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Abstract
Air pollution is an important global environmental issue impacting public health across the world. Innovative satellite-based 
technology has revolutionized the monitoring of air pollution, enabling assessments on various scales with unprecedented 
accuracy and coverage. The study attempts to estimate the seasonal and spatial fluctuations of various gaseous pollutants 
using Sentinel-5P TROPOMI satellite images at the district level in Odisha. In order to comprehend the environmental impact 
of air pollution, an effort must be made to assess potential greenhouse gas (GHG) emissions and potential acidification 
levels in Odisha. Results showed that potential emissions of greenhouse gases vary regionally and range from 378.82 g  CO2 
equivalent/m2 to 386.22 g  CO2 equivalent/m2, while potential acidification levels range from 0.008 g  SO2 equivalent/m2 
to 0.034 g  SO2 equivalent/m2. The north-western (Jharsuguda, Sambalpur, Bargarh, Sonepur, and Sundargarh) and north-
central (Angul, Dhenkanal, and Deogarh) regions of Odisha exhibit high potential emissions of greenhouse gases and levels 
of acidification. This is attributed to comparatively higher concentrations of various pollutants stemming from sources like 
industrial and vehicle emissions. Although the satellite-based study enabled us to characterise the relative air pollution across 
the state, it necessitated a number of air pollution monitoring stations for validation purposes. A future road map to address 
climate change and environmental protection may be developed with the aid of local officials and policymakers.

Keywords Air pollution mapping · Sentinel-5P image · Greenhouse gas emission · Potential acidification · Mitigation 
strategies

Introduction

Air pollution, a critical global environmental issue, sig-
nificantly impacts public health and ecosystems world-
wide. The increasing concentration of various pollutants, 
including greenhouse gases (GHGs) and acidifying agents, 
exacerbates climate change and degrades air quality, posing 
severe risks to human health and biodiversity (Bodor et al., 
2022; Gao et al., 2022). It causes several problems to the 
vulnerable people and increases the risk of premature death 
(Agrawal et al., 2021; Hu et al., 2021a, 2021b; Miao et al., 
2022). Odisha, a state in eastern India, is no exception to 
this pressing issue. Characterized by a diverse landscape of 
industrial hubs, agricultural zones, and urban areas, Odi-
sha experiences varied levels of air pollution, necessitating 

comprehensive monitoring and assessment to devise effec-
tive mitigation strategies (OSPCB, 2021).

Recent advancements in satellite-based technology have 
revolutionized the monitoring of air pollution, offering 
unprecedented accuracy and extensive coverage (Biswal 
et al., 2020). The European Space Agency (ESA) provides an 
opportunity to researchers worldwide, enabling the detection 
of air pollutants through state-of-the-art techniques (William 
et al., 2022). Utilizing the Tropospheric Monitoring Instru-
ment (TROPOMI) for the analysis of Sentinel-5P satellite data 
enables the estimation of concentrations for various air pol-
lutants, such as aerosol index (AI), carbon monoxide (CO), 
sulfur dioxide (SO2), nitrogen dioxide (NO2), and methane 
(CH4). This data is crucial for evaluating environmental man-
agement strategies aimed at enhancing air quality and public 
health (Zheng et al., 2019). The most commonly measured 
criteria air pollutants are CO,  NO2,  SO2, ozone  O3, and par-
ticulate matter (PM) (Benchrif et al., 2021; Hashim et al., 
2021). These air pollutants have historically been released 
and continue to be released into the atmospheric air (Al-Alola 
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et al., 2022; Dutta et al., 2021). Especially, Urban and indus-
trial areas typically have higher concentrations of these pollut-
ants compared to rural regions (CPCB, 2009; Bozkurt et al., 
2018). The primary anthropogenic sources include industrial 
emissions, domestic fuel combustion, traffic emissions, coal 
mining, and agricultural waste burning, etc. (Dave et al., 2020; 
Ielpo et al., 2019; Mehta & Sharma, 2017; Sahu et al., 2020, 
2022; Zhou et al., 2021).

The concentration of various air pollutants fluctuates 
seasonally, with previous studies showing a strong correla-
tion between pollutant levels and meteorological parameters 
(Gao et al., 2022; Kim et al., 2014; Othman et al., 2013). 
Weather conditions like temperature, precipitation, humid-
ity, air pressure, wind speed, and wind direction have an 
impact on the variation in air pollution concentrations in 
the atmosphere (Deary & Griffiths, 2021). The influence of 
different meteorological parameters varies from one place 
to another (Liu et al., 2022). The use of satellite observa-
tions as a supplement to ground-based monitoring networks 
is emphasized by Zhang et al. (2019), particularly in areas 
with limited numbers of ground stations. The adaptability of 
satellite remote sensing methods, which allow for the moni-
toring of air pollution in both urban and rural locations, is 
further discussed by Liu et al. (2020). Cheng et al. (2021) 
recognize the advancements in using satellite data for air 
quality monitoring while pointing out the challenges and 
opportunities for further improvement. With the advent of 
new sensors and computing techniques, the use of satellite-
based air pollution monitoring has grown (Li et al., 2022). 
Among the available sensors, Sentinel-5P data are highly 
relevant to estimate anthropogenic emissions and designing 
future air pollution reduction strategies (Zheng et al., 2019).

To comprehend the spatial variation in air pollutant 
concentrations and the resulting environmental 
consequences, the severity of air pollution at the district 
level must be estimated. Measures such as potential 
greenhouse gas production and potential acidification 
levels can indicate the influence of air pollution in a 
warming world climate and its ability to acidify freshwater 
habitats and soil ecosystems (Babatunde et al., 2020). When 
comparing greenhouse gases, their global warming potential 
(GWP), which measures how well a gas pollutant can trap 
heat in the atmosphere compared to an equivalent amount 
of carbon dioxide, is used as a benchmark (Derwent, 2023). 
Gases such as CO,  O3,  CH4 and  CO2 have the potential to 
directly warm the global climate (Heijungs et al., 1992). 
whereas potential acidification, which is indicated by 
 SO2-equivalence, is the ability of a pollutant to acidify 
the environment (Arghya Sardar, 2015). It might have a 
significant impact on freshwater and soil ecosystems, which 
would cause a great deal of natural species to disappear (Cho 
et al., 2017). Previous research has not sufficiently addressed 
the levels of acidity and potential greenhouse gas emissions 

from common air pollutants. Therefore, this study aims to 
fill that gap using the currently available data.

Thus, it is imperative to estimate the spatial variation 
of different pollutant concentrations and assess current 
management strategies. At this outset, the present work 
involves the estimation of seasonal variation in the 
concentration of various gaseous pollutants in the ambient 
air of Odisha at the district level. It further attempts to 
identify the air pollution hot spot area using high-resolution 
Sentinel-5P satellite images in the Google Earth Engine 
platform. By analyzing these variations, the research seeks 
to provide insights into the potential concentrations of 
greenhouse gases and levels of acidification across the state. 
This type of study will present a comprehensive picture of 
the severity of the air pollution in the studied area. It may 
also assist local officials and policymakers in realising and 
understanding the state's true pollution scenario, which will 
then help them create a future roadmap to address climate 
change and environmental protection.

Study Area

Odisha, a state on the eastern coast of India (Fig. 1), has 
a total area of 155,707  km2. The state is divided into 30 
administrative geographical units called districts and 
belongs to the tropical monsoonal climate. The state expe-
riences winter, pre-monsoon, monsoon, and post-monsoon 
seasons. The total population of the state is about 4.2 crore, 
and the population density is 270 per  km2. In Odisha, urban 
areas are home to 17% of the total population. Odisha is one 
of the leading industrial and mining states in India.

Odisha is one of the industrial and mining states of eastern 
India suffering from different degrees of air pollution-related 
problems and associated hazards. In Odisha, some of the 
main sources of air pollution include intensive industrial 
emissions, coal mining, thermal plants, and vehicle 
exhaustion. Sundargarh, Angul, Jharsuguda, Keonjhor, etc. 
are the industrial regions of Odisha. In Odisha, there are 
more than 240 mines. The top mining districts in Odisha 
include Koraput, Mayurbhanj, Malkangiri, Rayagada, 
Sundargarh, Keonjhar, and Sambalpur, among others.

Data Source

The study utilized the Google Earth Engine tool for mapping 
pollution on a seasonal basis from March 2021 to Febru-
ary 2022. Sentinel-5P satellite images from the TROPOMI 
instrument have been used for this mapping purpose in this 
study. Sentinel-5P is a very high-resolution dataset that 
Google Earth Engine makes available for mapping the vari-
ous pollutants around the world. To calculate the average 
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seasonal maps for all four pollutants, various map elements 
are available for the summer, rainy, and winter seasons in 
the Google Cloud platform (Table 1).

In this study, maps depicting the average pollution concentra-
tions in Odisha during the seasons of summer (March to May), 
rainy (June to September), and winter (October to February) 
were derived and finalized on February 13, 2023.

Methodology

Seasonal Map for Various Gas Pollutants

Google Earth Engine is a powerful tool to analyse and 
visualize several geospatial datasets. A large set of global 
and regional datasets are available in its data catalogue. In 
this study, maps illustrating the concentrations of various 

gaseous pollutants were created using Sentinel-5P satellite 
data sourced from the Earth Engine cloud (refer to Fig. 2).

Various maps of intricate geospatial data can be generated 
by entering the appropriate codes into the JavaScript code 
editor console of Earth Engine. An example of preparing 
and exporting a pollution map (CO) on the Google Earth 
Engine platform is given below with JavaScript codes. Only 
the places of the given codes that are in italic style will be 
changed as per different pollutants.

Fig. 1  Location map of the study area

Table 1  Total number of satellite images available in google cloud to 
create average seasonal maps of various air pollutants (Google Earth 
Engine: Link- https:// devel opers. google. com/ earth- engine/ datas ets/ 
catal og/ senti nel- 5p)

Pollutants Summer Rainy Winter

SO2 1272 1716 2112
NO2 1272 1716 2115
CO 1273 1661 2116
O3 1273 1715 2118

Fig. 2  Flow chart for generating and extracting pollution map from 
google earth engine

https://developers.google.com/earth-engine/datasets/catalog/sentinel-5p
https://developers.google.com/earth-engine/datasets/catalog/sentinel-5p
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Potential Greenhouse Gas Concentration 
and Acidification Level

Figure 3 represents the flowchart for the concentration of 
district-wise potential greenhouse gas and potential acidi-
fication levels in Odisha. The amount of potential green-
house gas concentration is determined by the global warm-
ing potential (GWP) of the pollutant and the concentration 
amount of this particular pollutant. Various air pollutants 
are often converted into a ratio in relation to  CO2 equiva-
lents in order to determine GWP. The yearly mean potential 
greenhouse gas production per square metre area of each 

district for the months of March 2021 to February 2022 is 
estimated in this study using CO,  O3, and  NO2. The total 
area of each district is then factored into the calculation to 
determine the amount of greenhouse gas concentration on a 
district-to-district basis. Finally, district-wise total potential 
greenhouse gas concentrations are calculated by multiplying 
the emissions of all individual pollutants for each district. 
To show the potential production map of greenhouse gases 
in Odisha, Table 2 shows the likely global warming poten-
tial (GWP) of various gaseous pollutants equivalent to  CO2 
concentration for a 100-year timescale.
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The concentration of each individual acidifying gas and 
the acidifying potential of this criterion gas are used to cal-
culate the district-level mean yearly potential acidification 
level per square metre area. Next, the total geographic area 
of each district is multiplied to determine the overall acidity 
level. The acidification potential is typically calculated as a 
characterization of  SO2 equivalents, similar to how the GWP 
of various pollutants is converted to a ratio. This study used 
 SO2 and  NO2 to estimate the level of acidification. The likely 
acidification potential (AP) of  NO2, expressed in terms of 

 SO2 equivalents, is shown in Table 2 and is used to calcu-
late and visualise the geographical variation in acidification 
levels in Odisha.

Result and Discussion

Seasonal and Spatial Variation of Various Gaseous 
Pollutants in Odisha

Each criterion pollutant exhibits distinct seasonal variations 
due to its various source activities and unique interactions 
with climatic factors. Often, these source activities are 
highly concentrated in specific locations and times. 
Consequently, the geographic variations of the pollutants 
are detailed below for each individual criterion air pollutant.

Concentration of  SO2 in the Atmospheric Air of Odisha

SO2 is a toxic gas that is produced naturally through volcanic 
activity as well as anthropogenic activities such as copper 
extraction by-products and the combustion of some sulphur-
containing fossil fuels.

Fig. 3  Flow chart for computation of potential greenhouse gas concentration and potential acidification level

Table 2  GWP and acidification potential of studied air pollutants

(*Kiehl & Trenberth, 1996; IPCC, 2007; EPE, 2023 #Heijungs et al., 
1992)

Pollutants GWP  (CO2 equivalents)* Acidification 
 potential#

CO2 1 NA
CO 2 NA
O3 65 NA
CH4 21 NA
NOX NA 0.7
SO2 NA 1.0
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In this study, the Google Earth Engine tool was used to 
create maps of  SO2 concentrations to identify the seasonal 
and spatial patterns of  SO2 in the ambient air of Odisha. 
The spatial variation in  SO2 is particularly noticeable due 
to the unequal distribution of pollutant sources across the 
region. Hotspots of  SO2 concentration are aligned with 
major coal-bearing areas, such as the Angul, Jharsuguda, 
and Sundergarh districts. These districts are not only home 
to coal mines but also coal-fired power plants and other 
metallurgical industries that utilize coal from the Mahanadi 
River basin, which has a relatively high sulfur content. A 
sharp seasonal variation is found in the above maps.  SO2 
gas particles are subsidized and washed out of the atmos-
phere through the rainwater during the rainy season (Spiro-
ska et al., 2013). Therefore, the concentration of  SO2 in the 

rainy season is much lower than compared to the summer 
and winter (Fig. 4).

The states like Jharsuguda (maximum 0.00072 mol/m2), 
Sundargarh, Sambalpur (in the northern part) and Angul, 
Keonjhor, and Dhenkanal (north-central part) are charac-
terized with a comparatively high concentration of  SO2 
throughout the year due to the location of several industries, 
thermal plants, and mining places (Fig. 5). The extensive use 
of coal and diesel in commercial vehicles might be respon-
sible for it. The elevated levels of sulfur dioxide  (SO2) in 
Odisha's air pose significant risks to human health, includ-
ing respiratory and cardiovascular issues, and can cause 
eye and throat irritation (Bozkurt et al., 2018). This gas has 
the potential to combine with other airborne chemicals to 
transform into a tiny particle that can enter the lungs and 
have a similar negative impact on health (Zhou et al., 2021). 

Fig. 4  Season-wise variation of  SO2 concentration in the atmospheric air of Odisha
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Fig. 5  The district-wise concentration of  SO2 in Odisha from March 2021 to February 2022

Fig. 6  Season-wise variation of  NO2 concentration in the atmospheric air of Odisha
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According to Environmental Protection Agency (EPA)  SO2 
can indirectly influence climate change by forming aerosols 
that reflect sunlight, and its higher concentration in winter, 
combined with fog, can lead to severe air pollution episodes 
known as sulphurous smog. Environmentally,  SO2 contrib-
utes to acid rain, which harms aquatic ecosystems, forests, 
and soil health, and leads to the corrosion of infrastructure 
(Zhang, 2023). A convenient way to reduce  SOx emissions 
is to switch to low-sulfur fuels or clean high-sulfur fuels, as 
the amount of  SO2 produced is directly correlated with the 
sulfur content of the fuel (Zandaryaa & Buekens, 2009). 
Deep  SOx removal is possible using flue gas desulfuriza-
tion (FGD) and alkali sorbent injection techniques (Arghya 
Sardar, 2015).

Concentration of  NO2 in the Atmospheric Air of Odisha

Motor vehicle emissions, combustion of fossil fuels (coal, 
oil and gas), household emissions from kerosene heaters and 
stoves, chemical manufacturing, welding and emissions from 
power plants are the key sources of  NO2 in the atmospheric 
air (Zheng et al., 2019). However, thermal power plants, 
megacities, large urban areas and industrial regions remain 
the  NO2 emission hotspots (Biswal et al., 2020). Also, agri-
cultural workers may be exposed to  NO2 arising from grain 
decomposing in soils and from chemical fertilizers used in 
firms (Zhang et al., 2018). Seasonally,  NO2 concentration 
was lower during the rainy period compared to both the sum-
mer and winter seasons (Fig. 6). This is the likely result 
of NOx being reduced from atmospheric air and dissolved 
into rainwater. However, it may lead to the acidification of 
surface water bodies harming the entire aquatic ecosystem 
of the region.

In Odisha, spatial and seasonal variations of the concen-
tration of  NO2 were found during the study period. A high 
concentration of  NO2 is observed in Odisha's north-eastern 
and north-central parts throughout the entire study period 
because of the several industrial locations. Jharsuguda (max-
imum: 0.00016 mol/m2) is the leading  NO2 emitting district 
in Odisha and is followed by Dhenkanal, Angul, Sambalpur 
and Sundargarh (Fig. 7).

The main reason for the creation of  NOx pollutant 
hotspots in these regions is rapid urbanization following 
industrialization and the associated increase in transportation 
infrastructure. Long-term exposure to  NOx poses various 
respiratory threats, including asthma, to human health 
(Kampa & Castanas, 2008). Additionally, high levels of 
nitrogen dioxide not only harm foliage, reduce growth, and 
lower crop yields but also contribute to acid rain along with 
 SO2 (Nordeide et al., 2021). Utilizing low-nitrogen fuels 
is one way to reduce  NOx emissions. Altering combustion 
conditions to produce less  NOx is another option (Dutta 
et al., 2021). As stated by the World Bank, the elimination 
of NOx can be achieved through selective catalytic reduction 
(SCR) processes, one type of flue gas treatment method. 
Since 2000, India has restricted automobile emissions of air 
pollutants such as particulate matter, SOx, and NOx along 
with carbon monoxide, hydrocarbons, and methane under 
the Bharat Stage (BS) Emission Standards, which are based 
on European Union norms (Gajbhiye et al., 2023a, 2023b). 
India switched from BS-IV to BS-VI in April 2020. This 
new standard was adopted for all vehicle types and is now in 
effect nationwide in India, including Odisha (Gajbhiye et al., 
2023a, 2023b). This action will stimulate automakers to 
create and market more eco-friendly, fuel-efficient vehicles.

Fig. 7  The district-wise concentration of  NO2 in Odisha from March 2021 to February 2022
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Fig. 8  Season-wise variation of CO concentration in the ambient air of Odisha

Fig. 9  The district-wise concentration of CO in Odisha from March 2021 to February 2022



2048 Journal of the Indian Society of Remote Sensing (September 2024) 52(9):2039–2055

Concentration of CO in the Atmospheric Air of Odisha

The incomplete burning of fossil fuels due to either a lack 
of oxygen or a low gradient is the main reason behind the 
emission of carbon monoxide (Buchholz et al., 2021). CO 
emits from all combustion sources, such as power stations, 
motor vehicles, the burning of domestic fuels, and waste 
burning (Aljahdali et al., 2021; Sahu et al., 2013). It has 
a  few temporary consequences on the human breathing 
system including a reduction in oxygen carrying capacity 
of red blood cells (Pal et al., 2022).

The concentration of CO in the rainy season is compara-
tively lower than in the other two seasons (Fig. 8). There 
is less precipitation of CO, therefore mixing with cleaner 
marine air due to prevailing SW winds could be the main 
reason for lower values of CO during the  rainy season. 
(Kim et al., 2014). Throughout our study area, there is an 
unequal spatial concentration of CO. The north-western and 
north-eastern parts of Odisha are characterized with a high 

concentration of CO, while a comparatively low concentra-
tion is observed in other regions of Odisha.

District-wise variations of CO in Odisha are depicted in 
Fig. 9. Carbon monoxide (CO) can have detrimental effects 
on health by reducing the amount of oxygen delivered to the 
body's organs and tissues. Even lower levels of CO expo-
sure can lead to chest pain, difficulty in exercising, and, 
with repeated exposures, may also negatively impact the 
cardiovascular system, especially for individuals with pre-
existing heart disease (Miao et al., 2022). These effects are 
most severe for people who already have heart disease. To 
improve urban air quality, it has become a global challenge 
to control CO emissions from automobiles (Ielpo et al., 
2019). Changes in engine design, combustion conditions, 
and catalytic after-treatment can all help lower emissions 
from gasoline-powered vehicles (Dey & Dhal, 2019). Fur-
thermore, the adoption of gasoline substitutes like Com-
pressed Natural Gas (CNG) and Liquefied Natural Gas 

Fig. 10  Season-wise variation of  O3 concentration in the ambient air of Odisha
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(LNG) as fuel options is increasingly common in modern 
times.

Concentration of  O3 in the Atmospheric Air of Odisha.

Ozone is a secondary pollutant formed due to a chemical 
reaction between nitrogen oxides  (NOx) and volatile organic 
components (hydrocarbons) (Biswal et al., 2020). Ozone 
is anthropogenically formed in the atmosphere because 
of chemical reactions among various primary pollutants 
emitted from several sources, such as industrial sources, 
vehicle emissions, fossil fuel combustion, evaporation from 
paint, chemical plants and refineries (Bozkurt et al., 2018; 
Chattopadhyay & Chattopadhyay, 2009).

Long-term exposure to  O3 may cause aggravation of 
asthma and other respiratory problems. According to some 
prior studies,  O3 is one of the reasons for increasing car-
diovascular and respiratory morbidity and mortality (Brody 
et al., 2004; Kim et al., 2021). The spatial distribution of  O3 
concentration is almost uniform for each season, but sea-
sonal variation is prominent in Odisha (Fig. 10). During the 
study period, the rainy season exhibited a high concentration 
of  O3, while the winter season showed a low concentration 
(Fig. 11). Ozone is formed through an equilibrium reaction 
between  NO2 and  O2 in the presence of sunlight. In winter, 
the shorter duration of sunlight and increasing concentra-
tion of  NO2 cause the equilibrium to shift towards ozone 
dissociation.

Ground-level ozone exposure can result in serious 
health issues like sore throats, coughing, chest pain, and 
congestion. It can worsen bronchitis, emphysema, and 
asthma. Additionally, ozone can irritate the lungs' lining 
and lessen lung function (Kampa & Castanas, 2008). 
Repeated exposure can result in long-term lung tissue 
scarring. Additionally, observational studies have provided 
strong evidence linking higher daily ozone concentrations 

to increased asthma attacks, hospital admissions, daily 
mortality, and other morbidity indicators (Brunekreef, 2010; 
Miao et al., 2022). Ozone acts as a greenhouse gas in the 
atmosphere, contributing to global warming. One method to 
mitigate the effects of ozone emissions is by using cleaner-
burning gasoline reformulated to reduce VOCs, NOx, and 
other pollutants (Kumari & Toshniwal, 2020). Enhanced 
vehicle inspection programs, strict restrictions on the use 
of solvents in factories, and strict NOx emission limits 
for power plants and industrial combustion sources all 
contribute to a reduction in ozone pollution (Bozkurt et al., 
2018).

Concentration of  CH4 in the Atmospheric Air of Odisha

Methane  (CH4) emissions are produced by a variety of 
man-made and natural processes, and they all have a major 
impact on the climate and ecosystem. Wetlands are one type 
of natural source where microbial formation of methane is 
fostered by anaerobic circumstances (Ciais et al., 2013). 
Methane emissions are largely caused by human activity; 
these include burning biomass, landfills, rice paddies, agri-
culture (particularly enteric fermentation and manure man-
agement), and energy production from fossil fuels (Saunois 
et al., 2020). Industrial processes like wastewater treatment, 
coal mining, and oil and gas production also release methane 
into the atmosphere (Shindell et al., 2017). The seasonal 
and geographic variation in  CH4 concentration throughout 
Odisha is depicted in Fig. 12. It indicates that, in contrast to 
the rainy season, Odisha has witnessed a higher concentra-
tion of  CH4 throughout the winter and summer. In indus-
trial and urban areas like Rourkela, higher methane  (CH4) 
concentrations during winter can be attributed to tempera-
ture inversions trapping pollutants (Shepherd et al., 2017) 
and increased fossil fuel combustion (IPCC, 2021), limited 
atmospheric dispersion (Shindell et al., 2017). These factors 

Fig. 11  The district-wise concentration of  O3 in Odisha from March 2021 to February 2022
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Fig. 12  Season-wise variation of  CH4 concentration in the ambient air of Odisha

Fig. 13  The district-wise concentration of  CH4 in Odisha from March 2021 to February 2022
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lead to the accumulation of methane near emission sources 
and reduced atmospheric cleansing, resulting in elevated 
winter concentrations. Conversely, lower methane concen-
trations in the rainy season stem from increased precipita-
tion facilitating atmospheric scrubbing, removing pollutants, 
including methane, from the air (Baker et al., 2016).

This seasonal pattern reflects the interplay between 
anthropogenic emissions, atmospheric conditions, and natu-
ral cleansing processes in industrialized and urban environ-
ments. Spatially, a high concentration of  CH4 is observed 
in Odisha's north-eastern and western parts throughout the 
entire winter and summer because of the combination of 
industrial, urban, agricultural, and geographical factors, 
along with meteorological conditions. District-wise, Jag-
atsingpur is the leading  CH4 emitting district in Odisha 
and is followed by Puri, Bhadrak, Khorda and Sundargarh 
(Fig. 13).

Methane emissions cause a variety of detrimental 
consequences, such as a potent greenhouse effect that 
intensifies air pollution, amplifies climate change, and 
creates ground-level ozone (IPCC, 2021). Methane 
emissions lead to ocean acidification and impose a financial 
burden due to climate-related impacts (Shindell et al., 2017). 
Minimizing methane emissions is crucial for mitigating 
climate change effects. Steps such as enhancing waste 
management, transitioning to renewable energy sources, and 
deploying methane capture systems across various industries 
are essential for achieving this goal.

District Level Air Pollution Severity of Odisha

To illustrate the severity of air pollution at the district 
level in Odisha, calculations were performed to determine 
the potential levels of acidification and greenhouse gas 
production. The rapid growth of urbanization, widespread 
industrial production, increased traffic volume, and various 
socioeconomic activities are leading to a quick rise in 
atmospheric gas pollution concentrations. This trend poses 
a serious threat to public health globally (Adam et al., 2021; 
Hu et al., 2021a, 2021b). Understanding the impact of air 
pollutants on the natural environment can be improved 
through estimates of potential quantities of acidification and 
greenhouse gas generation that may occur.

Potential Green House Gas Concentration

The parameter of Potential Greenhouse Gas Production 
quantifies the contribution of each air pollutant to global 
warming on a relative scale. It is determined by the Global 
Warming Potential (GWP) and pollutant concentration. 
GWP measures a greenhouse gas's ability to trap heat 
compared to  CO2 and indicates its atmospheric lifetime. 
While some pollutants have higher GWPs than others, 
it's important to consider both GWP and emissions levels 
to understand their overall impact on global warming. 
Figure 11 shows the total output of greenhouse gases and the 
average district-level concentration of potential greenhouse 
gases per square metre of land.

Each district's potential greenhouse gas concentration per 
square metre is shown as coloured patches, and the overall 

Fig. 14  District level green-
house gas concentration of 
Odisha
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emissions for each district are shown as bars inside the pol-
ygons (Fig. 14). In Odisha, the concentration of potential 
greenhouse gases varies spatially and ranges from 384.43 g/
m2 to 390.85 g/m2. This research revealed that due to high 
pollution concentrations from numerous sources, including 
industries, automobiles, and mining locations, districts like 
Jharsuguda, Sundargarh, Sambalpur, Deogarh, Balasore, 
and Bhadrak had a greater value of potential greenhouse 
gas concentration. Koraput, Rayagada, Malkangiri, Ganjam, 
Gajapati, Kandhamal, and Nabarangpur are just a few of the 
south and southwest states of Odisha that have relatively 
lower rates of potential greenhouse gas concentration per 
square metre area. In contrast, the vast geographic areas of 
Mayurbhanj, Sundargarh, Koraput and Rayagada districts 
contribute significantly to the higher greenhouse gas con-
centrations. Mayurbhanj district exhibits the highest annual 
greenhouse gas concentration, totaling 4.07 megatons. Con-
versely, the comparatively smaller geographical area of Jag-
atsinghpur results in the lowest greenhouse gas emissions, 
amounting to 0.65 megatons.

Potential Acidification Level

The concentration of acidifying gas constituents and the 
acidification potential of any specific gas pollutant are both 
directly correlated with the potential acidification level. The 
chemicals  SO2,  NOx, NO, and  NO2, which are precursors 
to acid rain, can be used to calculate the levels of acidifica-
tion. It is one of the core environmental impact indicators 
(Cho et al., 2017). Given that  SO2 and  NO2 are the primary 

air pollutants responsible for the occurrence of acid rain, 
these two are being considered when estimating the level of 
acidification in the study by Arghya Sardar (2015). A colour 
patch map shows the potential acidification level per square 
metre for each district, and bars inside polygons show the 
total acidification level for each district (Fig. 15).

The north-western (Jharsuguda, Sambalpur, Bargarh, 
Sonepur, and Sundargarh) and north-central (Angul, 
Dhenkanal, and Deogarh) regions of Odisha exhibit high 
potential acidification levels per square meter due to 
comparatively higher  SO2 and  NO2 emissions from various 
sources like industrial and vehicle emissions. Conversely, 
districts in south-western Odisha such as Koraput, Rayagada, 
Malkangiri, Ganjam, Gajapati, and Nabarangpur have the 
lowest acidification levels, primarily due to their significantly 
lower concentrations of  SO2 and  NO2 in the atmosphere. 
Figure 12 illustrates that Sundargarh district, Angul, and 
Sambalpur have the highest overall acidification levels (170 
tonnes each) due to their high  SO2 and  NO2 emissions and 
extensive geographic coverage, while Jagatsinghpur, with 
limited geographic area and low pollution concentrations, 
has the lowest total acidification level (21 tonnes).

There are a few limitations of the present study. One 
of the limitations of this study is the reliance on satellite 
data alone for mapping air pollution concentrations. While 
satellite imagery provides valuable insights into the spatial 
and seasonal variations of pollutants, it may not capture 
ground-level details accurately. Ground-level monitoring 
stations and data collection could further validate the 
findings and provide a more comprehensive understanding 
of air quality dynamics in Odisha.

Fig. 15  District wise potential 
acidification level of Odisha
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Conclusion

The study provides valuable insights into the seasonal and 
spatial variations of air pollution in Odisha using innovative 
satellite-based technology. Through the analysis of 
Sentinel-5P TROPOMI satellite images, the study estimates 
the concentrations of various gaseous pollutants at the 
district level, shedding light on the environmental impact of 
air pollution. The result revealed that, compared to the other 
two seasons, the rainy season has a lower concentration of 
 SO2,  NO2, CO, and  CH4, but the winter season has a lower 
concentration of pollutants than the other two seasons for 
 O3. The results also reveal that certain regions in Odisha, 
particularly the north-western (Jharsuguda, Sundargarh, 
Sambalpur, and Bargarh) and north-central parts (Angul, 
Keonjhor, Dhenkanal, and Deogarh), exhibit higher 
concentrations of pollutants such as  SO2,  NO2, CO, and 
 O3. This is attributed to factors like industrial emissions, 
coal mining activities, and vehicular exhaust. The potential 
greenhouse gas emissions vary across districts, ranging from 
384.43 g/m2 to 390.85 g/m2, with districts like Jharsuguda, 
Sundargarh, and Sambalpur showing higher emissions due 
to industrial and vehicular sources. Similarly, the potential 
acidification levels also vary, with high levels observed in 
regions with significant industrial activities. Addressing 
these air pollution challenges requires coordinated 
efforts from policymakers, industries, and communities. 
Implementing cleaner technologies, promoting sustainable 
practices, and enhancing monitoring and enforcement 
mechanisms are crucial steps towards mitigating air pollution 
and safeguarding public health and the environment in 
Odisha. This study underscores the importance of leveraging 
advanced technologies like satellite-based mapping to 
better understand and address environmental challenges, 
paving the way for informed decision-making and effective 
pollution control strategies.
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