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Abstract
Over the past century, rapid population growth and continuous exploitation of natural resources have caused numerous 
changes. A notable transformation involves the modification of land surface temperature (LST), which is impacted by changes 
in Land Use-Land Cover (LULC). The most important approach in discovering changes is to increase the accuracy of clas-
sification methods. Deep learning techniques have been successfully used, and this improved performance has been carried 
over to image classification. This study aims to monitor and mapping the spatial and temporal changes of LULC and LST in 
Izeh city using remote sensing, GIS, and deep learning. LULC and LST maps for the years 2001 and 2021 were created by 
processing thermal and multispectral bands. Two methods were used to generate the land use-land cover map: pixel-based 
(Max Likelihood (ML)) and object-based (Fully Convolutional Network (FCN)). During this period, the percentages of 
changes in water, urban, and wasteland classes increased, whereas those for grassland, forest, and wetland classes decreased. 
The average LST changes followed this order: wasteland > urban > grassland > forest > wetland > water. The normalized dif-
ferential vegetation index (NDVI), normalized differential water index (NDWI), and normalized differential build-up index 
(NDBI) were utilized to analyze the relationship between LST and LULC. A linear, positive relationship between LST and 
NDBI was observed, indicating the direct effect of urban development on the increase in LST in the study area. The overall 
accuracy for LULC maps using the ML method was over 80.74% in 2001 and over 90.76% in 2021. With the FCN method, 
the accuracy was over 93% in 2001 and over 98% in 2021. Finally, evaluation the spatiotemporal environmental effects of 
unchecked human activity on LULC and its relationship with LST can be achieved using remote sensing, GIS, and deep 
learning approaches.

Keywords Deep learning (DL) · Fully convolutional network (FCN) · GIS · Land surface temperature (LST) · Land use-
land cover (LULC) · Max likelihood (ML)

Introduction

Due to natural and human activities, the Earth's surface 
undergoes constant change (Grimm et al., 2008; John et al., 
2020). Land surface changes generally fall into two cat-
egories: land use and land cover (Barnsley et al., 2001). 
According to Lambin and Ehrlich (1997), three main factors 
influence land use and land cover (LULC) change: institu-
tional-political factors, biophysical factors, and technical and 
economic concerns. Nowadays, satellite images are com-
monly used to monitor spatial–temporal changes in LULC. 
Consequently, the causes and effects of changes related to 
human activity can be assessed (El-Zeiny & Effat, 2017). 
Remote sensing has numerous applications (Karimi et al., 
2017a; b; Rangzan et al., 2022), including the discovery of 
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processes altered between different periods, which forms 
the core of change detection studies, and the detection of 
changes not discernible by ground observations (Lakra 
and Sharma, 2019; Imran et al., 2021). Remote sensing is 
particularly useful for monitoring and evaluating LULC 
changes, especially in areas significantly impacted by human 
activities. Satellite images with moderate spatial resolution, 
such as Landsat data (Williams et al., 2006), are commonly 
employed for observing and assessing LULC changes. 
Numerous studies, such as Lewinski (2006), Al Fugara et al. 
(2009), and Pal and Ziaul (2017), have investigated LULC 
changes using Landsat images.

The modification of Land Surface Temperature (LST) in 
an urban setting is one of the major effects of Land Use and 
Land Cover (LULC) change (Dhar et al., 2019; Gohain et al., 
2021). Over the past decade, global environmental processes 
have been studied to understand climate change, utilizing 
LST as an excellent indicator to monitor the physical proper-
ties of surface processes and climate change. For this reason, 
LST is an important input for estimating the energy balance 
equation (Filgueiras et al., 2019). It has been concluded that 
the main sources of human heat emission in urban centers 
correspond to certain types of land use-land cover. There-
fore, the ratio of different types of land use-land cover may 
significantly affect LST, especially the ratio of industrial and 
commercial areas. Thus, urban and industrial development 
emerges as one of the key contributors to the rise in tempera-
tures. Consequently, the following discussion will focus on 
the research conducted on LST and land use change.

Yoo et al. (2019) utilized Convolutional Neural Network 
(CNN) and Random Forest (RF) methods with Landsat 
images to classify urban areas. Their study revealed that the 
CNN classifier achieved higher accuracy in class separa-
tion compared to RF (Yoo et al., 2019). In 2020, Soleimani 
et al. investigated the effects of land use changes on the 
temporal and spatial patterns of Land Surface Temperature 
(LST) and thermal islands in Saqqez city. In this research, 
they employed Landsat satellite images from 1989 to 2018. 
For classification, they utilized the maximum likelihood 
method, and subsequently, to extract temperature data, they 
applied the split window algorithm. Their results indicated 
an increase in thermal islands in the northeast of the city 
from 2008 to 2018. Moreover, the highest temperatures were 
observed in vegetation, residential, and wasteland areas. 
Overall, their findings demonstrated the direct effects of land 
use on temperature rise (Soleimani et al., 2018).

Das et al. (2021) investigated the effect of Land Use and 
Land Cover (LULC) on Land Surface Temperature (LST) 
in the Sansol region of India. In their study, they considered 
data from 1993 and 2018 to prepare the LULC and LST 
maps. The Kappa coefficient was employed to evaluate the 
accuracy of the LULC maps. The LST maps revealed an 
increase in temperature by 0.15 °C and 0.19 °C per year, 

respectively, during summer and winter. The temperature 
rise was primarily attributed to urbanization, commercial 
activities, and coal mining regions. According to changes 
in the LULC pattern, urban areas expanded by 60%, while 
coal mining regions increased by 15%. The relationship 
between LST and various spatial indices such as the Nor-
malized Difference Built-up Index (NDBI), Normalized Dif-
ference Vegetation Index (NDVI), and Normalized Differ-
ence Water Index (NDWI) was demonstrated through several 
correlations. Their findings indicated a negative association 
between LST and NDVI as well as LST and NDWI, whereas 
LST and NDBI showed a positive correlation. Finally, the 
simulation of temperature for the year 2041 suggested a 
potential rise of 0.21 °C per year in the forthcoming years 
(Das et al., 2021).

Although various classification algorithms have been 
applied in remote sensing studies, achieving high accu-
racy in detecting Land Use-Land Cover (LULC) changes 
remains a challenge. Previous studies have used various clas-
sification methods, such as Convolutional Neural Networks 
(CNNs) and Random Forest (RF), to improve the accuracy 
of LULC classification, revealing the superior performance 
of CNNs. The fully convolutional neural network approach 
and the Res-UNet model are used in our study to signifi-
cantly improve the classification accuracy. This highlights 
the potential of deep learning to enhance change detection 
accuracy, addressing a critical research gap in the field. The 
purpose of this study is to evaluate and monitor Land Use 
and Land Cover (LULC) changes and their relation to Land 
Surface Temperature (LST) changes by integrating remote 
sensing, GIS, and deep learning techniques over the past 
20 years (2001–2021) in Izeh city.

Study Area

Izeh city, covering an area of 4035  km2, is situated in the 
northeastern part of Khuzestan province in southwest-
ern Iran. The average annual rainfall is 670 mm, and the 
average daily temperature is 21 °C over a 20-year period 
(2001–2021). The study area extends spatially from 31° 
26′ 0″ N to 32° 22′ 0″ N and 49° 32′ 0″ E to 50° 28′ 
0″ E (Fig. 1). Over this twenty-year period, the highest 
recorded air temperature in July was 48 °C, while the 
lowest temperature in February reached 9 °C. The high-
est point in the region stands at 3589 m, and the lowest 
is 348 m above sea level. The climate of the Izeh plain 
is characterized as semi-humid and moderate. The plain 
is predominantly surrounded by limestone highlands 
(Asmari formation) and is geologically classified as an 
open karst plain, with two lakes named Miangaran and 
Bandan (Moradi et  al., 2020) present. The border of 
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the Izeh zone corresponds to the fronts of the Balaroud 
and Kazeroun mountains, situated across a distinct topo-
graphic gap in the southwest of the Zagros fault (Asadi 
Mehmandosti et al., 2013).

Materials and Methods

Materials/Datasets

Satellite Images

The present study utilized four Landsat images (path/row: 
038/164 and 038/165) obtained for two distinct years from 
the Earth Explorer website of the USGS. Two images 
were selected from Landsat-7 ETM+ (for 2001) and two 
from Landsat-8 OLI/TIRS (for 2021), specifically for 
the months of August and September, considering mini-
mal cloud cover (Amran et al., 2018). The details of the 
employed Landsat-8 images are provided in Table 1.

Methodology

Image Pre‑processing

Assuming that the spectral properties of non-changed 
areas remain stable, preprocessing is crucial in change 
detection studies. Inadequate preprocessing can lead to 
false change detection in the spectral space, increasing 
the risk of error (Wulder et al., 2006; Cooley et al., 2002). 
Prior to image processing, the preprocessing steps—radio-
metric control and image enhancement—were conducted 
(Aslami & Ghorbani, 2018).

Fig. 1  Geographical location of the study area: Iran (a), Khouzestan (b), and the Digital Elevation Model (DEM) of Izeh (c)

Table 1  Characteristics of the applied Landsat images

Satellite Sensor Row/Path Year

Landsat 7 ETM + 164/038
165/038

2001

Landsat 8 OLI/TIRS 164/038
165/038

2021
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An atmospheric correction tool called Fast Line-of-sight 
Atmospheric Analysis of Spectral Hypercube (FLAASH) is 
utilized to adjust remote sensor data in the 400 ± 3000 nm 
range (Jensen & Lulla, 1987). FLAASH employs MOD-
TRAN simulations to generate spectral radiance data under 
different atmospheric, water vapor, and viewing conditions 
(solar angles) across various surface reflectances. These 
data are then utilized to create lookup tables for atmos-
pheric parameters such as column water vapor, aerosol type, 
and visibility, which can be referenced for future analyses 
(Kruse, 2004; Adler-Golden et al., 2005; Pordel et al., 2019).

Land Use‑Land Cover Map (LULC) Classification

In this study, two methods were employed for pixel-base 
classification: (a) The Maximum Likelihood Classifier 
(ML) and (b) the object-based Fully Convolutional Network 
(FCN), to classify the land use and land cover of the study 
area.

(a) Max Likelihood Classifier
Image classification categorizes pixels into different 

classes automatically (Lillesand et al., 2003). These classes 
can include urban, vegetation, water, and wasteland. Pix-
els are identified based on their spectral signatures, which 
reflect the relative reflectance of the area in various bands 
(Sabins, 1997). Among supervised classifiers, the Maximum 
Likelihood (ML) classifier is one of the most significant and 
accurate methods.

In this study, the LULC map was classified using the ML 
method in the ENVI software, which yielded the highest 
accuracy among the supervised classifiers (Lillesand et al., 
2003). Training samples are required for each of these user-
defined classes. The probability distribution of each class 
across the image is computed using the class means and 
covariances. Subsequently, each pixel is assigned to one of 
the classes based on its probability (Ayanlade & Howard, 
2019).

According to the USGS definition, Land use-Land cover 
classes in the region include:

• Water streams, canals, lakes, reservoirs, bays, or oceans.
• Wetland mosaics of water, bare soil, and herbaceous or 

wooded vegetated cover.
• Grassland shrubs and perennial or annual natural and 

domesticated grasses (e.g., pasture), forbs, or other forms 
of herbaceous vegetation at least 10% of the area and tree 
cover is less than 10% of the area Pasture.

• Forest land spanning more than 0.5 hectares with trees 
higher than 5 m and a canopy cover of more than 10 
percent.

• Wasteland natural occurrences of soils, sand, or rocks 
where less than 10% of the area is vegetated.

• Urban high-density residential, commercial, industrial, 
mining, or transportation.

We employed a random sampling method. The number 
of samples collected or selected for accuracy evaluation was 
calculated according to Professor Jensen's formula from the 
following Eq. (1):

where Z = 2, P is the required accuracy, q = 100-P and E is 
the acceptable error percentage. Therefore, the number of 
samples needed to determine the correct accuracy of the 
desired map was 204.

(b) Fully Convolutional Network (FCN) Structure
Numerous studies in machine learning, deep learning, 

and artificial intelligence have directed their attention toward 
diverse subjects, encompassing intelligent cities, weather 
forecasts, and change detection analysis (Elik and Gaziolu, 
2020). Notably, Deep Learning has emerged as the predomi-
nant trend in image analysis, surpassing individual perfor-
mance in challenging tasks (Torres et al., 2021).

CNN, a specific type of artificial neural network, is com-
posed of convolutional layers, pooling layers, and fully con-
nected layers (Yoo et al., 2019). The CNN approach has been 
widely successful in image classification. By incorporating 
fully connected layers, CNN can ascertain subsequent clas-
sification probability information. However, its application 
is limited to entire image classification, lacking pixel-level 
classification (Dai et al., 2016; Liu et al., 2020). Conse-
quently, the Fully Convolutional Network (FCN) classifica-
tion method was developed. This method transforms fully 
connected layers into convolutional layers, facilitating the 
creation of a classification network (Liu et al., 2020; Wu 
et al., 2021).

The FCN mainly consists of convolutional layers, an 
integration layer, and deconvolutional layers at its core. 
By semantically segmenting the data of the entire image, 
the FCN can classify pixels on a pixel-by-pixel level, sig-
nificantly enhancing the algorithm's computing efficiency 
and accuracy (Wu et al., 2021). The FCN is utilized in the 
novel design of CNN models, which are configured as com-
plete convolutional networks, optimizing the generation of 
proportionally sized outputs. This technique finds applica-
tions in tasks like edge detection (Xie and Tu, 2015; Ozturk 
et al., 2020; Wu et al., 2021), image classification (Yoo 
et al., 2019; Torres et al., 2021; Ghorbanzadeh et al., 2022), 
and more. An FCN can work with inputs of varying sizes, 
producing outputs with dimensions that match (potentially 
resampled) spatial dimensions. Furthermore, feedforward 
computation and backpropagation are considerably more 
effective when applied independently patch-by-patch across 

(1)N =
Z2Pq

E2
=

22(85)(15)

52
= 204
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the entire image, particularly when receptive fields signifi-
cantly overlap (Ozturk et al., 2020).

In this study, the Keras open-source library was employed 
to implement the FCN. Various methods can be explored to 
construct the FCN architecture, necessitating the identifica-
tion of an optimal model that suits the data's characteristics. 
To evaluate the image classes, an object-based image analy-
sis (OBIA) approach was adopted, utilizing the probabilities 
derived from the ResU-Net model with a 50-backbone and 
Adam optimizer set at a learning rate of 0.001 (Ghorbanza-
deh et al., 2022).

Utilizing open-source ALOS DEM data and Landsat 8 
images from 2001 and 2021 for both training and testing the 
FCN model, we trained the FCN model using these images. 
The network architecture of the ResU-Net that we used con-
sists of a total of 15 convolutional layers. We employed the 
binary cross entropy loss function to determine the differ-
ence between each of the highest probability 1. The applied 
patch size is 64*64 and the bath size is 128. For data aug-
mentation of the training sample patches, we utilized hori-
zontal and vertical data flips. The number of image patches 
became 6000, of which 4000 were selected as training data 
and 2000 as test data. Additionally, a rule-based OBIA 
approach was devised during the object-based classification 
stage, incorporating land use-land cover classes.

Evaluation Method of LULC

(a) Assessing the Accuracy of the ML Method.
In this study, accuracy is evaluated using the error matrix 

which contains information about actual and anticipated 
pixel identifications (Jupp, 1989; Pal & Ziaul, 2017). Equa-
tion 2 is used to calculate the overall accuracy.

In this formula, T represents the overall accuracy, ∑Dii 
signifies the number of pixels that are correctly classified, 
and N is the total number of pixels in the error matrix. Equa-
tion 3 is used to calculate the producer's accuracy, and the 
user's accuracy is calculated using Eq. 4.

where ∑Dij represents the number of pixels in a row I that 
are correctly classified, Ri stands for the total number of 
pixels in a row i, and PA represents the producer's accuracy.

(2)T =

∑
Dii

N

(3)PA =

∑
Dij

Ri

(4)UA =

∑
Dij

Cj

where ∑Dij signifies the number of pixels in column j that 
are correctly classified, Cj represents the total number of 
pixels in column j, and UA represents the user's accuracy.

Another accuracy coefficient, known as the kappa coef-
ficient (Foody, 1992), was used in this research. The Kappa 
coefficient's value ranges between 0 and 1, where 0 indicates 
weak agreement, and 1 indicates almost complete agreement 
(Landis & Koch, 1977) (Fig. 2).

(b) Assessing the Accuracy of the FCN Method
Common metrics for image classification tasks include 

accuracy, precision, recall, F1 score, confusion matrix, and 
area under the receiver operating characteristic curve (AUC-
ROC). In this study accuracy, precision, and F1 score criteria 
were used to evaluate the accuracy of the FCN method and 
the theRes-UNet model.

Accuracy measures the proportion of correctly classified 
instances compared to the total instances. It's computed by 
dividing the number of correct predictions by the total num-
ber of predictions. While accuracy offers a comprehensive 
performance assessment, it may not suffice for datasets with 
imbalanced classes (Useya & Chen, 2018). Precision evalu-
ates the ratio of true positive predictions among all positive 
predictions, calculated by dividing true positives by the sum 
of true positives and false positives. Precision is valuable 
when false positives are costly (Theres & Selvakunar, 2022). 
The F1 Score, a harmonic mean of precision and recall, bal-
ances both metrics and proves beneficial when consider-
ing false positives and false negatives. It's calculated as 2 
* ((precision * recall)/(precision + recall)) (Chakhar et al., 
2020).

Change Detection Method

The LULC classification for 2001 and 2021 was compared 
utilizing the change matrix, following the methodology 
proposed by Weng et al. (2004), within the ArcGIS 10.7 
software. To detect changes, a combination of qualitative 
and quantitative techniques was employed. After identifying 
the change matrix, a map of changes was generated in the 
ArcGIS environment using spatial analysis tools.

LST Estimation Methods from the Thermal Band

Temperature data is collected by Landsat sensors 
(ETM + and OLI) and stored as digital numbers (DN) 
within a range of 0–255. For meaningful comparisons, all 
included images were captured during the same season 
and nearly simultaneously (Coll et al., 2010). Land Sur-
face Temperature (LST) is derived using the thermal bands 
of Landsat 7 ETM + (band 6) and Landsat 8 OLI (band 
10). However, the LST extraction process from Landsat 
ETM + and Landsat OLI calculates spectral radiance (Lλ) 
in distinct ways (Asgarian et  al., 2014; Nguemhe Fils 
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et al., 2017). The steps for extracting LST from Landsat 
images are outlined below (Govind & Ramesh, 2019).

Step 1: Convert DN to Spectral Radiance (Lλ).
The spectral radiance of the upper atmosphere (Lλ) is 

calculated using Eq. 5, which involves ETM + band six 
for Landsat 7.

For each pixel, QCALMIN is set to 1, while QCALMAX 
is set to 255. The spectral radiance for band six is denoted 

(5)

L� = LMIN� +

[
LMAX� − LMIN�

QCALMAX� − QCALMIN�
× QCAL

]

Fig. 2  Flowchart of the current study
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by LMAXλ, with a value of 15.303, and LMINλ, with a 
value of 1.238. QCAL represents the numerical value of 
each pixel.

On Landsat 8, the thermal band is designated as OLI band 
10, and the extraction of spectral radiance (Lλ) is accom-
plished using Eq. (6).

Here, Lλ represents the upper spectral radiance of the 
atmosphere, ML stands for the band-specific multiplicative 
scaling factor (0.0003342), AL is the band-specific incre-
mental scaling factor (0.1), and QCAL signifies the pixel 
value of the standard quantized and calibrated product (Das 
et al., 2021).

Step 2: Converting Spectral Radiance to Brightness Tem-
perature (BT)

Brightness temperature, also known as apparent tempera-
ture, corresponds to the temperature of the blackbody that 
produces the radiation captured by the sensor. It is also the 
temperature received by satellites. It's important to note that 
brightness temperature doesn't directly represent the actual 
temperature of the Earth; instead, it reflects the temperature 
of the satellite itself. Consequently, the data from Landsat's 
thermal bands can be transformed from spectral radiance to 
brightness temperature (Eq. 7). This conversion is achieved 
using the thermal constants provided within the metadata file 
(Sherafati et al., 2018; Ibrahim and Mallouh, 2018).

In this context, BT denotes the brightness temperature of 
the satellite in Kelvin, while Lλ represents the spectral radi-
ance recorded by the sensor (W/m2·sr·µm). K1 stands for the 
constant coefficient of the first calibration (W/m2·sr·µm), and 
K2 represents the constant coefficient of the second calibra-
tion (W/m2·sr·µm).

Step 3: Emissivity Index (ε)
The method proposed by James and Sobrino was 

employed to calculate emissivity. Emissivity is derived 
through thresholding the NDVI index (Eq. 8).

The emissivity index (ε) is obtained using the following 
Eq. (9) (Das et al., 2021).

Step 4: Calculate the Land Surface Temperature

(6)Lλ = ML × QCAL + AL

(7)BT =
K

2

ln

[(
K

1

Lλ

+ 1

)]

(8)PV =

[
NDVI − NDVImin

NDVImax − NDVImin

]2

(9)Land Surface Emissivity (ε) = 0.004 × PV + 0.986

In this step, we determine the Atmospheric Water Vapor 
Index (AWVI) and the temperature of the Earth's surface 
using the single-channel algorithm.

For estimating the Land Surface Temperature (LST) 
using the single-channel method, it's crucial to ascertain 
the atmospheric water vapor content during the satellite's 
passage. The atmospheric water vapor was determined using 
the following Eq. (10), which incorporates meteorological 
information to derive the relative humidity (Nasseri, 2019).

In this context,  T0 represents the temperature of the air 
near the Earth's surface, RH stands for the relative humid-
ity of the air, and ωi signifies the atmospheric water vapor 
content.

The single-channel algorithm employs thermal infrared 
bands to extract the Land Surface Temperature (LST). This 
approach is applicable to sensors equipped with a thermal 
band (bands 10 and 11) (Chatterjee et al., 2017).

Here,  TS signifies the Land Surface Temperature (LST), 
Tsensor stands for the sensor's brightness temperature in 
Kelvin, ε represents surface emissivity, γ denotes the effec-
tive wavelength of a thermal infrared band, while γ and δ are 
parameters tied to the Planck function. Additionally, φ1, φ2, 
and φ3 are atmospheric correction parameters (Eqs. 11 and 
12). By applying these parameters, the atmospheric influ-
ence is significantly mitigated or adjusted, a calculation 
achieved through the utilization of the following Eqs. (13, 
14, 15, 16, and 17). It's important to note that all parameters 
are wavelength-dependent (Munoz et al., 2009). The value 
of C1 is 1.19104 × 10^8 W·m^-2.sr^-1.μm^4, and the value 
of C2 is 14,387.7 μm.K.

In the equation mentioned above, the C coefficients are 
acquired through simulation.

(10)

ωi = 0.0981

×

{

10 × 0.6801 × exp

[

17.27 ×
(

T0 − 273.15
)

273.15 +
(

T0 − 273.15
)

]

× RH

}

+ 0.167

(11)Ts = γ
[
�
−1
(
�1Lsensor + �2

)
+ �3

]
+ δ

(12)γ =

{
C
2
L
sensor

Tsensor
2

[
λ4

C
1

L
sensor

+ λ−1
]}−1

(13)
⎡⎢⎢⎣

�1

�2

�3

⎤⎥⎥⎦
=

⎡⎢⎢⎣

C11 C12 C13

C21 C22 C23

C31 C32 C33

⎤⎥⎥⎦

⎡⎢⎢⎣

ω2

�

1

⎤⎥⎥⎦

(14)� = −γLsensor + Tsensor
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Calculating Spatial Indices

(a) Normalized Differential Vegetation Index (NDVI)
The Normalized Difference Vegetation Index (NDVI) is a 

numerical indicator that utilizes the visible and near-infrared 

(15)�1 = 0.14714ω2 − 0.15583ω + 1.1234

(16)�2 = −1.1836�2 − 0.3760� − 0.52894

(17)�3 = −0.04554�2 + 1.8719� − 0.39071

bands of the electromagnetic spectrum. It evaluates whether 
an observed target contains living vegetation. NDVI values 
range from − 1 to + 1. As values approach + 1, they indicate 
a higher presence of vegetation, while values associated with 
water and clouds are generally below zero. This is calculated 
using the following Eqs. (18) (Kayet et al., 2016).

NIR indicates the extent of reflection in the infrared band, 
while Red indicates the degree of reflection in the red band.

(b) Normalized Differential Water Index (NDWI)
NDWI is an additional index utilized to demarcate open 

water boundaries and identify them using remote sens-
ing data based on near-infrared and visible radiation. The 
following Eq. (19) can be employed to calculate NDWI 
(McFeeters, 1996):

Green refers to band 2 for Landsat 7 (ETM+) images and 
band 3 for Landsat 8 (OLI) images. Near-infrared (NIR) cor-
responds to band 4 for Landsat ETM+ and band 5 for Land-
sat OLI images. Smaller values, including negative values, 
indicate the presence of vegetation, whereas NDWI values 

(18)NDVI =
NIR − Red

NIR + Red

(19)NDWI =
Green − NIR

Green + NIR

Table 2  The area of each LULC  (Km2)

Land Use-Land 
Cover class

Area of 2001  (Km2) Area of 2021  (Km2)

Water 33,201.64 35,851.13
Urban 5374. 81 5604.851
Wasteland 219,369.05 238,147.04
Grassland 60,833.90 57,424.16
Wetland 2499.78 2377.04
Forest 69,302.65 67,175.09
Total  (Km2) 385,207.02 406,579.311

Table 3  Assessment of the accuracy of LULC in 2001 and 2021

Year Class type classified by Landsat images of Izeh city

LULC Water Wasteland Forest Wetland Grassland Urban Total User's accuracy Kappa 
coeffi-
cient

2001 Water 186 2 0 11 4 1 204 98.4 0.77
Wasteland 2 189 0 0 11 2 204 82.17
Forest 1 3 161 2 36 1 204 81.63
Wetland 0 6 0 187 6 11 204 77.39
Grassland 0 9 36 2 134 23 204 67.68

2001 Urban 0 21 0 42 28 93 204 75.82
Total 189 230 197 244 219 131 950
Producer' accuracy 91.09 92.65 78.82 88.56 56.37 58.97
Overall accuracy 80.74%

2021 Water 200 2 0 1 0 1 204 99.24
Wasteland 1 199 1 0 0 3 204 97.59 0.88
Forest 0 1 201 0 2 0 204 98.62
Wetland 0 0 0 204 0 0 204 97.07

2021 Grassland 0 0 2 0 185 0 204 98.83 0.99
Urban 0 16 0 0 0 188 204 93.62
Total 201 218 204 205 187 202 1177
Producer' accuracy 99.37 98.14 99.42 100 98.83 92.07
Overall accuracy 90.76%
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exceeding 0.5 signify water bodies. Thus, water bodies can 
be readily distinguished from vegetation. Values ranging 
from 0 to 0.2 are typically associated with human-made 
areas (Das et al., 2021).

(c) Normalized Differential Build-up Index (NDBI)

By utilizing the mid-infrared (MIR) and near-infrared 
(NIR) bands, we can calculate this index using remote sens-
ing data. The equation provided below (20) was employed to 
compute the Normalized Difference Built-Up Index (NDBI) 
(Zha et al., 2003).

Fig. 3  LULC map of 2001 (a) 
and 2021 (b) of Izeh city
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Here, MIR refers to the mid-infrared band (band 5 for 
Landsat ETM+ and band 6 for Landsat OLI), while NIR 
corresponds to the near-infrared band (band 4 for Landsat 
ETM+ and band 5 for Landsat OLI). NDBI values span from 
− 1 to + 1, where the range of 0 to 1 is associated with urban 

(20)NDBI =
MIR − NIR

MIR + NIR

areas. A value around 1 indicates a dense concentration of 
built-up regions (Choudhury et al., 2019).

Evaluation of the Relationship Between the LST and Spatial 
Indicators

To understand the influence of different spatial character-
istics on Land Surface Temperature (LST), Pearson's cor-
relation function within the SPSS statistical package was 
employed. In this study, raster correlations, such as those 
between LST and NDVI, LST and NDWI, etc., were visu-
alized using Saga software (as detailed in the results and 
discussion section).

Results and Discussion

Land Use‑Land Cover Results

Results of the ML Classifier

The LULC maps of the study area were classified into six 
classes: water, urban, wasteland, grassland, wetland, and for-
est. Table 2 presents the area of each LULC class for both 
2001 and 2021. To assess the accuracy of the LULC maps, 
ground observation points were collected with the assistance 

Table 4  Accuracy assessment of ResU-Net method for classification 
Images of the study area

Class Precision Reclass F1-score Accuracy

2001 Class1 1.00 0.92 0.96 0.93
Class2 0.99 0.84 0.91
Class3 0.97 0.99 0.98
Class4 0.84 0.92 0.88
Class5 0.97 1.00 0.99
Class6 0.61 0.40 0.49

2021 Class1 0.98 0.98 0.98 0.98
Class2 1.00 0.98 0.99
Class3 0.95 0.95 0.95
Class4 0.92 0.87 0.89
Class5 1.00 1.00 1.00
Class6 0.85 0.91 0.88

Fig. 4  The LULC map of 2001 (a) and 2021 (b) of Izeh city using the FCN approach
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of Google Earth. The accuracy of the LULC maps was also 
analyzed using the Kappa coefficient. The Kappa coefficient 
values were 0.77 for 2001 and 0.88 for 2021 (Table 3), indi-
cating both LULC classifications were achieved with accept-
able accuracy.

In 2001, the area of the water class was 33,201.64  km2 
(Fig.  3a and b). However, by 2021, it had expanded to 
35,851.13  km2 due to the construction of the Karun 3 dam 
and the formation of its associated lake. Observing the dis-
tribution of settlements, it's evident that in 2001, they were 
primarily concentrated in the central core of Izeh city. How-
ever, by 2021, settlements had expanded, leading to urban 
and rural area development (Fig. 5).

The area of wastelands in 2001 measured 219,369.05 
 km2, which slightly decreased to 238,147.04  km2 by 2021. 
Wetlands in the region also exhibited a decreasing trend, 
declining from 2499.78  km2 in 2001 to 2377.04  km2 in 
2021. Over the past two decades, areas covered by dense 
vegetation, such as forests, have decreased from 69,302.65 to 
67,175.09  km2 within the study area (Table 2, Figs. 5 and 6).

Results of the FCN Model

Subsequently, the land use detection maps generated through 
the integrated approach and the FCN model were validated 
using precision, recall, and standard score performance 
measures.

Table 4 shows the evaluation of the FCN method for the 
classification of regional images. As can be seen in Table, 
the highest resulting accuracy scores for the LULC map 
of 2001 and 2021 were 93% and 98%, respectively. These 
values were obtained using a window size of 128 × 128 for 
generating sample patches.

F1-score was used to evaluate the classification accu-
racy of the FCN method. This criterion is calculated based 
on the precision and recall of the classifier, where preci-
sion is the ratio of the number of true positive samples to 
the total number of samples predicted positive, and recall 
is the ratio of the number of true positive samples to the 
total number of positive samples. The highest possible 
value for F1-score is 1 and the lowest possible value for 

this criterion is 0. F1-score was calculated for each class 
showing that the number of positive samples correctly 
recovered is close to 1.

As a result, utilizing the FCN method and the theRes-
UNet model yields higher accuracy compared to pixel-based 
methods such as Max-Likelihood. This supervised learning 
model can effectively differentiate between the characteris-
tics of the six classes of the region and accurately separate 
(Fig. 4).

Change Detection of LULC

Table 5 illustrates the positive and negative changes within 
the six classes of the study area's LULC. Water bodies, urban 
areas, and wastelands have experienced positive changes, 
while forests, wetlands, and grasslands have undergone 
negative changes (Table 5). A positive change signifies an 
increase in the area of LULC, whereas a negative change 
denotes a decrease.

Residential areas have experienced a 4.28% increase due 
to urban expansion, resulting in a reduction in agricultural 
and wasteland areas (Fig. 6). Notably, the wetlands area, 
including Miangaran and Bandan wetlands, has decreased 
by 4.91% (Figs. 5, 6; Table 5). A graphical representation of 
the changes in each LULC class is provided in Fig. 6.

Land Surface Temperature Changes

Land Surface Temperature (LST) maps were extracted for 
2001 and 2021 (Fig. 7a and b). In 2001, the recorded LST 
ranged from a high of 58 °C to a low of 18 °C. In contrast, 
for 2021, there was a decrease in the maximum tempera-
ture and an increase in the minimum temperature. Spe-
cifically, the maximum temperature reached 55 °C, while 
the minimum temperature rose to 20 °C. Consequently, it 
was observed that the maximum temperature decreased by 
3 °C, while the minimum temperature increased by 2 °C 
(Table 6).

Distinct patterns of Land Surface Temperature (LST) 
are closely linked to the thermal characteristics of different 
Land Use and Land Cover (LULC) classes (Weng Q., 2004). 
To comprehend how LULC influences LST, thermal values 
were obtained for each land use category. Figure 8 displays 
the temporal and spatial variations of LST for Izeh city.

The minimum average LST levels were observed for 
water bodies, wetlands, forests and grasslands (in 2001: 
32.02 °C for water bodies, 33.01 °C for wetlands, 33.85 °C 
for forests and 34.92 for grasslands,and in 2021: 30.11 °C 
for water bodies, 31.49 °C for wetlands, 33.06 °C for forests 
and 34.6 for grasslands).

Conversely, the maximum average LST levels were 
recorded for wastelands and urban areas (in 2001 37.54 °C 

Table 5  Percentage changes of 
LULC from 2001 to 2021

LULC class Changes 
percentage 
(%)

Water 7.98
Wasteland 8.56
Forest − 3.07
Wetland − 4.91
Grassland − 5.605
Urban 4.28
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Fig. 5  Map of LULC changes in Izeh city from 2001 to 2021

Fig. 6  The graph of changes in each LULC class from 2001 to 2021 in the study area
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Fig. 7  LST map of the years 2001 (a) and 2021 (b) of Izeh city
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for wastelands, and 36.53 °C for urban areas, and in 2021, 
44.37 °C for wastelands, and 40.11 °C urban areas (Figs. 8, 
9 and Table 7).

Figure 9 illustrates the average LST changes for each land 
use class over the twenty-year period, following this order: 
wasteland > urban > grassland > forest > wetland > water (as 
presented in Table 7, Figs. 8, and 9). The increase in LST 
between 2001 and 2021 can be attributed to urban develop-
ment and wasteland expansion in Izeh city. Additionally, the 
analyses indicate that water bodies exhibit lower LST levels.

Interestingly, despite the high recorded LST being asso-
ciated with forests, the digital elevation model (DEM) of 

the study area reveals that the forested regions are situated 
at higher altitudes. Moreover, observations suggest that the 
influence of altitude on LST outweighs that of vegetation 
(Aguilar-Lome, 2019). Consequently, the high LST observed 
in forested areas can be attributed to their elevated altitude 
within the study area.

The Influence of Water Bodies, Vegetation, 
and Urban Areas on LST

An analysis of correlations between Land Surface Tempera-
ture (LST) and factors such as vegetation, water bodies, and 
urban areas was conducted. The correlation between these 
factors and indices such as NDVI, NDWI, and NDBI was 
explored. Spatial distributions of NDVI in the study area are 
shown in Fig. 10a and b. Darker green regions indicate dense 
vegetation, while the purple color represents water bodies. In 
2001, the northwestern and southwestern parts of Izeh city 
exhibited dense vegetation, while the western part displayed 
minimal vegetation due to urban and desert expansion. This 
relationship between NDVI and NDBI becomes evident.

Table 6  Statistics of changes in the LST from 2001 to 2021

Year Maximum tempera-
ture (°C)

Minimum tempera-
ture (°C)

Average 
temperature 
(°C)

2001 58 18 38
2021 55 20 37.5

Fig. 8  Map of LST changes 
in the study area from 2001 to 
2021 using Landsat8 images
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Figure 11 depicts a weak negative association between 
NDBI and NDVI (correlation coefficient of -0.47), indicat-
ing that urban expansion leads to reduced vegetation cover. 
Both NDVI and LST show a negative correlation for 2001 
and 2021, as displayed in Fig. 12a and b. This correlation 
is due to abundant vegetation preventing higher surface 
temperatures.

NDWI is another significant index negatively correlated 
with LST (correlation coefficient of -0.037, Table 8), primar-
ily because water possesses a relatively high specific heat 
capacity (Moldoveanu & Minea, 2019) (Fig. 13).

Fig. 9  The graph of the average 
temperature changes of the land 
surface for the LULC classes

Table 7  Average LST changes (°C) for each LULC class

Land use-land cover 
class

2001 2021 Tempera-
ture differ-
ence

Water 32.02 30.11 − 1.9
Wasteland 37.54 44.37  + 6.83
Forest 33.85 33.06 − 0.79
Wetland 33.01 31.49 − 1.52
Grassland 34.92 34.6 − 0.32
Urban 36.53 40.11  + 3.85

Fig. 10  Vegetation index map of the study area in 2001 (a) and 2021 (b)
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A noteworthy relationship emerges between NDBI and 
NDWI. While NDBI negatively impacts NDWI, suggesting 
a decline in water storage with increasing urban areas, the 
relationship shifts to a positive correlation as water areas 
expand, and dams are constructed (Fig. 14).

Additionally, NDBI significantly affects LST. Previ-
ous studies have demonstrated a strong linear relationship 
between LST and NDBI (Sun et al., 2012; Tariq et al., 2022). 

Fig. 11  Relation between NDBI 
and NDVI index

Fig. 12  Relation between LST and NDVI indices in 2001 (a) and 2021 (b)

Table 8  Correlation matrix between LST and other spatial indices for 
the year 2001

LST NDVI NDWI NDBI

LST 1 − 0.455 0.289 0.322
NDVI − 0.455 1 − 0.735 − 0.474
NDWI 0.289 − 0.735 1 0.482
NDBI 0.322 − 0.474 0.482 1
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The correlation value between them is 0.322 for 2001 and 
0.208 for 2021 (Tables 8 and 9), indicating a positive asso-
ciation between LST and NDBI (Fig. 15a and b). Given 
the urban development experienced by Izeh city over;the 
past two decades, an increase in LST with urbanization is 
anticipated.

Fig. 13  Relation between LST and NDWI indices in 2001 (a) and 2021 (b)

Fig. 14  Relation between 
NDWI and NDBI index

Table 9  Correlation matrix between LST and other spatial indices for 
the year 2021

LST NDVI NDWI NDBI

LST 1 − 0.209 − 0.037 0.208
NDVI − 0.209 1 − 0.721 − 0.328
NDWI − 0.037 − 0.721 1 0.171
NDBI 0.208 − 0.328 0.171 1
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Conclusion

In this research, an attempt was made to determine the trend 
of LST changes on LULC in Izeh city. For LULC classi-
fication, two pixel-based and object-based methods were 
used. The ResU-Net model with the FCN approach with 
Landsat images had higher accuracy compared to the max-
likelihood method despite covering a large area. Compre-
hensive knowledge and monitoring of land use-land cover, 
as well as multi-view analysis of the impact of LULC on 
the thermal environment, help achieve a deeper understand-
ing of the effective mechanisms in increasing the LST in 
the study area. The trend of LST change in Izeh city shows 
that the minimum temperature has increased by about 2 °C, 
while the maximum temperature has decreased by 3 °C per 
year over 20 years. Spatial and temporal surveys of LST 
showed hot regions (areas with the highest LST) in the city 
and wastelands. Therefore, locating these points is essential 
for studies on sustainable development and environmental 
monitoring. By comparing the correlation between land 
use-land cover indices (NDVI, NDWI, and NDBI) and LST 
under different combinations, it was found that urban areas 
have a positive and significant correlation with LST. This 
indicates the effect of urban areas on the increase in LST in 
Izeh city. Industrial and commercial areas, as well as traffic, 
significantly influence the degree of human heat emission. 
Therefore, more trees and parks with thick vegetation should 
be established in urban areas, and more plants should be 
planted there.

Gao et al. (2019) utilized the FCN method to classify 
land cover in mountainous areas, achieving a classification 
accuracy of 90.6%. In a separate study, Chakhar et al. (2020) 

employed various classification algorithms alongside Land-
sat 8 and Sentinel 2 imagery for crop classification. They 
experimented with decision trees, diagnostic analysis, sup-
port vector machines, nearest neighbors, and group classi-
fiers, yet none of these methods yielded an F1 score exceed-
ing 90%. However, in our current research, the accuracy of 
classification using the fully convolutional neural network 
approach and the theRes-UNet model surged to 98%.

This research faced limitations as a result of utilizing 
Landsat 8 images for examining changes detection within 
the area. Each pixel's spatial resolution was 30 m, indicat-
ing the potential benefits of employing imagery featuring 
a greater spatial resolution, such as Sentinel-2, to enhance 
the analysis. Furthermore, the temporal resolution could be 
heightened by incorporating Landsat 9 images.

To enact these measures, meticulous planning is essential 
for Izeh city to mitigate the escalating temperature. Moreo-
ver, the findings of this research will play a pivotal role for 
urban policymakers and developers in evaluating the extent 
of land use-land cover alterations in the vicinity, aiming to 
enhance the future effectiveness and efficiency of the region, 
and bolster decision-making processes.
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