
Vol.:(0123456789)

Journal of the Indian Society of Remote Sensing (June 2024) 52(6):1223–1243 
https://doi.org/10.1007/s12524-024-01873-7

RESEARCH ARTICLE

Data Integration by Fuzzy Logic for Mineral Prospectivity Mapping 
in Ferdows–Gonabad–Bajestan Belt, Khorasan Razavi Province, Iran

Zohreh Arjmand Lary1 · Mehdi Honarmand1   · Hadi Shahriari2   · Mahdieh Hosseinjani Zadeh1 

Received: 27 August 2021 / Accepted: 16 April 2024 / Published online: 15 May 2024 
© Indian Society of Remote Sensing 2024

Abstract
This research aims to specify the mineral prospects in the Ferdows–Gonabad–Bajestan belt (FGBB), Iran, using fuzzy logic. 
Geology, geochemistry, and remote sensing data were utilized to produce a mineral prospectivity map (MPM). ASTER 
images were analyzed using spectral angle mapper (SAM) and linear spectral unmixing (LSU) methods to enhance hydro-
thermal alterations. The faults were derived from Sentinel-2A and SPOT5 images. Weighted maps of the intersection of 
faults and intrusive contacts, proximity to faults, and photolineament factor (PF) were performed to build the geological 
structures layer. Regional geology and stream sediment geochemistry maps were performed to produce corresponding evi-
dential layers. Four evidential layers including geology, hydrothermal alteration, geological structures, and geochemistry 
were defined based on the knowledge of experts. Evidential layers were integrated using the fuzzy gamma operator to create 
the MPM. Accordingly, seven zones with high favorability were identified. Zones A, B, and C are recommended as high 
potential through field observation, laboratory studies, and Fuzzy logic integrating approach. The ICP-MS result indicated 
low grades of Cu and high grades of Pb, Zn, and Fe in carbonate, rhyolite, and tuff rocks as a sign of polymetallic miner-
alization in the FGBB. Results showed that altered intrusive rocks should receive the highest weight in the fuzzy geology 
layer. A combination of LSU and SAM methods could accomplish hydrothermal alteration mapping with high accuracy. PF 
analysis, when coupled with the intersection of faults and intrusive rocks, provides the necessary information to accurately 
produce a geological structure layer.

Keywords  Mineral prospectivity map (MPM) · Photolineament factor (PF) · Stream sediment geochemistry · Fuzzy logic · 
Hydrothermal alteration · Ferdows–Gonabad–Bajestan belt (FGBB)

Introduction

Mineral exploration requires a comprehensive approach to 
identify mineral indices, mainly in a large area. The exist-
ence of various conceptual models of mineral deposits, a 
variety of quantitative and qualitative data, and different 
expert opinions complicate the process of mineral prospec-
tivity mapping and mineral exploration targeting (Yousefi 
et al., 2021). Mineral reserve mapping models are divided 
into three groups: knowledge-driven, data-driven, and hybrid 
methods (Carranza, 2017; Ghezelbash et al., 2021; Nykänen 
et al., 2008). Among the knowledge-driven techniques, the 
fuzzy logic method is often used due to the high impact of 
expert opinion on preparing the mineral prospectivity map 
(MPM) (Wambo et al., 2020; Yousefi & Carranza, 2017; 
Yousefi et al., 2013). Fuzzy logic is a scientific tool that has 
dynamically simulated a system possible without needing 
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detailed mathematical descriptions and using qualitative and 
quantitative data (Phillis & Andriantiatsaholiniaina, 2001).

Fuzzy logic has been successfully applied for integrat-
ing mineral exploration data to produce MPMs (e.g., Car-
ranza, 2008, 2021; Carranza & Hale, 2001; Esmaeiloghli 
et al., 2021; Ford et al., 2016; Kashani et al., 2016; Pahlavani 
et al., 2020; Yousefi & Carranza, 2017; Yousefi et al., 2013). 
The high amount of input data leads to having more reli-
able results for making vital decisions in mineral exploration 
programs. Hence, geographic information system (GIS) plat-
forms use various geo-datasets to establish a geo-database. 
At the regional scale, input data include geological maps, 
remote sensing data, geochemistry maps, and geophysical 
data (e.g., Carranza, 2008; Moradpour et al., 2021; Pahla-
vani et al., 2020).

Remote sensing technology has been widely employed 
in geological and mineral exploration by imaging differ-
ent portions of the electromagnetic (EM) spectrum (e.g., 
Lyon & Lee, 1970; Goetz, 1983; Legg, 1994; Sabine, 1999; 
Roonwal, 2018). Thanks to worldwide coverage, spaceborne 
multispectral and hyperspectral sensors with different spa-
tial resolutions are used for regional-scale mineral explora-
tion through a very time- and cost-effective procedure (e.g., 
Mahanta & Maiti, 2018; Manuel et al., 2017). Advanced 
Spaceborne Thermal Emission and Reflection Radiometer 
(ASTER), Landsat TM/ETM +/OLI, and Sentinel with 
medium spatial resolution have been successfully performed 
to provide vital information about the geological structures, 
lithology, and alterations in recent years (Abrams & Yama-
guchi, 2019; Adiri, 2020).

Fig. 1   a Location of the study area along with the Lut block (Aghanabati, 2006), and b Geological map of the study area (Aghanabati, 2006)
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Stream sediment geochemistry is an effective technique 
for finding clues of concealed mineral deposits in areas with 
well-developed stream drainage networks. The method has 

been established to detect the composite products of an 
eroded and weathered probable ore body or its geochemical 
halos in downstream sediments (e.g., Behera & Panigrahi, 

Fig. 2   Workflow of the research

Fig. 3   Spectral reflectance curves of index minerals of hydrothermal alteration zones in the FGBB (ASTER bands are shown). (1) Muscovite 
and calcite, (2) Kaolinite, (3) Muscovite, (4) Calcite, (5) Kaolinite, and (6) Calcite and muscovite
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2021; Sadeghi et al., 2015; Zuluaga et al., 2017). Based on 
the supposed deposit type, geochemical evidence layers are 
formed and integrated to create the mineral prospectivity 
map of the study area (Pahlavani et al., 2020; Yousefi et al., 
2012, 2013). The stream sediment geochemistry maps have 
the appropriate extent for participating in data integration 
with other exploratory layers in the regional-scale investi-
gation (e.g., Carranza & Hale, 1997; Ghasemzadeh et al., 
2019; Saadati et al., 2020).

Ferdows–Gonabad–Bajestan belt (FGBB) situated in 
the south of Khorasan Razavi Province, Iran, is selected as 
the study area. This metallogenic belt was affected by vol-
canic activities in the Tertiary and Quaternary. The litera-
ture review indicated no systematic studies for prospecting 
mineral deposits. This research is performed to build the 
MPM of the FGBB. The fuzzy logic is used for integrating 
the exploratory geo-datasets. Geological maps, satellite data 
(ASTER, SPOT5, and Sentinel-2A), and stream sediment 
geochemistry maps are employed in the fuzzy logic method. 
The established MPM is validated through field and labora-
tory studies.

Geological Settings

Lut block, with a length of 900 km, is located between the 
Nayband fault in the west and the Nehbandan fault in the east 
(Fig. 1a). This block is bounded by the Dorouneh fault in the 
north and the Jazmurian depression in the south, which is 
the forearc basin of the Makran subduction zone. Extensive 
volcanic activities of the Tertiary and Quaternary ages and 
recent earthquakes with faulting in Quaternary deposits are 
examples of the Lut block dynamics (Aghanabati, 2006). 
Mineralization in the Lut block has been suggested to be 
associated with either the intrusion of granite, diorite, or 
tertiary volcanic rocks. The northern Lut magmatic cycle has 
continued from the Late Cretaceous to the Late Oligocene. 
An assemblage of intrusive, semi-intrusive, and pyroclastic 
igneous rocks such as basaltic, andesitic, dacite, rhyolitic, 
tuff, and semi-deep lavas was created during the magmatism. 
Several mineral deposits and indices such as polymetallic 
deposits of copper, lead, zinc, antimony, mercury, and gold 
of vein and porphyry types have been reported in this region 
(Jung et al., 1983; Tarkian et al., 1983, 1984).

The study area was situated in the highlands of FGBB 
in the south of Khorasan Razavi Province and north of Lut 

Fig. 4   Hydrothermal alteration mapping by a LSU, and b SAM methods using ASTER SWIR bands

Table 1   Accuracy assessment 
of LSU and SAM methods 
in mapping hydrothermal 
alterations

Alteration class Phyllic Argillic Propylitic Unaltered Total User Acc (%)

Phyllic 14 2 0 1 17 82.35
Argillic 1 11 0 1 13 84.62
Propylitic 0 1 16 3 20 80.00
Unaltered 3 0 3 21 27 77.78
Total 18 14 19 26 77 100
Prod. Acc (%) 77.78 78.57 84.21 80.77 100 80.33
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block. The lithology includes igneous (mainly andesite, 
phyllite, and rhyolite), sedimentary (mainly limestone, 
dolomite, sandstone, and conglomerate), and metamorphic 
(quartzite) rocks (Fig. 1b).

Data and Methods

In this research, three datasets including geological maps, 
satellite images, and stream sediment geochemistry data, 
provided information for creating the MPM (Fig. 2). Satel-
lite data of ASTER (L1B product), SPOT5, and Sentinel-2A 
were analyzed using ENVI 5.3 software. The preprocess-
ing procedure included crosstalk (only applied to ASTER 
shortwave infrared bands), atmospheric, and geometric cor-
rections. Hydrothermal alterations were enhanced using the 
SAM and LSU methods. Geological structures like faults 
and fractures are considered as potential localities for min-
eralization. As a result, structural lineaments were extracted 
from high-resolution SPOT 5 and Sentinel-2A images and 
were analyzed using the photolineament factor (PF) analysis. 
Geological units and lineament features were extracted from 
geological maps in ArcGIS 10.3 software. Stream sediment 

geochemistry data were analyzed using SPSS software ver-
sion 21.0 to form the geochemistry evidence layer. Integrat-
ing the exploratory geo-datasets was performed in ArcGIS 
10.3 software to build the MPM of the study area (Fig. 2). 
Fieldwork and laboratory studies were conducted to validate 
the results.

Data

Advanced Spaceborne Thermal Emission and Reflection 
Radiometer (ASTER) Data

ASTER is one of the five TERRA satellite sensors launched 
by NASA in 1999 (Abrams & Yamaguchi, 2019). It has a 
spatial resolution of 15, 30, and 90 m in the visible/near-
infrared (VNIR), shortwave infrared (SWIR), and thermal 
infrared (TIR) bands, respectively. Six SWIR (2–3 µm) and 
five TIR bands (8–12 µm) provide suitable spectral reso-
lution for mineral and geological mapping (e.g., Abrams 
& Yamaguchi, 2019; Wambo et al., 2020). ASTER SWIR 
bands were used in this research.

Fig. 5   a Final map of the extracted faults in the study area, b Fuzzy map of proximity to faults, c Fuzzy map of intersection of faults and intru-
sive contacts, and d Fuzzy PF map of faults in the study area
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Satellite Pour L’observation De La Terre 5 (SPOT5) Data

SPOT stands for satellite pour l’observation de la terre, 
meaning the earth observation satellite initiated by CNES 
in France and developed in collaboration with Belgium and 
Sweden. The last member of the SPOT series, i.e., SPOT 7, 
was launched into orbit in 2014; three of these satellites are 
currently imaging. SPOT 5 was launched on May 4, 2002, 
and can acquire images with the spatial resolution of 2.5, 
5, and 10 m. It has three bands in the visible spectrum with 
a spatial resolution of 10 m, one SWIR band with a spatial 
resolution of 20 m, and one panchromatic band with a spatial 
resolution of 2.5 or 5 m (Toutin, 2004). Due to its high spa-
tial resolution, its data were used to identify lineament fea-
tures in the study area and perform the lithological mapping.

Sentinel‑2A Data

Sentinel-2 is a part of the Copernicus program designed 
and developed by the European Space Agency (ESA) to 
collect data from the earth’s surface. The sentinel-2 mis-
sion comprises two imaging satellites, namely Sentinel-2A 
and Sentinel-2B. Sentinel-2A is currently in  orbit and cap-
tures images with a spatial resolution of 10–60 m through 
13 spectral bands in the visible, NIR, and SWIR spectral 
ranges (Drusch et al., 2012). The Sentinel-2A images are 
used for geological and structural mapping thanks to a vari-
ety of spectral bands.

Geological Maps and Geochemical Data

Small-scale geological maps are generally available 
and provide helpful information for constructing a geo-
database in mineral exploration campaigns. Geological 
maps offer some primary data, such as geological units 
and regional structures. They are conventionally modified 
based on analyzing remote sensing data. In this research, 
geological maps (at the scale of 1:100,000) of Gonabad, 
Ferdows, Taherabad, Mahneh, Bajestan, and Qasemabad 
(Prepared by the Geological Survey of Iran-GSI) were 
used.

Many countries have undertaken regional stream sedi-
ment geochemical surveys to prepare base geochemistry 
maps for developing mineral exploration on a regional 
scale (Ranasinghe et al., 2008). Stream sediment geochem-
istry maps can offer a general scheme for the geochemical 

distribution pattern of elements in the region. In Iran, GSI 
is responsible for preparing stream sediment geochemistry 
maps at the scale of 1:100,000 and smaller scales. Thus, 
stream sediment geochemistry maps of Gonabad, Ferdows, 
and Taherabad (at a scale of 1:100,000) were used to per-
form geochemical studies.

Methods

Spectral Properties of Hydrothermal Alteration Index 
Minerals

Hydrothermal alteration halo is one of the most impor-
tant clues of possible mineralization. It is considered 
an exploratory target in mineral exploration campaigns. 
Some of the minerals of hydrothermal alteration zones 
exhibit spectral features that could be recognized by air-
borne/spaceborne remote sensing sensors (e.g.; Abrams & 
Yamaguchi, 2019; Adiri et al., 2020; Roonwal, 2018). Clay 
minerals (argillic alteration), sericite (phyllic/sericitic 
alteration), and chlorite-epidote-calcite (propylitic altera-
tion) present absorption/reflection features in the SWIR 
portion of the electromagnetic spectrum (Gupta, 2003). 
The clay minerals, sericite, chlorite, epidote, and calcite 
show high reflection in ASTER band 4. Illite and seric-
ite/muscovite display an absorption feature at 2.20 μm in 
ASTER band 6 due to the presence of Al–OH and another 
absorption with less intensity near 2.38 μm in ASTER 
band 8 (Fig. 3) (Gupta, 2003; Hunt, 1977; Hunt & Ashley, 
1979). Fe-oxyhydroxides minerals of phyllic and argillic 
zones, including jarosite, goethite, and hematite show 
spectral absorption near 0.44 μm in the visible region. 
Electronic processes of the elements such as Cr, Mn, 
Fe3+, Fe2+, and Ni in the crystal structure of these miner-
als cause spectral properties in the visible and NIR ranges 
(0.4–1.1 μm) (Fig. 3) (Hunt, 1977; Hunt & Ashley, 1979). 
In the argillic alteration zone, montmorillonite displays 
an absorption feature at 2.20 μm due to the presence of 
Al–OH (Hunt, 1977; Hunt & Ashley, 1979). In addition, 
Al–OH causes two spectral features in the kaolinite spec-
trum. The first absorption feature is observed at 2.20 μm 
in ASTER band 6 and the second absorption is found at 
2.17 μm in ASTER band 5 (Fig. 3). A mineral assemblage 
consisting of carbonates (calcite and dolomite), epidote, 
and chlorite in the propylitic alteration zone shows spec-
tral absorption at 2.33–2.35 μm in ASTER band 8 due to 
the molecular vibrations caused by Mg–OH, Fe, and CO3 
(Fig. 3) (Hunt, 1977; Hunt & Ashley, 1979). Index min-
erals of silica alteration (mainly quartz), have minimum 
emission in ASTER bands 10 and 12 and maximum emis-
sion in ASTER bands 13 and 14 in the TIR range (Gupta, 
2003; Hunt, 1977; Hunt & Ashley, 1979).

Fig. 6   a Waterway network and the location of stream sediment sam-
ples, b Catchment basins and the location of stream sediment samples 
on waterways; stream sediment geochemistry maps of c As, d Au, e 
Cu, f Mo, g Pb, and h Zn in the FGBB

◂
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Spectral Angle Mapper (SAM)

SAM is a supervised classification technique that maps 
the objects based on the degree of similarity between the 
image and reference spectra (Kruse et al., 1993). It calcu-
lates the angle between the reference and image spectra 
vectors in an n-dimensional (n-D) space. The smaller angle 
between these two vectors indicates more similarity. The 
user defines a threshold angle to classify the pixels based 
on the calculated angle (Kruse et al., 1993; Noori et al., 
2019). Laboratory/field measurements, digital spectral 
libraries, or spectral profiling of the known points on the 
image are sources of preparing the reference spectrum. 
Typically, the image spectrum is employed to increase 
the result accuracy. Library spectra obtained from pure 
samples in the laboratory are inconsistent with the actual 
spectra due to impurities in the rocks.

Linear Spectral Unmixing (LSU)

LSU determines the relative frequency of materials based on 
their spectral properties in multispectral images. The reflec-
tion of an image pixel is assumed to be the linear propor-
tional combination of all the feature reflections at that pixel. 
The results of the spectral unmixing are in the form of a 
series of gray-scale images. Moreover, a root mean square 
(RMS) error image is generated. Brighter pixels indicate 
the higher frequencies and errors for the RMS error image. 
The results of this spectral technique depend on the input 
members, the variation of which changes the results. The 
LSU method has been successfully used for mineral map-
ping (Hubbard & Crowley, 2005; Sekandari, et al. 2020).

Structural Data Analysis

Enhancing the geological structures is an essential part of 
remote sensing studies for mineral exploration applications. 
Structural analysis commonly includes intrusive contacts, 
fault density, fault intersections, and proximity to faults in 
mineral exploration targeting. Yousefi and Hronsky (2023) 
introduced a more efficient factor as the intersection of faults 
and intrusive contacts in preparing MPM. Such intersections 

Fig. 7   The scheme for integrating data and assigned weights of layers to create the MPM in the study area
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Fig. 8   Fuzzy geo-datasets for data integration to establish the MPM in the FGBB: a geology layer, b alteration layer, c Geological structures 
layer, and d geochemistry layer

Fig. 9   MPM of the FGBB and high potential localities for focusing mineral exploration activities
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can facilitate the passage of ore-forming metalliferous fluids 
and increase the efficiency of the ore mineralization pro-
cedure. In this study, three individual layers including the 
intersection of faults and intrusive contacts, the proximity 
of fault (by considering a buffer), and fault density (using 
photolineament factor) were employed to build the ultimate 
structural layer. Photolineament factor (PF) is a function 
of the number, length, and intersection of lineaments (e.g., 
faults). That is usually applied for analyzing lineaments in 
remote sensing studies for mineral exploration objectives. To 
calculate the PF, a rectangular network is used. PF is calcu-
lated for each network cell according to Eq. 1 (Hardcastle, 
1995; Hardcastle et al., 1997):

where ‘a’ is the number of faults per cell, ‘A’ is the mean 
number of faults in the whole network, ‘b’ is the fault length 
per cell, ‘B’ is the mean length of all the faults, ‘c’ is the 
number of fault intersections per cell, and ‘C’ is the mean 
fault intersection in all cells with fault intersections. PF val-
ues are calculated for the center of each cell and, then, inter-
polated by the inverse distance weighting (IDW) method.

Directional filters at 45 and 90 degrees and the Sobel 
filter were employed to detect lineaments with specific 
trends in Sentinel-2A and SPOT 5. After plotting the 
faults, ArcGIS software was performed to draw a rectan-
gular network with the dimension of 5000 m × 5000 m. For 
each cell, the number and length of faults, as well as the 
number of fault intersections, were determined for calcu-
lating the PF. The geological structures layer was created 
from the results of PF analysis.

Geological and Geochemical Data Analysis

Geological maps of Gonabad, Ferdows, Taherabad, Mah-
neh, Bajestan, and Qasemabad were digitized to extract 
geological units and regional faults. The regional faults 

(1)PF =
a

A
+

b

B
+

c

C

were used in structural analysis. Stream sediment geo-
chemistry data was derived by digitizing Gonabad, Fer-
dows, Taherabad, Mahneh, Bajestan, and Qasemabad geo-
chemistry maps. Discrimination of geochemical anomalies 
related to ore mineralization from the background is a 
challenging task (Carranza & Hale, 1997; Ghasemzadeh 
et al., 2019). This challenge has encouraged researchers to 
improve approaches for defining the best threshold value. 
These approaches are classified into frequency-based 
and spatial frequency-based techniques (e.g., Chipréset 
al., 2009; Ghasemzadeh et al., 2019; Yang et al., 2015). 
Ore-forming processes control the spatial distribution of 
elements and minerals that must be understood through 
geochemical exploration campaigns (Esmaeiloghli et al., 
2021). Multivariate analysis can help specify the multi-
element anomalous signature of mineral deposits (Yousefi 
et al., 2012). Factor analysis has been successfully used 
for multivariate analysis of stream sediment geochemical 
data (e.g., Borovec, 1996; Helvoort et al., 2005; Reimann 
et al., 2002; Yousefi et al., 2012, 2014). This method can 
determine the inherent variability in stream sediment data 
using a set of elements depending on the mineral deposit-
type sought (Yousefi et al., 2012). In this research, factor 
analysis was used for discriminating anomalous areas for 
Au, Ag, As, Co, Cu, Fe, Mo, Pb, V, and Zn elements.

Fuzzy Logic

Fuzzy logic can express the degree of certainty or accu-
racy of a statement by a number between 0 and 1 where a 
value of 0 represents full non-membership and a value of 1 
represents full membership. Experts assign a fuzzy mem-
bership (Fuzzy score) between 0 and 1 to any evidential 
layer based on the supposed ore deposit. After assigning 
fuzzy scores, PMP is built using fuzzy logical operators 
such as AND, OR, NOT, and gamma (Bonham-Carter, 
1994; Carranza & Hale, 2001). In this study, the OR oper-
ator was used to combine geochemical maps of Au, Ag, 

Table 2   Chemical analysis of 
rock samples using the ICP-MS 
method

Zone Element (ppm)

Ag As Co Cu Fe Mo Pb V Zn

A 7.80 50.00 3.00 788.40 18,560.00 38.10 14,540.00 4.30 38,820.00
A 39.10 33.50 1.30 782.50 20,320.00 6.40 51,690.00 10.40 41,610.00
B 0.40 709.00 1.00 8.00 2960.00 2.40 31.00 2.00 198.00
B 0.20 574.00 39.40 15.80 289,700.00 9.00 94.20 1004.00 1133.00
C 7.20 2.40 2.10 37.60 445.00 3.80 7467.00 3.60 586.00
C 0.70 11.00 17.70 2.40 42,740.00 3.20 1.50 9.00 194.00
D 4.00 33.00 5.30 1.00 17,658.00 6.60 322.00 36.00 52.00
D 0.20 8.00 3.70 18.00 25,194.00 0.60 13.00 2.00 38.00
E 0.10 2.50 16.30 3.30 51,780.00 5.10 10.50 9.60 121.00
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Fig. 10   a Silicic vein in zone A, b Thin section of a lithic tuff shows sericite (Ser), opaque (Op), and quartz (Qz) minerals, c Result of XRD 
analysis
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As, Co, Cu, Fe, Mo, Pb, V, and Zn elements. The gamma 
operator was performed to integrate all the evidential lay-
ers for establishing the MPM of the study area.

Fieldwork and Laboratory Studies

Field investigation and laboratory studies were conducted 
for anomaly checking and result validation. Fieldwork 
included taking photos, GPS readings, and rock sampling. 
Rock samples were utilized for spectroscopy study using 
a FieldSpec3® spectroradiometer. As a result, a spectral 

Fig. 11   a General view of zone B along with an image of the slags found in zone B, b Thin section of a basalt contains plagioclase (Pl), opaque 
(Op), and quartz (Qz) minerals, c Result of XRD analysis
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library was formed to be used in the image processing stage. 
A petrographic study was performed by thin section and 
XRD analysis. Rock samples of anomalous areas were ana-
lyzed using the ICP-MS method.

Results and Discussion

Hydrothermal Alteration Layer

Outcrops of volcanic rocks are seen with the northwest-
southeast strike. These rocks are affected by various types 
of hydrothermal alteration. Determining the types of hydro-
thermal alteration is essential to assign an appropriate fuzzy 
score for creating the hydrothermal alteration layer. Phyllic 
and argillic alterations usually have a higher potential of 
hosting metallic mineralization.

Figure 3a shows the results of image classification of 
ASTER SWIR bands using the LSU method. The propy-
litic alteration zone was enhanced by epidote and chlorite 
mineral spectra. Volcanic, andesitic, and rhyolitic units 
are usually affected by propylitic alteration in the region 
(Figs. 1 and 4a). Comparing Figs. 1 and 4a indicates that 
the phyllic alteration zone covers granitic, microgranitic, 
quartz monzonitic, rhyolitic, andesitic, dacitic, and trachy-
andesitic lithologies. Argillic alteration is observed in gra-
nitic, microgranitic, quartz monzonitic, rhyolitic, acidic tuff, 
and trachyandesitic units (Figs. 1 and 4a).

Figure 3b shows the hydrothermal alterations detected by 
the SAM method in the study area. Laboratory spectra taken 
from the rock samples were used as the reference spectra. 
The yellow parts represent argillic and phyllic alterations, 
which were found in granitic, dacitic-andesitic, quartz mon-
zonitic, and trachyandesitic units. Propylitic alteration was 
observed in the areas with andesitic lithology (Figs. 1 and 
4b).

Hydrothermal alteration zones presented in Fig. 4 were 
verified through fieldwork and laboratory studies. The result 
showed that the LSU method enhanced phyllic, argillic, and 
propylitic alterations more accurately than the SAM method. 
SAM method specified carbonate units more accurately, 
especially in the north of the study area (Fig. 4b). Thus, 
phyllic, argillic, and propylitic alteration classes obtained 
from the LSU method and a class containing carbonate 
occurrences enhanced by the SAM method were selected to 
create the hydrothermal alteration layer. Table 1 shows the 
accuracy assessment of hydrothermal alteration mapping by 
LSU and SAM methods.

Geological Structures Layer

Faults and fractures are considered suitable channels for cir-
culating hydrothermal solutions, resulting in the dissolution 

of elements and their redistribution in the form of various 
minerals in the earth’s crust. Studying hydrothermal altera-
tions and their relationship with faults is of great importance 
to specify zones with high potential for metallic mineraliza-
tion. Sentinel-2A and SPOT5 images were used to extract 
the structural lineaments using two-directional filters at 45 
and 90 degrees and one non-directional Sobel filter. Accord-
ingly, most of the faults had the northwest-southeast strike 
in the study area (Fig. 5a). The intersection of faults and the 
intersection of faults and intrusive contacts are presented 
in Fig. 5a. Faults can affect the adjacent area by injecting 
fluid flux through lateral fractures. The proximal area around 
the faults, thus, was attended by considering a buffer in the 
study area (Fig. 5b). The faults, the intersection of faults, 
and the intersection of faults and intrusive contacts define 
high-permeability areas for directing fluid flux. Figure 5c 
shows the Fuzzy map of the intersection of faults and intru-
sive contacts in the FGBB. In order to emphasize the den-
sity of faults in the study area, the PF map was built using 
the number, length, and intersections of faults. The PF map 
created by interpolating PF values using the IDW method 
shows the areas with the highest rate of fault density in the 
light color in Fig. 5d.

Geology and Geochemistry Layers

FGBB is a far and rugged terrain that caused it to remain 
geologically unknown. No major metallic mine is in work 
and mining activities are limited to the excavation of some 
non-metallic mines. Volcanic activities in FGBB occurred 
in the Tertiary and Quaternary. Intrusive bodies usually 
have experienced a degree of hydrothermal alteration 
in the study area. To reconstruct the evidential geology 
layer, it is essential to define the appropriate weight for 
each geological unit. The highest weight was assigned 
to altered intrusive rocks that have a higher potential for 
hosting metallic mineralization. Unaltered intrusive and 
volcanic rocks received high to medium weights. Some 
carbonate units were enhanced using ASTER images in 
the study area (Fig. 4b). The proximity of volcanic rocks 
to carbonate rocks may have contributed to Zn–Pb min-
eralization in the study area. Thus, a medium weight was 
assigned to carbonate rocks. Low weights were assigned 
to sedimentary rocks.

ArcGIS software was used for digitizing stream sedi-
ment geochemistry maps. Catchment basins and waterway 
network of the study area were created (Figs. 6a and b). 
The background, threshold value, and anomaly were sep-
arately determined for Au, Ag, As, Co, Cu, Fe, Mo, Pb, 
V, and Zn elements. Some of the geochemistry maps are 
provided in Fig. 6. High values of Fe, Pb, and Zn were 
detected, while Cu, Co, and Au presented low values. Arc-
GIS software helped to compare geochemistry results with 
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geology to interpret the geochemical distribution pattern 
of elements. The highest anomalies of Au were found in 
dacitic, andesitic, and rhyolitic units, not associated with 
the hydrothermal alterations in the study area (Figs. 1b and 
6d). Ag anomalies were identified in the altered andesitic 
and dacitic units, and anomalous values of Ag were obtained 
from the chemical analysis of rock samples. Ag anomalies 
were related to argillic and phyllic alterations. Anomalies 
of As were found in carbonate-shale, sandstone, granitic, 
and microgranitic units (Figs. 1b and 6c). The rock samples 
also showed As anomalies. Co anomalies were observed in 
unaltered carbonate, shale, and limestone units and quartz 
monzonitic unit, which was associated with phyllic, argil-
lic, and to some extent, propylitic alterations. Cu had the 
highest anomalies in andesitic, dacitic, and trachyandesitic 
units, which were not associated with alterations in the study 
area (Figs. 1b and 6e). Moreover, the rock samples taken 
from quartz monzonitic units showed the highest content of 
Cu, which was related to phyllic and argillic alterations. Fe 
anomalies were observed in hydrothermally altered andesitic 
and rhyolitic units. The rock samples also displayed Fe 
anomalies. The highest anomalies of Mo were identified in 
unaltered andesitic units (Figs. 1b and 6f). The rock samples 
taken from quartz monzonitic units showed Mo anomalies, 
associated with propylitic alteration. Pb anomalies were 
found in quartzite and sandstone units (Figs. 1b and 6g). 
However, the rock samples with Pb anomalies were identi-
fied in sandstone, carbonate, and quartz monzonitic units. 
V anomalies were observed in limestone, shale, sandstone, 
and granitic units, which were associated with propylitic 
and argillic alterations. The rock samples taken from these 
areas also showed V anomalies. Zn anomalies were found in 
quartz monzonitic and carbonate units, and the rock samples 
taken showed Zn anomalies (Figs. 1b and 6h).

Data Integration

Figure 6 shows the scheme for integrating data using the 
fuzzy logic method. Evidential layers and assigned weights 
were defined based on the knowledge of experts. The geo-
logical map of the study area was one of the main input 
layers. Based on Fig. 6, geological units were categorized 
into nine classes, including altered acidic intrusive bodies, 
unaltered acidic intrusive bodies, acidic extrusive bodies, 
intermediate bodies, mafic bodies, carbonate sedimentary 
rocks, clastic sedimentary rocks, pyroclastic rocks, and the 
recent age sediments. Each class received a value from 0.9 
to 0.1 by the fuzzy method (Figs. 7 and 8a).

The final hydrothermal alteration map was established 
based on the results of LSU and SAM methods. Argil-
lic, phyllic, and propylitic alteration were derived as the 
outputs of the LSU method, and carbonate units were 
selected based on the SAM results (Fig. 3). Considering 
the region’s geology and geochemical anomalies, minerali-
zation was more likely associated with phyllic and argillic 
alterations. According to the importance of alterations and 
their relationship with the type of mineralization, phyl-
lic, argillic, propylitic, and carbonate zones were assigned 
the values of 0.9, 0.8, 0.7, and 0.6, respectively (Figs. 7 
and 8b). Due to the importance of faults in the forma-
tion of mineral deposits, the evidential layer of geological 
structures was produced (Fig. 8c). Figure 8c was built by 
integrating three layers including the proximity to the fault 
(Fig. 5b), the intersection of faults and intrusive contacts 
(Fig. 5c), and PF maps (Fig. 5d). Since the fault numbers, 
fault lengths, and fault intersections are taken into account, 
PF analysis can be representative. The map of the inter-
section of faults and intrusive contacts is also crucial for 
producing the evidential layer of geological structures due 
to conducting ore-forming fluids. Stream sediment geo-
chemistry maps of Au, Ag, As, Co, Cu, Fe, Mo, Pb, V, and 
Zn elements were integrated by the fuzzy OR operator. 
Figure 8d shows the fuzzy geochemistry map of the study 
area, which was classified into seven levels from 0.1 to 0.7.

The geology layer was assigned with the highest weight 
(Fig.  7). Altered intrusive bodies were more valuable 
member due to their hydrothermal alteration and high 
geochemical anomalies compared to the other geologi-
cal units. The hydrothermal alteration layer was specified 
with a weight of 0.8 based on expert opinion. Phyllic and 
argillic zones are appropriate places for the exploration 
of metallic mineralization. The geological structures and 
geochemistry layers received fuzzy scores of 0.7 and 0.6, 
respectively. Finally, evidential layers including geology, 
alteration, geological structures, and geochemistry were 
integrated by the fuzzy gamma operator (γ = 0.95) to 
establish the MPM of the study area (Fig. 9).

Fieldwork and anomaly checking

Based on Fig. 9, seven areas with the highest favorability 
were identified. Field investigation and rock sampling were 
undertaken in the A, B, C, D, E, and F zones. Zone G was 
left for future study due to time constraints. About 120 rock 
samples were spectrally studied using the FieldSpec3® 
spectroradiometer to validate the results of image process-
ing. More than 110 rock samples were analyzed using the 
ICP-MS method. Some results are provided in Table 2. The 
chemical analysis of rock samples was used to check the 
results of data integration in six mineral potential zones.

Fig. 12   a General view of zone C, b Outcrop of an immature gossan, 
c Thin sections of rhyolite shows muscovite (Ms), quartz (Qz), feld-
spar (Fsp), and opaque (Op) minerals, d Result of XRD analysis

◂
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Zone A mainly includes quartz monzonitic and lithic tuff 
units with phyllic and argillic alterations. Propylitic altera-
tion covers a small area. Figure 10a displays an outcrop of a 
silica vein in adjacency to phyllic alteration. A thin section 
of a lithic tuff is seen in Fig. 10b which shows muscovite 
and opaque inside quartz, feldspar, and plagioclase. Musco-
vite, calcite, chlorite, and goethite were reported in the XRD 
analysis (Fig. 10c). Figure 3 presents the effect of muscovite 
(absorption feature in ASTER band 6) and chlorite/calcite 
(absorption feature in ASTER band 8) on the spectral reflec-
tance curve no. 1.

Andesite and sandstone were the principal rock types of 
zone B. As shown in Fig. 11a, phyllic is the dominant altera-
tion type. Old slags were seen in zone B as good evidence of 
mineralization (Fig. 11a). Figure 11b exhibits a thin section 
of basalt that shows opaque minerals and silica veins. Based 
on the XRD result, muscovite was in the major phase, while 
kaolinite and goethite were in the minor phase (Fig. 11c). 
In Fig. 3, kaolinite causes a shoulder in the ASTER band 
5 on the spectral reflectance curve no. 2. Fe grade was 
33,706–45,300 ppm (Table 2).

Zone C was specified by rhyolitic lithology with phyl-
lic and argillic alterations. Figure 12a exhibits the general 
view of zone C which indicates the intensity of hydrothermal 
alteration. Figure 12b shows an immature gossan in zone C 
as a sign of intense chemical leaching. Figure 12c presents 
muscovite, clay minerals, opaque, and silica veins in the 
rhyolite thin section. Figure 3 shows a sharp absorption fea-
ture in the ASTER band 6 on the spectral reflectance curve 
no. 3 due to the presence of muscovite. Figure 12d displays 
the XRD result of a sample in zone C that contains musco-
vite in the minor phase.

Zone D is marked by a carbonate unit with severe propy-
litic alteration for volcanic rocks. Figure 13a presents an out-
crop of carbonate rocks in zone D. Spectral reflectance curve 
no. 4 in Fig. 3 illustrates the calcite spectrum (absorption 
feature in ASTER band 8) belonging to a sample obtained 
from zone D.

Zone E represents granitic lithology with severe phyllic 
and argillic alterations. Figure 13b shows phyllic alteration 
in adjacency to carbonate rocks. In the thin section, dolomite 
and opaque minerals were observed (Fig. 13c). The XRD 
analysis showed muscovite and calcite in the major phase 
and dolomite in the minor phase (Fig. 13d). The effects of 
muscovite (absorption feature in ASTER band 6) and calcite 
(absorption feature in ASTER band 8) were apparent on the 
spectral reflectance curve no. 5 in Fig. 3.

Zone F shows andesitic, trachyandesitic, and basaltic 
lithologies with phyllic, argillic, and partially propylitic 
alterations. Figure 14a displays a kaolinite mine in zone F. 
In the thin section of Fig. 14b, quartz and opaque miner-
als are observed. Kaolinite and quartz form a major phase 
based on the XRD result (Fig. 14c). The spectral reflectance 
curve no. 6 in Fig. 3 exhibits absorption features of kaolinite 
as absorption in ASTER band 6 and a shoulder in ASTER 
band 5.

Conclusion

The FGBB is one of the unknown metallogenic belts in 
Iran that presents surficial clues of metallic mineralization 
(e.g., extensive hydrothermal alteration, gossans, and old 
slags). Volcanic activities in the Tertiary and Quaternary 
have developed hydrothermal alteration in intrusive bodies 
and surrounding volcanic and volcano-sedimentary rocks. 
Faults and fractures have had a vital role in distributing 
hydrothermal solution and mineralization. In this research, 
the MPM of the FGBB was proposed by integrating vari-
ous geo-datasets. The geology layer is a base geo-dataset 
for constructing the MPM. The importance of the geology 
layer resulted in defining two criteria including rock type 
and alteration for assigning proper weights. Altered and 
unaltered intrusive bodies should have the highest weights 
in the geology layer, while sedimentary rocks were speci-
fied with lower weights. Carbonate rocks, because of the 
potential of hosting Pb–Zn deposits, were assigned with 
moderate weights. Carbonates and well-known hydrother-
mal alterations (e.g., phyllic, argillic, and propylitic altera-
tions) exhibit specific spectral features in the SWIR region 
of the EM spectrum that can be enhanced using ASTER 
data. Thus, ASTER SWIR bands were utilized to specify 
hydrothermal alterations. The application of both LSU and 
SAM methods resulted in deriving adequate information 
about typical alterations in the study area. It is recom-
mended to perform LSU and SAM methods to get reliable 
results in areas with similar geological settings. Phyllic, 
argillic, and propylitic alterations were specified in the 
study area and the results were verified through field and 
laboratory studies. Phyllic and argillic alterations were 
often matched with intrusive bodies in the study area. As a 
result, they were specified with high weights in the hydro-
thermal alteration layer. The geological structures layer 
contributed to data integration to emphasize the impor-
tance of faults and fractures in hydrothermal mineraliza-
tion. Regional faults and fractures can be extracted from 
small-scale geological maps, but in detail, satellite data 
provide helpful information about the geological struc-
tures. Thanks to worldwide coverage and high-resolution 
data, Sentinel-2 and SPOT 5 can be utilized for mapping 

Fig. 13   a An outcrop of a dolomitic carbonate unit in zone D, b Out-
crop of phyllic alteration and carbonate rock in zone E, c Thin section 
shows dolomite (Dol) and opaque (Op) minerals, d Result of XRD 
analysis

◂
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faults and fractures on a regional scale. Usually, a fault 
buffer map is used as an evidential layer. Applying PF 
analysis for preparing the geological structures layer could 
be a better idea. In PF analysis, some vital parameters 
of fractures such as fracture numbers, fracture lengths, 
and fracture intersections are assumed to avoid a raw 

evaluation of fractures. It is recommended to employ the 
map of the intersection of faults and intrusive contacts for 
creating the ultimate geological structures. These intersec-
tion points can reveal appropriate locations for specifying 
mineralized zones. At the regional scale, the application 
of stream sediment geochemistry data can be helpful if the 

Fig. 14   a A kaolinite mine in zone F, b Thin section shows quartz (Qz) and opaque (Op) minerals, c Result of XRD analysis
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results are interpreted considering the lithology. Elemen-
tary maps can be converted into fuzzy layouts using the 
fuzzy OR operator. Stream sediment geochemistry pro-
vides helpful information about the distribution of ele-
ments in regional scale studies. In far and inaccessible 
districts such as the FGBB, stream sediment geochemistry 
can be performed to create the geochemistry layer due 
to its high coverage. Data integration using fuzzy logic 
resulted in the defining seven favorable zones in FGBB. 
Anomaly checking was conducted using field and labo-
ratory studies to ensure the accuracy of the results. At 
last, Zones A, B, and C were recommended for further 
investigation due to promising field evidence, geochemis-
try anomalies, severe phyllic and argillic alterations, and 
dominant structural features.
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