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Abstract
Landslides are complex geohazards responsible for damage to life, the natural environment, and essential infrastructures 
like buildings, roads, and transmission lines in mountainous regions. The modeling of topographic input parameters for 
landslide-related investigations is often based on Digital Elevation Models (DEMs), which serve as a crucial geospatial data 
source. The present study attempts to analyze the effects of DEMs, obtained from different sources and varying in spatial 
resolution, on terrain feature estimation and spatial characterization of landslide-affected areas in the Indian Himalayas. 
Carto-DEM version 3R1 and ALOS PALSAR DEM are used to generate two geodatabases of DEM-derived landslide causa-
tive factors, each including digital maps of Elevation, Slope, Aspect, Curvature, Terrain Ruggedness Index, and Distance to 
Drainage. The generated geodatabases are utilized for conducting a spatial frequency distribution analysis to characterize 
the selected area into spatial bins with similar topographic characteristics. A comparative study of this analysis reveals that 
both the DEMs exhibited comparable topographic characteristics on a general level. However, considerable variations are 
observed when both the geodatabases are scrutinized closely. The results of this study highlight that the quality of the DEM 
used may affect its usability in a specific investigation and hope to add to the scientific discourse on the effects of DEM on 
landslide-related studies.

Keywords Landslide inventory · Topographical characterization · Spatial frequency distribution analysis · Digital elevation 
model (DEM) · Landslide zonation mapping · Geographical information system (GIS)

Introduction

Landslides are amongst the most destructive and frequently 
occurring natural disasters in mountainous terrains (Saha 
et al., 2002, 2022). They occur due to the movement of 
rocks, earth, or debris down an unstable slope in the form 
of slope failure, rockfall, mudflow, and debris flow (Chawla 
et al., 2018; Cruden, 1991). Their occurrence is controlled 
by geological and geomorphological processes and mainly 
depends on the local terrain conditions (El Jazouli et al., 
2019). Landslides can occur on unstable slopes due to fac-
tors like deforestation, changing hydrological conditions, 
stream erosion, volcanic eruption, and anthropogenic 
activity (Dahal et al., 2006; Dai et al., 2002; Glade, 2002; 
Gorsevski et al., 2006; Keefer, 1984; Pandit et al., 2021; 

Raghuvanshi et al., 2014; Schuster & Highland, 2007; Tro-
peano & Turconi, 2002; van Beek & van Asch, 2004). High 
precipitation and seismicity, in particular, are the two main 
triggering factors associated with landslides (Chawla et al., 
2017; Lin et al., 2017; Niu et al., 2014; Xu et al., 2014).

Landslides inflict extensive damage globally, affecting 
the natural landscape, causing economic losses, and result-
ing in human tragedies (Batar et al., 2017; Fell et al., 2008; 
Geertsema & Pojar, 2007; Kanungo et al., 2006; Meusburger 
& Alewell, 2008; National Disaster Management Author-
ity, 2019; Promper et al., 2014; Schuster & Fleming, 1986; 
Schuster & Highland, 2007; Tan et al., 2020). Despite their 
impact, the development of a reliable, cost-effective, and 
efficient landslide early warning system is in its early stages 
(Naidu et al., 2018). Hence, in the case of landslides, zona-
tion maps incorporating technologies like Remote sens-
ing, Geographical Information Systems (GIS), and modern 
techniques like Machine Learning (ML) and Deep Learn-
ing are increasingly employed to prioritize resources in the 
event of a disaster striking (Chang et al., 2020; Huang et al., 
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2017, 2020; Park & Kim, 2019; Peethambaran et al., 2019; 
Pourghasemi et al., 2018).

Several GIS-based methods, such as heuristic, quanti-
tative, physical-based, and process-based approaches are 
employed in landslide zonation mapping studies (Conforti 
et al., 2014; Kim et al., 2018; Pradhan & Lee, 2010; Soria 
et al., 2011; Zare et al., 2013). Digital Elevation Models 
(DEMs) play a crucial role in such studies by providing a 
digital representation of the physical terrain. Previous studies 
have explored the impact of DEMs on geomorphological and 
landslide-related analyses with studies exploring publicly 
available DEMs like Advanced Spaceborne Thermal Emis-
sion and Reflection—Global DEM (ASTER-GDEM), Shut-
tle Radar Topography Mission (SRTM-DEM), Advanced 
Land Observing Satellite (ALOS) AW3D30-DEM (ALOS-
3D), ALOS Phased Array type L-band Synthetic Aperture 
Radar (ALOS PALSAR) DEM, and Carto-DEM Ver. 3R1 
(Huang et al., 2017; Kanungo et al., 2006; Peethambaran 
et al., 2019; Pradhan, 2013; Roy & Saha, 2019).

It is reported that DEMs serve as the fundamental frame-
work for modeling the causative factors that contribute to 
landslides (Batar & Watanabe, 2021; Naseer et al., 2021). 
The characteristics of these causative factors, in turn, rely 
on the spatial resolution of the DEMs used, as reported by 
researchers (Chow & Hodgson, 2009; Rabby et al., 2020). 
It has been observed that the different processing techniques 
can affect DEM quality (Mahalingam & Olsen, 2016). The 
impact of DEM resampling on terrain feature estimation has 
been reported in various studies (Chow & Hodgson, 2009; 
Deng et al., 2007). Studies have also reported the impact of 
some publicly available DEMs on landslide-specific mod-
eling applications (Sarma et al., 2020). Moreover, the impact 
of DEM quality on the final accuracy of landslide zonation 
analyses has also been widely reported (Kamiński, 2020; 
Rabby et al., 2020). However, the impact of the Carto-DEM 
Ver. 3R1 and the ALOS PALSAR DEM on geomorphologi-
cal modeling and terrain feature estimation have not been 
adequately reported in the literature. While several studies 
have focussed on the final accuracy of the landslide zona-
tion analysis, limited studies have discussed the impact of 
different DEMs on terrain feature estimation at landslide 
locations.

Thus, an attempt has been made to analyze the effects of 
Carto-DEM Ver. 3R1 (approx. 30 m) and ALOS PALSAR 
DEM (12.5 m) on the spatial characterization of landslide 
locations in the present study. The selection of these DEMs 
is motivated by the distinctions in their acquisition tech-
nologies, quality, and spatial resolutions. To achieve the 
objective of the study, the DEMs are used to prepare two 
geodatabases consisting of digital maps of six causative fac-
tors each, including Elevation, Slope, Aspect, Curvature, 
Terrain Ruggedness Index (TRI), and Distance to Drain-
age. Subsequently, terrain feature estimation is performed 

at the landslide locations by conducting a spatial frequency 
distribution analysis of the selected causative factors. The 
study highlights differences in the characterization of land-
slide locations using the selected DEMs, which are based 
on different processing techniques. The results of the study 
may guide future researchers in making informed decisions 
when performing, analyzing, and correlating the effects of 
DEMs on the estimation of terrain features at landslide loca-
tions. Furthermore, it may contribute to the realization of 
the Sustainable Development Goal (SDG) 15 and Sendai 
Disaster Risk Reduction (DRR) global targets (a), (b) and 
(g), and help future researchers in evaluating potential causa-
tive factors when undertaking studies related to landslide 
susceptibility, hazard, or risk zonation mapping.

Study Area

The majority of the study area lies in the Shimla and Solan 
districts of Himachal Pradesh and the Ambala district of 
Haryana in the northern part of India. Geographically, the 
study area lies between longitude 76°53′0′′E to 77°13′30′′E 
and latitudes 30°47′30′′N to 31°09′00′′N covering a cumula-
tive area of approximately 609.91  km2 (Fig. 1). Kalka, Par-
wanoo, Solan, and Shimla are some of the major population 
centers. The study area is dominated by landslide-inducing 
factors like steep slopes, the highly dissected nature of the 
hills, high precipitation, and severe earthquake intensities. 
The annual average temperature varies between a minimum 
of 9.8 °C and a maximum of 25.9 °C. The study area receives 
an annual average rainfall of approximately 1251 mm. Geo-
morphologically, the area is composed of highly dissected 
hills with intermontane valleys. Major rock groups present 
in the study area are phyllite and quartzite of the Jutogh 
group, diamictite and shale of the Baliana group, shale of 
the Sirmaur/Dharamshala group, and sandstone and siltstone 
of the Dagshai and Kasauli group. Loamy mountainous soil 
is the predominant soil type in the study area. Seismologi-
cally, the study area is very active and frequented by many 
earthquakes. According to seismic zonation maps prepared 
and published by the Government of India, it lies in seismic 
zone IV and has an attributed peak ground acceleration value 
of 0.24 g (Bureau of Indian Standards New Delhi, 2002).

Data and Methodology

Landslide Inventory Map

The landslide inventory is prepared in polygon form using 
multiple data sources, i.e., Bhukosh, the data dissemination 
portal of the Geological Survey of India, and interpreta-
tion of Google Earth images (Amatya et al., 2019; Batar & 
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Watanabe, 2021; Hao et al., 2020; Roy & Saha, 2019; Shir-
zadi et al., 2018). The inventory is then rasterized to match 
the resolutions of Carto-DEM Ver. 3R1 and ALOS PALSAR 
DEM. The cumulative area of all the landslide polygons in 
the original inventory is approximately 647,081  m2. How-
ever, after rasterization, the final areas of the two inven-
tory maps are approximately 655,997  m2 at the resolution 
of Carto-DEM Ver. 3R1 and approximately 667,188  m2 at 
the resolution of ALOS PALSAR DEM. This difference may 
be neglected as the total error in the cumulative landslide-
affected area in both the inventory maps is only + 1.38% 
and + 3.10%, respectively. Hence, the prepared inventory 
maps are used for further analysis.

Landslide Causative Factors

Two geodatabases of DEM-derived landslide causative fac-
tors were generated from the selected DEMs, each compris-
ing digital maps of elevation, slope, aspect, curvature, TRI, 
and distance to drainage, respectively (Figs. 2 and 3). The 
values of the causative factors were extracted at the land-
slide locations using raster sampling techniques. Variations 
were observed between these geodatabases because of the 
differences in their accuracies, processing technologies, 
and quality. On analyzing the extracted raster values using 
the Kruskal–Wallis test, it was seen that the distributions 
of elevation, slope, aspect, and curvature were statistically 
the same between the geodatabases while significant differ-
ences were observed in the distribution of TRI and distance 
to drainage. Table 1 presents the results of exploratory data 
analysis for the two geodatabases used in the study.

The elevation of a place affects factors like the degree 
of weathering of the slope-forming materials (Pham et al., 
2016), the amount of precipitation received at a location, 
and local temperature, which further affect the stability of 
the hill slopes. The slope angle of the hill faces is one of 
the primary factors that can induce instabilities and lead 
to failures. The slope maps of the study area are derived 
using surface analysis of the DEMs. The aspect of the hill 
slopes impacts the landslide occurrences as the slopes fac-
ing different directions receive different amounts of rain-
fall and solar radiation, which may affect the vegetation 
density. Hence, slopes facing a particular direction may 
be more prone to landslides (Sarkar et al., 1995, 2013). 
Curvature is a geomorphological factor that determines 
the flow of water, thus, affecting landslide occurrences 
(Ayalew et al., 2004; Tien Bui et al., 2017). In this study, 
an upward convex surface is depicted as having positive 
curvature, flat surfaces have no curvature, while an upward 
concave surface has negative curvature. TRI is used to 
assess the overall terrain heterogeneity and degree of 
undulations of the surface features. TRI is defined as the 
mean absolute difference in elevation between a central 
pixel and its eight surrounding pixels on a DEM (Riley 
et al., 1999). The presence of drainage may aggravate the 
erosional activity on the hill faces due to excessive sur-
face runoff. Hence, slope failures may be associated with 
the drainage channels (Sarkar & Kanungo, 2004). There-
fore, the drainage network of the study area is extracted 
using watershed analysis of the DEMs. During analysis, 
the accumulation area is kept constant by proportionately 
adjusting the number of contributing pixels for both the 

Fig. 1  Location map of the 
study area and landslide loca-
tions
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DEMs. Then, Euclidian distance is calculated from the 
drainage networks to obtain the distance to drainage maps.

Spatial Frequency Distribution Analysis

After preparing the digital maps for landslide inventory 
and the landslide causative factors, raster values of all the 
causative factors are extracted at the landslide locations 
using raster sampling tools in GIS software and compiled 
in the form of a tabular worksheet by reclassifying them into 

different classes. Furthermore, the number of pixels occupy-
ing a particular class is converted to a percentage of the total 
number of pixels representing the cumulative study area. 
Similarly, the landslide-affected pixels within each class 
are also converted to a percentage of the cumulative land-
slide-affected area. Then the impact of the selected DEMs 
on the spatial characterization of the landslide locations is 
analyzed in terms of variations in the Landslide Severity 
Index (LSI) values calculated for all the landslide causative 
factors (Eq. 1):

Fig. 2  Thematic maps of the 
causative factors derived from 
Carto-DEM Ver. 3R1: a Eleva-
tion, b Slope, c Aspect, d Cur-
vature, e TRI, and f Distance to 
drainage
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Results

The following sections elaborate on the results of the spa-
tial frequency distribution analysis carried out to deter-
mine the impact when Carto-DEM Ver. 3R1 and ALOS 

(1)LSI =
Landslide affected pixels in a class of landslide causative factor(%)
Total number of pixels in a class of landslide causative factor(%)

PALSAR DEM are used for the terrain feature estimation 
at the landslide locations. The observations of the varying 
LSI values are also presented along with these results for 
both DEMs.

Dataset Derived from Carto‑DEM Ver. 3R1

Table 2 summarises the spatial characteristics of the land-
slide locations based on the analysis conducted using the 
Carto-DEM Ver. 3R1 geodatabase. The elevation of the 

Fig. 3  Thematic maps of the 
causative factors derived from 
ALOS PALSAR DEM: a Eleva-
tion, b Slope, c Aspect, d Cur-
vature, e TRI, and f Distance to 
drainage
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study area is divided into nine classes using Jenks natural 
breaks classification. The results reveal that the maximum 
landslide-affected area (18.58%) lies between the elevation 
range of 1598 m and 1758 m, followed by the elevation 
between 973 and 1166 m (17.77%) and between 1314 and 
1452 m (15.33%). However, the LSI is the highest (2.06) at 
relatively lower elevations between 713 and 973 m followed 
by the range 973–1166 m (1.65) and 1598–1758 m (1.46). 
The slope is divided into eight classes using equal inter-
vals classification for ease of comprehension of the results 
(Zhao & Chen, 2020). It is observed that the majority of the 
study area (60.39%) has a slope variation between 20° and 
40°. Moreover, approximately three-fourths of the landslide-
affected area (75.63%) also lies in the same class. LSI is 
highest (176.34) for the slope class between 60° and 70°, 
though the fraction of the study area for this class is very 
small (0.002%). The second and the third highest landslide 
severity occurs in the slope ranges of 50° to 60° (3.88), fol-
lowed by 40° to 50° (2.90). The slope aspect is classified into 
nine classes using equal interval classification starting from 
0°, denoting the north direction, and increasing clockwise 
till 360° to denote the north direction again (Rawat et al., 
2015). The slopes that are not oriented in any direction are 
denoted as flat. The highest percentage of landslides-affected 
areas have an aspect angle between 180° and 225° (22.49%) 
followed by the area having an aspect angle between 225° 
and 270° (19.86%). The third most landslide-affected slopes 
have aspect angles between 135° and 180° (12.16%). The 
highest LSI values occur in the aspect range of 180° to 225° 
(1.49), followed by 225° to 270° (1.28) and 90° to 135° 
(1.10). In terms of curvature, higher landslide occurrences 
are observed in areas with positive curvatures (52.49%) as 
compared to negative curvatures (45.69%). They are the 
least in the flat areas (1.83%). Similarly, LSI is highest for 
areas with positive curvatures (1.08), followed by negative 
curvatures (0.95), and the least (0.56) for flat areas. TRI 

map is classified into nine classes using Jenks natural breaks 
classification. The largest proportion of area affected by 
landslides is in the TRI ranges of 41.95–49.20 m (23.70%), 
followed by 35.37–41.95 m (19.23%) and 49.2–58.3 m 
(18.62%). Progressively higher LSI values are observed 
for higher TRI values, with the maximum LSI occurring 
between 71.95 to 149.99 m (3.04) followed by 58.3–71.95 m 
(2.35) and 49.20–58.30 m (1.85). More than half (52.85%) 
of the landslide-affected locations lie within 450 m of the 
drainage features. However, LSI is observed to be highest 
(4.86) in areas located between 1050 and 1200 m from the 
drainage features.

Dataset Derived from ALOS PALSAR DEM

Table 3 summarises the spatial characterization of landslide 
locations based on the analysis conducted using ALOS PAL-
SAR geodatabase. Elevation of the study area is categorized 
into nine classes using a similar approach as previously used. 
Here, it is observed that the maximum landslide-affected 
area (18.47%) lies in the elevation range of 1310–1448 m, 
followed by 1162–1310 m (16.48%), and 1448–1595 m 
(15.57%). However, LSI is highest (1.94) at relatively lower 
elevation ranges of 712–970 m followed by 1595–1756 m 
(1.70) and 970–1162 m (1.57). The slope map is divided 
into eight classes using equal interval classification (Zhao 
& Chen, 2020). It is observed that 56.83% of the study area 
has a slope variation between 20° and 40°, encompassing 
71.80% of the landslide-affected area. The maximum per-
centage of the landslide-affected area was observed in the 
slope range of 20° to 30° (37.53%) followed by 30° to 40° 
(34.26%) and 40° to 50° (12.24%). The highest LSI values 
occur in the slope range between 60° and 70° (8.92), fol-
lowed by the locations having slope values above 70° (7.06) 
and the slope range between 50° and 60° (4.14). The highest 
percentage of landslide-affected areas have aspect angles in 

Table 1  Spread of values of the 
landslide causative factors in the 
two generated geodatabases

Value Dataset Elevation Slope Aspect
(nominal)

Curvature TRI Dist. to drainage

Minimum value Carto-DEM 436 0.00 – − 16.46 0.00 0.00
ALOS PALSAR 437 0.00 – − 32.64 0.00 0.00

Q1 Carto-DEM 1142 25.63 – − 1.21 37.74 203.25
ALOS PALSAR 1142 23.89 – − 0.64 13.89 179.23

Median Carto-DEM 1414 30.64 – 0.24 44.89 433.54
ALOS PALSAR 1426.50 29.90 – 0 17.86 387.33

Q3 Carto-DEM 1643 35.60 – 1.57 53.28 741.78
ALOS PALSAR 1662 36.38 – 1.28 22.87 621.55

Maximum value Carto-DEM 2418 63.37 – 17.55 149.99 1488.57
ALOS PALSAR 2416 78.31 – 42.24 147.78 1437.23

Outliers (%) Carto-DEM 0.00 1.51 – 1.76 1.89 0.00
ALOS PALSAR 0.00 1.22 – 1.90 3.21 0.00
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Table 2  Spatial frequency 
distribution analysis of the 
landslide locations using the 
Carto-DEM geodatabase

The bold value indicate the values used to calculate the maximum absolute differences

Sl. no Thematic Layer Classes Pixels within a 
class (%) (A1)

Landslide affected 
pixels (%) (B1)

LSI (C1)

1 Elevation 436–713 m 8.81 1.42 0.16
713–973 m 4.43 9.14 2.06
973–1166 m 10.74 17.77 1.65
1166–1314 m 16.61 10.25 0.62
1314–1452 m 18.42 15.33 0.83
1452–1598 m 15.37 14.21 0.93
1598–1758 m 12.75 18.58 1.46
1758–1957 m 9.08 10.46 1.15
1957–2418 m 3.78 2.84 0.75

2 Slope 0°–10° 12. 5 1.42 0.11
10°–20° 23.62 12.28 0.52
20°–30° 37.34 34.72 0.93
30°–40° 23.05 40.91 1.77
40°–50° 3.36 9.75 2.90
50°–60° 0.13 0.51 3.88
60°–70° 0.00 0.41 176.34
 > 70° 0.00 0.00 0.00

3 Aspect Flat 0.02 0.00 0.00
0°–45° 12.05 8.61 0.71
45°–90° 11.86 10.33 0.87
90°–135° 10.01 11.04 1.10
135°–180° 11.42 12.16 1.06
180°–225° 15.10 22.49 1.49
225°–270° 15.52 19.86 1.28
270°–315° 13.60 8.21 0.60
315°–360° 10.43 7.29 0.70

4 Curvature Negative 48.16 45.69 0.95
Flat 3.25 1.83 0.56
Positive 48.59 52.49 1.08

5 TRI 0–12.04 m 7.62 0.10 0.01
12.04–21.31 m 9.81 2.64 0.27
21.31–28.72 m 14.87 7.83 0.53
28.72–35.37 m 17.96 12.61 0.70
35.37–41.95 m 18.22 19.23 1.06
41.95–49.20 m 15.34 23.70 1.55
49.20–58.30 m 10.06 18.61 1.85
58.30–71.95 m 4.86 11.39 2.35
71.95–149.99 m 1.27 3.87 3.04

6 Distance to drainage 0–150 m 22.99 18.70 0.81
150––300 m 18.62 18.09 0.97
300–450 m 17.27 16.06 0.93
450–600 m 14.24 12.20 0.86
600–750 m 12.06 13.31 1.10
750–900 m 8.27 9.86 1.19
900–1050 m 4.48 3.25 0.73
1050–1200 m 1.63 7.93 4.86
 > 1200 m 0.44 0.61 1.34
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Table 3  Spatial frequency 
distribution analysis of the 
landslide locations using the 
ALOS PALSAR geodatabase

The bold value indicate the values used to calculate the maximum absolute differences

Sl. No Thematic Layer Classes Pixels within a 
class (%) (A2)

Landslide affected 
pixels (%) (B2)

LSI (C2)

1 Elevation 437–712 m 8.80 1.59 0.18
712–970 m 4.35 8.44 1.94
970–1162 m 10.61 16.69 1.57
1162–1310 m 16.48 10.29 0.62
1310–1448 m 18.47 15.68 0.85
1448–1595 m 15.57 10.39 0.67
1595–1756 m 12.88 21.90 1.70
1756–1954 m 9.03 12.41 1.37
1954–2416 m 3.82 2.62 0.69

2 Slope 0°–10° 12.68 1.20 0.09
10°–20° 12.30 11.57 0.46
20°–30° 36.01 37.53 1.04
30°–40° 20.83 34.26 1.65
40°–50° 4.52 12.24 2.71
50°–60° 0.57 2.36 4.14
60°–70° 0.09 0.79 8.92
 > 70° 0.01 0.05 7.06

3 Aspect Flat 0.24 0.00 0.00
0°–45° 12.85 8.66 0.67
45°–90° 10.87 9.79 0.90
90°–135° 10.11 11.18 1.11
135°–180° 11.86 13.37 1.13
180°–225° 16.08 24.72 1.54
225°–270° 14.87 15.68 1.05
270°–315° 12.67 9.02 0.71
315°–360° 10.45 7.60 0.73

4 Curvature Negative 40.73 38.09 0.94
Flat 18.62 16.06 0.86
Positive 40.65 45.85 1.13

5 TRI 0–5.39 m 11.16 0.79 0.07
5.39–9.43 m 15.92 4.81 0.30
9.43–12.92 m 19.60 13.56 0.69
12.92–16.37 m 19.77 20.51 1.04
16.37–20.15 m 16.37 22.91 1.40
20.15–24.86 m 10.72 19.26 1.80
24.86–32.08 m 4.96 11.52 2.32
32.08–47.92 m 1.34 5.27 3.94
47.92–147.78 m 0.17 1.37 8.02

6 Distance to drainage 0–150 m 27.10 19.50 0.72
150–300 m 23.06 22.55 0.98
300–450 m 19.20 13.58 0.71
450–600 m 14.91 16.23 1.09
600–750 m 9.48 13.68 1.44
750–900 m 4.59 9.35 2.04
900–1050 m 1.36 4.33 3.19
1050–1200 m 0.27 0.77 2.86
 > 1200 m 0.04 0.00 0.00
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the range of 180° to 225° (24.72%) followed by 225° to 270° 
(15.68%) and 135° to 180° (13.37%). The highest LSI value 
occurs at locations with aspect angles between 180° and 
225° (1.54), while the second and third highest LSI values 
arise in the aspect ranges between 135° and 180° (1.13) and 
between 90° and 135° (1.11), respectively. In terms of cur-
vature, 45.85% of the landslides occur in areas with positive 
curvatures, 38.09% occur in areas with negative curvatures, 
and 16.06% occur in flat areas. LSI value is highest on slopes 
with positive curvatures (1.13), followed by the slopes with 
negative curvatures (0.94), and the least for areas that are 
flat (0.86). As done for the Carto-DEM geodatabase, the 
study area is divided into nine TRI classes, with most of 
the study area having TRI values between 0 and 24.86 m 
(93.53%). The highest LSI value occurs in the TRI range 
of 47.92–147.78 (8.02), followed by 32.08–47.92 m (3.94) 
and 24.86–32.08 m (2.32). In terms of the distance to drain-
age, 55.64% of the landslide locations lie within 450 m of 
the drainage features. The highest LSI value is observed 
at a distance between 900 to 1050 m (3.19), followed by 
1050–1200 m (2.86) and 750–900 m (2.04) from the drain-
age features.

Discussions

DEM provides the fundamental framework for terrain fea-
ture estimation and modeling for landslide-related analyses 
using Remote Sensing and GIS tools. DEM-derived param-
eters are often used as input factors for modeling geomor-
phological conditions in landslide susceptibility, hazard, and 
risk zonation mapping studies. It is reported that the source 
and resolution of the DEMs used in such studies influence 
the prediction accuracy of the employed models (Chow & 
Hodgson, 2009; Deng et al., 2007). This influence is mostly 
attributed to the impact of variations in the DEM-derived 
parameters on the results of the simulation (Sarma et al., 
2020). The present study analyzes this impact using two 
geodatabases of DEM-derived landslide causative factors 
generated using Carto-DEM Ver. 3R1, which is based on a 
photogrammetric approach that extracts the elevation data 
from stereo images, and ALOS PALSAR DEM, which is 

generated using SAR technology. The variations in terrain 
feature estimation resulting from these two DEMs are high-
lighted by conducting a comparative study of the spatial 
frequency distribution analysis of the landslide locations. 
Table 4 summarizes these variations in the form of absolute 
maximum differences observed during the analysis of the 
two geodatabases for each of the causative factors. The vari-
ations are reported as percentages by taking the ALOS PAL-
SAR geodatabase as a reference, as it has a finer resolution.

The findings show a difference in the evaluated land-
slide severity between the two geodatabases for elevation, 
as measured by the highest LSI values. Comparing the two 
geodatabases, it is observed that the greatest LSI value is 
marginally lower, and the second and third highest LSI val-
ues are marginally higher (Tables 2 and 3) in the Carto-DEM 
geodatabase. Most landslides occurred in moderate-sloped 
regions characterized by slope gradients between 20° and 
40° in both the geodatabases. Such observations are inter-
esting because it is intuitive to think that landslide activity 
should be elevated in areas characterized by higher slope 
gradients. However, similar observations have been reported 
in other studies in different parts of the world where land-
slides occur in regions characterized by low to moderate 
slope gradients (Naseer et al., 2021; Xu et al., 2014). This 
is because of the distribution of the slope-forming mate-
rials where steeper slopes are usually composed of rocky 
materials that effectively transfer all their weight to the toe 
of the slope. Approximately two-fifths of the landslide-
affected areas exhibited an aspect angle between 180° and 
270°, although the distribution of these areas between the 
intervals 180°–225° and 225°–270° varied between both the 
geodatabases. Similar observations are also reported in other 
studies of the Indian Himalayan region, which report that 
slopes oriented in the south-southwestern direction are more 
prone to landslides (Sarkar et al., 2013).

Significant variations were observed in the characteriza-
tion of the study area for all the causative factors, with the 
maximum variation being observed for curvature (Table 4). 
Also, the landslide occurrences in flat terrain were found to 
be significantly more prominent (8.79 times) in the ALOS 
PALSAR geodatabase. In both the geodatabases, progres-
sively higher LSI values were observed at locations with 

Table 4  Absolute maximum 
differences (%) between 
corresponding values of 
landslide causative factors from 
the two geodatabases used in 
this study for (1) percentage of 
the study area (2) percentage of 
landslide affected area (3) LSI 
values in a particular variable 
class

Sr. no Thematic layer Max | (A1 – A2) |
(%)

Max | (B1 – B2) |
(%)

Max | (C1 – C2) |
(%)

1 Elevation 1.30 36.83 38.63
2 Slope 10.69 19.41 1876.75
3 Aspect 9.03 26.67 21.35
4 Curvature 82.55 88.62 34.81
5 TRI 38.39 38.50 62.04
6 Distance to drainage 19.26 930.24 77.25
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higher values of TRI, which is logical because the higher 
values of TRI indicate that the locations have a higher eleva-
tion difference from the surrounding locations. Furthermore, 
more than half of the landslides occurred within 450 m of 
the drainage features for both geodatabases. The literature 
supports similar observations of landslides occurring near 
drainage features (Chawla et al., 2019; Sarkar & Kanungo, 
2004). However, the greatest LSI values are observed far-
ther away from the drainage features for both the geodata-
bases, in contradiction to the general observations by other 
researchers (Asmare, 2023; Jones et al., 2021). Moreover, 
as compared to the observations from the Carto-DEM geo-
database, the areas of higher LSIs were situated relatively 
nearer to the drainage features in the ALOS PALSAR geo-
database. On further investigation employing the interpreta-
tion of remotely sensed satellite images, it was concluded 
that higher LSI values farther from the drainage features 
may have resulted from anthropogenic activities in the form 
of residential construction and other infrastructure develop-
ment. The variations in the estimated distances from drain-
age features of these high LSI values were attributed to the 
effects of the two DEMs on the characterization of the land-
slide regions.

Conclusions

The accuracy of a DEM in representing the topographical 
characteristics of a given location is crucial for landslide-
related studies. In particular, the accuracy of the results in 
such analyses is significantly influenced by the variations in 
the DEM-derived parameters. Thus, this study investigated 
the variations in the spatial characterization of landslide 
locations, employing Carto-DEM Ver. 3R1 and ALOS PAL-
SAR DEM. Differences were observed in terrain feature esti-
mation by conducting spatial frequency distribution analyses 
of the geodatabases generated from these DEMs. The results 
of the analyses reveal substantial variations between the two 
geodatabases employed.

Though both DEMs exhibited comparable topographi-
cal features, discrepancies were observed upon closer scru-
tiny. Although the derived causative factors from both the 
selected DEMs successfully captured the general character-
istics of the landslide locations, the distribution of landslide-
affected areas varied significantly. A comparative analysis 
of the generated geodatabases showed that the slope gradi-
ents in the Carto-DEM geodatabase between 20° and 30° 
varied by + 7.45% and 30°–40° varied by − 19.41%, respec-
tively as compared to the ALOS PALSAR geodatabase. 
A notable difference was observed in the landslide areas 
with flat terrain, primarily because of the difference in the 
resolutions of the two DEMs. Terrain ruggedness and drain-
age features were captured fairly well by both the DEMs 

with progressively higher values of LSI being observed for 
increasing TRI values. A comparative analysis of the LSI 
values revealed significant differences in terms of slope, with 
the Carto-DEM exhibiting LSI values over 18 times larger 
than the ALOS PALSAR DEM.

The results of this study suggest that the source and reso-
lution of the selected DEMs may influence terrain feature 
estimation, thus affecting their usability in landslide-related 
studies. The choice of a suitable DEM for terrain mode-
ling and surface feature estimation may be impacted by the 
availability of data. However, the choice greatly depends 
upon the specific setting of the investigation, and it is cru-
cial to acknowledge that topographic characteristics exhibit 
considerable variation across diverse landscapes. Conse-
quently, the selection of an appropriate DEM depends upon 
the objectives of the research, the characteristics of the study 
location, and a comprehensive assessment of the employed 
models.
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