 4.3 Let Zi be a random variable that
denotes the number of times seller i is sampled. We
have that

∑n
i=1Zi = ∑

b∈Bdb in order to meet the
demand. Observe that the expected number of times that
seller i is sampled under distribution ψ is E[Zi] =∑m

k=0kpψ(k). Since ψ ∈ �, this distribution produces
unbiased samples, which implies that each seller is sampled
the same expected number of times. Thus, summing over all
sellers,

n′
m∑

k=0

kpψ(k) =
n∑

i=1

E[Zi] =
∑

b∈B

db,
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which concludes the proof.

Proof of Theorem 4.2 If the payment will be determined by
the function πmax , Theorem 4.1 implies that it is a dom-
inant strategy for seller i to report ci truthfully and that
we get ex-post individual rationality. For a seller i with
ci < maxj 	=i ĉj , it is a dominant strategy to also report his
certainty equivalent for (pψ, πmax) truthfully in Step (2),
because his report êi does not affect the threshold ri . Finally,
if the payment is determined to be πi(k) ≡ ri+ĉi (k−w) and
seller i has reported ĉi truthfully, we have ex-post individual
rationality because πi(k) − cik = ri − ciw > r̂i − ciw =
êi > 0.

We now turn to the seller i with ci > maxj 	=i ĉj .
By reporting any value ĉi > maxj 	=i ĉj , the seller will
not be sampled and gets utility zero. By reporting ĉi <

maxj 	=i ĉj < ci , seller i gets a negative utility if assigned
payment πmax in Step 3. On the other hand, if assigned the
payment πi(k) ≡ ri + ĉi (k − w), seller i derives utility
ui(ri − ĉiw − (ci − ĉi )k) which may be positive for small
values of k.

We now show that if seller i is risk-neutral or risk-averse,
i.e., not risk-seeking, he derives negative utility in expec-
tation. In particular, we have ri − ĉiw − (ci − ĉi )k <

(ci − ĉi )(w − k). Thus,
∑

kpψ(k)(ri − ĉiw − (ci − ĉi )k) <∑
kpψ(k)(ci − ĉi )(w − k) = 0. And since ui is con-

cave or linear,
∑

kpψ(k)ui(ri − ĉiw − (ci − ĉi )k) <∑
kpψ(k)ui(ci − ĉi )(w − k) = 0.
To conclude the proof, we consider the case that the seller

i with ci > maxj 	=i ĉj is risk-seeking. Then, it is plausible
that seller i is better off reporting ĉi < ci in order to get
utility ui(ri − ĉiw − (ci − ĉi )k) which is positive for small
values of k, but negative for large values. Even though such
preferences are very unlikely, for the sake of completeness
we describe how our CE mechanism can be extended to deal
with this issue for the sake of completeness.

To avoid such situations, the mechanism can ask each
seller j 	= i to report his certainty equivalent for the lottery
(pψ, πmax

−i ), where πmax
−i ≡ maxj 	=i ĉj , and use these values

to determine the threshold ri for seller i. Then, seller i will
be included in the sampling only if r̂i < ri . This guaran-
tees truthful reporting and individual rationality for selleri.
Moreover, each seller j 	= i has no reason to lie about his
certainty equivalent for (pψ, πmax

−i ).7

Proof of Theorem 4.5 Let S denote the set of all subsets of
B (i.e., the powerset of B), and let Sb ⊆ S denote the set of

7A potential issue here is that seller j might not put in the effort needed
for quantifying this certainty equivalent value (because his utility is not
affected in any way by his report) and, as a result, not report the cor-
rect value. We can avoid this by not telling seller j which lottery each
question corresponds to and/or by adding artificial questions about
certainty equivalents of lotteries.

all such subsets that include buyer b. We sort all buyers in
a non-increasing order of the sample sizes that they request,
i.e., db′ ≥ db if b′ < b. What follows is described from the
perspective of some arbitrary seller i. Given a distribution
ψ ∈ �(N ′), let qψ(s) denote the probability that seller i’s
data is sold to all buyers in s but nobody else.8 Since qψ is
a distribution over S, we have that

∑
s∈Sqψ(s) = 1. Since

ψ ∈ �(N ′), the probability that buyer b gets seller i in his
sample must be equal to db/n′, where n′ is the number of
sellers in N ′. Equivalently, for each buyer b,

∑
s∈Sb

qψ(s) =
db/n′.

The ordering distribution ψ∗ = ψ∗(N ′) satisfies the fol-
lowing simple predicate: If buyer b gets access to the data
of seller i then so does buyer b−1; equivalently, qψ∗(s) = 0
for every s ∈ (Sb \ Sb−1). We will show that G(ψ) is
minimized at ψ∗ over all ψ ∈ �(N ′) using proof by contra-
diction. Assume that G(ψ) < G(ψ∗) for some distribution
ψ ∈ �(N ′) that does not satisfy the predicate. We will grad-
ually modify distribution ψ until it satisfies the predicate
without increasing the expected value G in the process (if g

is strictly concave, then this modification leads to a decrease
in G).

Let b be the first buyer in the ordering for which the
predicate is not true, i.e., there exists some set sA that con-
tains b and does not contain b − 1 (sA ∈ (Sb \ Sb−1))
such that qA ≡ qψ(sA) > 0. Since db−1 ≥ db, there
must also exist some sB that contains b − 1 but not b, and
occurs with some positive probability qB ≡ qψ(sB) > 0.
Define qmin ≡ min(qA, qB) > 0. Let sI (resp., sU ) denote
the outcome that contains exactly the intersection (resp.,
union) of the buyers in sA and sB . We modify ψ by remov-
ing probability mass qmin from sA and sB and moving it to
sI and sU . This leads to a new probability distribution q̂

over S such that q̂(sA) = qA − qmin, q̂(sB) = qB − qmin,
q̂(sI ) = q(sI ) + qmin, and q̂(sU ) = q(sU ) + qmin; for all
other s ∈ S we have q̂(s) = qψ(s). q̂ corresponds to some
distribution ψ̂ ∈ �(N ′).

We now show that G(ψ̂) ≤ G(ψ). Let nα be the number
of buyers in sα , and d the number of buyers in sA \ sB ; thus,
nA = nI + d , nU = nB + d , and G(ψ ′) − G(ψ̂) is equal to

qming(nI + d) + qming(nB) − qming(nI ) − qming(nB + d)

= qmin[(g(nI + d) − g(nI )) − (g(nB + d) − g(nB))] ≥ 0

The inequality holds because g is concave and nB > nI .
We can repeat the modification step for this same pair of

buyers b and b − 1 as long as the predicate is not satisfied.
After every modification, either q(sA) or q(sB) becomes 0
and the probabilities of these sets are never raised again dur-
ing the modification steps for this same pair of buyers. Thus,

8Note that qψ is different than pψ which is a distribution over the
number of times that seller i will be sampled.
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only a finite number of modifications is needed until the
induced lottery satisfies the predicate. Since the expected
value G does not increase at any point during this process,
we conclude that G(ψ) is minimized at ψ∗.

Proof of Theorem 5.1 Consider two instances (A and B)
with n sellers and m ≡ n2 + n + 1 buyers. In both
instances, buyers’ demand is the same: one buyer demands
a sample of n (i.e., all of the sellers) and the remaining
n2 + n buyers demand a sample of just one seller. The two
instances differ with respect to the sellers’ cost functions
and have different payment functions: πmax

A (k) = min{k, n}
and πmax

B (k) = max{k, n}; note that both can arise from
concave ci’s.

Since we are interested in distributions that are oblivious
to the payment function and the two instances differ only
with respect to the payment functions, it suffices to show
that if a distribution ψ ∈ �(N) gives a 2-approximation for
instance A, then the same distribution ψ cannot give a better
than (2 − ε)-approximation for instance B for ε > 0. More
formally, we will show that if

m∑

k=0

pψ(k)πmax
A (k) ≤ 2�OPT

A , (2)

then
m∑

k=0

pψ(k)πmax
B (k) > (2 − 6/n)�OPT

B . (3)

Setting n > 6/ε will then conclude the proof.
Since πmax

A is concave, ψ∗ is optimal for instance A and

�OPT
A =

m∑

k=0

pψ∗(k)πmax
A (k)

= 1

n
min{n2 + n + 1, n} + n − 1

n
min{1, n} = 2 − 1

n
.

Thus, (2) implies that
∑m

k=0pψ(k)πmax
A (k) < 4. Then,

n∑

k=0

pψ(k)πmax
A (k) =

n∑

k=0

kpψ(k) < 4,

which, together with Lemma 4.3, implies

m∑

k=n+1

kpψ(k) > n − 2. (4)

Moreover,
∑m

k=n+1pψ(k)πmax
A (k) = n

∑m
k=n+1pψ(k) < 4,

which implies that

n∑

k=0

pψ(k) > 1 − 4/n. (5)

Now consider instance B. The buyer that requested a sample
of size n will be given access to the data of all sellers. To
determine what samples other buyers will get, suppose we
randomly split the set of n2 + n buyers demanding a single
seller into n groups of n + 1 buyers each. We label these
groups {1, 2, ..., n}. We then assign seller i to the buyers of
group i. This gives unbiased samples, because each buyer is
equally likely to be in each group. Note that exactly n buyers
get access to the data of a given seller, so �OPT

B ≤ n.
To conclude the proof, we show that (4) and (5) imply

(3). First note that in order to satisfy the demand of the buyer
who requests n sellers, every seller will be sampled at least
once and paid at least max{1, n} = n. Then, (5) implies that∑n

k=0pψ(k)πmax
B (k) > n−4. On the other hand, (4) implies

that
∑m

k=n+1pψ(k)πmax
B (k) > n − 2. Summing these two

inequalities, we conclude that
∑m

k=0pψ(k)πmax
B (k) > 2n −

6, which together with �OPT
B ≤ n implies (3).

Proof Sketch for Theorem 5.2 Let ψ ∈ �(N) be the dis-
tribution that achieves �OPT; for notational simplicity, we
write p ≡ pψ , po ≡ pψ∗ , and π ≡ πmax for the remainder
of the proof. We wish to show that

m∑

k=0

po(k)π(k) ≤ 2�OPT = 2
m∑

k=0

p(k)π(k). (6)

Let P(k) = ∑
k′≤kp(k′) denote the cumulative distribu-

tion function of p, and P −1(t) = inf{k|P(k) ≥ t} denote
its generalized inverse distribution function; the functions
Po(·) and P −1

o (·) are defined similarly for po.
We decompose the [0, 1] interval into subintervals (tl, tr )

for which we know that, for any two values t, t ′ ∈ (tl, tr ),
we have P −1(t) = P −1(t ′) and P −1

o (t) = P −1
o (t ′). In order

to do so, we let T = {P(k)|(p(k) > 0) ∨ (po(k) > 0)}
be the set of distinct values in [0, 1] that either P(·) or
Po(·) takes. If 0 < t1 < t2 < ... < t|T | = 1 is an
ordering of the values in T and t0 = 0, then we let I =
{(t0, t1], (t1, t2], ..., (t|T |−1, 1]}, which is a set of intervals
that satisfy the property that we wanted. Given this property,
(6) can be rewritten as follows:
∑

tr∈T

(tr − tr−1)π(P −1
o (tr )) ≤ 2

∑

tr∈T

(tr − tr−1)π(P −1(tr )).

Let TA = {tr ∈ T |P −1(tr ) > P −1
o (tr )} and TB = T \ TA.

By definition of the set TA, and using the fact that π(·) is an
increasing function, it is easy to see that for any tr ∈ TA we
have π(P −1(tr )) ≥ π(P −1

o (tr )). Therefore

∑

tr∈TA

(tr − tr−1)π(P −1
o (tr )) ≤

∑

tr∈TA

(tr − tr−1)π(P −1(tr ))

≤
∑

tr∈T

(tr − tr−1)π(P −1(tr )).
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In order to prove the theorem (for a complete proof see
(Gkatzelis et al. 2012)) we only need to show the follow-
ing inequality; summing it with the previous one proves the
theorem since TA ∪ TB = T .
∑

tr∈TB

(tr − tr−1)π(P −1
o (tr )) ≤

∑

tr∈T

(tr − tr−1)π(P −1(tr )).

Proving this inequality is significantly more demanding, but
the main intuition behind why it holds is that, even though
π may not be concave, the payment that a seller receives per
buyer is decreasing in the total number of buyers that get
access to his data. To verify that this is true, for some k, let
i be the seller for which ci(k) = π(k). Then, for k′ ≤ k,

π(k) = ci(k) ≤ k

k′ ci(k
′) ≤ k

k′ π(k′)

⇒ π(k)

k
≤ π(k′)

k′ ,

where the first inequality holds because of the concavity
of ci(·) and the second holds by definition of π(k′) =
maxi ci(k

′).
We use this to upper bound the payment from distribu-

tion po due to tr ∈ TB intervals; we show that for every
expected buyer of po in the interval (tl, tr ] with tr ∈ TB ,
there exists some other interval (t̄l , t̄r ] with t̄r ≤ tr and the
same expected number of buyers for p. Since t̄r ≤ tr , the
former interval leads to a smaller payment per buyer.

References

Acquisti, A., John, L.K., & Loewenstein, G. (2013). What is privacy
worth? The Journal of Legal Studies, 42(2), 249–274.

Aperjis, C., & Huberman, B.A. (2012). A market for unbiased private
data: Paying individuals according to their privacy attitudes. First
Monday, 17(5).

Carrascal, J.P., Riederer, C., Erramilli, V., Cherubini, M., & De
Oliveira, R. (2013). Your browsing behavior for a Big Mac: eco-
nomics of personal information online. In 22nd International
World Wide Web Conference, WWW ’13, Rio de Janeiro, Brazil,
May 13-17, 2013 (pp. 189–200).

Cummings, R., Ligett, K., Roth, A., Zhiwei Steven, W., & Ziani, J.
(2015). Accuracy for sale: Aggregating data with a variance con-
straint. In Proceedings of the 2015 Conference on Innovations
in Theoretical Computer Science, ITCS 2015, Rehovot, Israel,
January 11-13, 2015 (pp. 317–324).

Cvrcek, D., Kumpost, M., Matyas, V., & Danezis, G. (2006). A study
on the value of location privacy. In Proceedings of Workshop on
Privacy in the Electronic Society (pp. 109–118).

Dandekar, P., Fawaz, N., & Ioannidis, S. (2012). Privacy auctions for
recommender systems. InWINE (pp. 309–322).

Ghosh, A., & Roth, A. (2011). Selling privacy at auction. In ACM
Conference on Electronic Commerce (pp. 199–208).

Gkatzelis, V., Aperjis, C., & Huberman, B.A. (2012). Pricing private
data. SSRN eLibrary.

Haddadi, H., Mortier, R., & Hand, S. (2012). Privacy analytics.
SIGCOMM Computer Communications Review, 42(2), 94–98.

Hann, I.-H., Hui, K.-L., Lee, S.-Y.T., & Png, I.P.L. (2007). Overcoming
online information privacy concerns: An information-processing
theory approach. Journal of Management Information Systems,
24(2), 13–42.

Holt, C.A., & Laury, S.K. (2002). Risk aversion and incentive effects.
American Economic Review, 92, 1644–1655.

Huberman, B.A., Adar, E., & Fine, L.R. (2005). Valuating privacy.
IEEE Security Privacy, 3(5), 22–25.

Mas-Colell, A., Whinston, M.D., & Green, J.R. (1995). Microeco-
nomic Theory: Oxford University Press.

Riederer, C., Erramilli, V., Chaintreau, A., Krishnamurthy, B., &
Rodriguez, P. (2011). For sale: your data: by : you. In Tenth ACM
Workshop on Hot Topics in Networks, HOTNETS (p. 13).

Roth, A., & Schoenebeck, G. (2012). Conducting truthful surveys,
cheaply. In ACM Conference on Electronic Commerce (pp. 826–
843).

Singer, N. (2012). You for sale: Mapping, and sharing, the consumer
genome: The New York Times.


	Pricing private data
	Abstract
	Introduction
	The market
	Privacy attitudes
	A Solution
	Risk aversion
	Bundling buyers' requests
	Paper Structure



	Model
	Buyers
	Sellers


	Linear costs
	Baseline mechanism for linear costs
	CE mechanism for linear costs
	Examples
	CE Mechanism with ordering distribution
	CE Mechanism without bundling
	Estimating the certainty equivalent



	General costs
	Baseline Mechanism for General Costs

	Discussion
	Appendix : A Proofs
	References


