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Abstract
Estimating above-ground biomass (AGB) using machine learning (ML) algorithms and multi-sensor satellite data is a 
promising approach for monitoring and managing forest resources. This research integrated synthetic aperture radar (SAR) 
and multispectral imagery alongside in-field observations to accurately estimate above-ground biomass (AGB) in the Purna 
regional landscape of northern Western Ghats, India. The satellite data employed in the study included dual-polarization 
(VV + VH) imagery from Sentinel-1 and multi-spectral bands from Sentinel-2, processed and analysed using advanced ML 
algorithms. The ML algorithms, namely Random Forest (RF), Extreme Gradient Boosting (XGB), and Boosted Regression 
Trees (BRT), were strategically applied across different model scenarios to determine their effectiveness in AGB prediction. 
The XGB model displayed the highest accuracy with an  R2 value of 0.61 and the lowest RMSE of 37.85 t/ha. The spatial 
distribution of AGB was successfully mapped, showing varied biomass concentrations throughout the study area. The study’s 
findings demonstrate the potential of integrating SAR and multispectral data for enhanced AGB estimation and suggest 
that ML models, specifically algorithms like RF, XGB, and BRT can address the complex relationships between AGB and 
satellite-derived variables more effectively than traditional methods.
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Introduction

Forests are vital in combating climate change, storing 
around 80% of terrestrial carbon (Liu et al., 2017). The 
carbon cycle and above-ground biomass (AGB) have been 
prioritized within the list of key biodiversity metrics to be 
monitored through satellite-based observations (Reddy et al., 
2023). Accurate AGB measurement, particularly in spatial 
terms, supports initiatives like reducing emissions from 

deforestation and forest degradation (REDD +) and informs 
forest management plans to reduce carbon stock assessment 
uncertainties (Kaasalainen et al., 2015). The AGB of forests 
is typically assessed through conventional field measure-
ments or remote sensing techniques (Sainuddin et al., 2023b; 
West, 2015). While for small forest stands, accurate AGB 
calculations are best achieved through direct field measure-
ments (Lu, 2006), employing this method on a regional scale 
is impractical due to its high cost, labour intensity, and time 
demands (Lu, 2006; Henry, 2011).

Previous studies (Reddy et al., 2016; Saatchi et al., 2011) 
have demonstrated the effectiveness of remote sensing in 
quantifying and monitoring forest biomass on a regional 
level. Consequently, a range of remote sensors, encompass-
ing both passive and active variants, have been employed 
to estimate AGB. The estimation of AGB through earth 
observation data requires the use of allometric equations 
and satellite-acquired structural or biophysical metrics 
(Boisvenue & White, 2019). Nonetheless, utilizing earth 
observation data for estimating AGB presents difficulties, 
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such as choosing appropriate models and dealing with the 
constraints of data availability (Lu, 2006). Optical remote 
sensing data such as Landsat is frequently used due to its 
accessibility, extensive temporal coverage, and moderate 
spatial resolution (Dogru et al., 2020). Sentinel-2, part of the 
EU Copernicus program, offers improved forest monitoring 
in tropical regions with additional spectral bands, enhanc-
ing AGB estimation (Li et al., 2021; Mutanga et al., 2012). 
However, optical sensors face limitations, such as difficulty 
in penetrating dense canopies, susceptibility to cloud cover, 
and data saturation in areas with dense canopy cover (Lu 
et al., 2012; Powell et al., 2010). As Landsat-8, Sentinel-2 
is less effective at estimating higher biomass levels. The 
challenge with saturation of biomass is a known problem 
with low- to medium-spatial-resolution multispectral data 
(Steininger, 2000). Synthetic aperture radar (SAR) has dem-
onstrated greater efficiency in assessing medium- to high-
stand-level biomass. Owing to regular cloud cover, SAR has 
proven to be a valuable instrument for evaluating AGB in 
tropical areas (Lu, 2006; Lu et al., 2016). SAR data offers 
the advantage of being collected during any weather and at 
all times of the day or night. Its capabilities include seeing 
through clouds and thick forest covers while also detecting 
variations in surface texture, dielectric properties, and water 
content. SAR can offer detailed insights into forest compo-
sition depending on the microwave bands (X-, C-, L-, and 
P-bands) utilized. Co-polarized and cross-polarized SAR 
data offer unique insights into the orientation and structural 
characteristics of forest canopies and tree stems, providing 
valuable information from the backscattered data (Ulaby 
et al., 1990a). Even though SAR systems don’t extract the 
vertical composition of vegetation as adeptly as airborne 
LiDAR, their wide orbital swath makes them advantageous 
for regional biomass monitoring.

There are three main approaches for estimating forest 
bio-physical parameters: Empirical data-driven relationships 
utilize ground measurements to predict variables using sta-
tistical regression but are limited by ground measurement 
quality and regional specificity (Fuchs et al., 2009; Lu et al., 
2012; Næsset et al., 2013; Skowronski et al., 2014; Tian 
et al., 2012). Inverting physical models based on electro-
magnetic principles simulate a vegetation stand’s response 
to radiation interactions and require careful inversion due 
to simplifications of real-world phenomena (Ulaby et al., 
1990b; Cartus et  al., 2011, 2012; Santoro et  al., 2011; 
Antropov et al., 2013; Sainuddin et al., 2021, 2023a). Non-
parametric machine learning (ML) models, like random for-
est and gradient boosting, leverage complex relationships 
without assuming data distribution and integrate multiple 
sensor data for better estimations (Behera et al., 2023; Brei-
denbach et al., 2012; Jung et al., 2013; McRoberts et al., 
2012; Mitchard et al., 2013; Mutanga et al., 2012; Saatchi 
et al., 2009). Previous research (Kellndorfer et al., 2010; 

Walker et al., 2007) has shown that integrating data from 
multiple sensors performs better than data from a single 
sensor in generating accurate biomass estimations. In the 
fusion of optical and radar data, numerous investigations 
(Li et al., 2020; Malhi et al., 2022) have incorporated mul-
tispectral bands, vegetation indices, and texture parameters 
from optical sensors, coupled with radar backscatter coef-
ficients. Additionally, the textures generated from satellite 
imageries are known for their notable robust adaptability, 
and are leveraged in many previous studies (Dang et al., 
2019; Dong et al., 2020; Eckert, 2012; Kelsey & Neff, 2014) 
and have confirmed the efficacy of these parameters in AGB 
assessment.

In this research, the AGB of tropical deciduous forests in 
the Purna regional forest landscape was estimated by inte-
grating Sentinel 2 optical data with Sentinel-1 SAR data in 
association with topographical features from SRTM data and 
the GEDI canopy height product, as referenced in Potapov 
et  al. (2021). Three ML models—random forest (RF), 
extreme gradient boosting (XGB), and boosted regression 
tree (BRT)—were methodically utilized in various model-
ling contexts to evaluate their performance in predicting 
AGB. The performance of these techniques in AGB predic-
tion was rigorously evaluated by contrasting them against 
field-measured data, offering insights into their effectiveness 
and accuracy.

Materials and Methods

Study Area

The selected study area is the Purna regional landscape, 
which includes the Purna Wildlife Sanctuary and surround-
ings (20° 51′—21° 21′N & 73° 32′—73° 48′ E) spanning the 
Dang district of Gujarat, India. The study area was outlined 
by generating a 2 km buffer extending from the boundaries 
of Purna Wildlife Sanctuary. The landscape spans around 
324.88  km2, with 252.36  km2 of this area covered by for-
ests, representing the northern region of the Western Ghats 
(Reddy et al., 2015). It is in the basins of the Purna and Gira 
rivers. The highest peak is Walu Dungar, rising to an altitude 
of 574 m. It experiences a predominantly dry climate. The 
Southwest Monsoon predominates from June to September. 
Purna features both moist and dry deciduous forests (Cham-
pion & Seth, 1968). The dominant tree species in the study 
area include Tectona grandis, Wrightia tinctoria, Termina-
lia alata, Haldina cordifolia, Acacia catechu, Butea mono-
sperma, Desmodium oojeinense, and Mitragyna parvifolia. 
The study area was outlined by generating a 2 km buffer 
extending from the boundaries of Purna Wildlife Sanctuary 
(Fig. 1).
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Field Sampling and AGB Estimation

The forest area was stratified based on the forest-type map 
from Reddy et al. (2015). Field inventory data was collected 
between 2019 and 2020 across 106 distinct 0.1 ha sample 
plots spread throughout the study area. This ensures the rep-
resentation of the diversity of biomass within different forest 
types. A sampling intensity equivalent to 0.1% of the total 
forest area was selected due to practical feasibility. Strati-
fied random sampling was utilised to establish these plots, 
and their coordinates were recorded using a global position-
ing system (GPS). For each plot, parameters such as height, 
diameter at breast height (DBH), number of individuals, and 
species names were documented. The AGB was estimated 
using an allometric equation (Eq. 1) that incorporated tree 
height and Diameter at Breast Height (DBH), with distinct 
coefficients specific to dry and moist deciduous forests pro-
posed by Chave et al. (2005). In the sampled plots, 75.47% 
were located in the dry deciduous forests, and 24.53% were 
found in the moist deciduous forests.

Here, ρ signifies the wood density of the tree as suggested 
by the Forest Research Institute (Chowdhury & Ghosh, 
1958), D stands for the diameter at breast height in centi-
metres, and H denotes the height of the tree, expressed in 
meters. Table 1 presents the unique coefficients for differ-
ent forest types applied in the allometric equation. Figure 2 

(1)lnAGB = a + b ln
(

�D
2
H
)

Fig. 1  Location map of the study area showing distribution of sample plots on the false colour composite of Sentinel-2 imagery

Table 1  Values for coefficients applied in allometric equation

Forest type a b Reference

Dry deciduous forest −2.187 0.916 Chave et al., 2005
Moist deciduous forest −2.977 1

Fig. 2  Histogram showing field-measured AGB distribution
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depicts the frequency distribution of the field-measured 
AGB. Table 2 shows the statistical overview of the field 
measured AGB in (t/ha) from the sampled plots.

Satellite Data and Predictor Variables

Sentinel‑1 Data

The Sentinel-1 program features two satellites: Sentinel-1A 
(S1A; launched on April 3, 2014) and Sentinel-1B (S1B; 
launched on April 25, 2016). This satellite is designed with 
rapid revisit times, broad coverage, and rapid data distri-
bution. Sentinel-1 operates a C-band imager at 5.405 GHz, 
with an incidence angle ranging from  200 to  450. The satel-
lite maintains a Sun-synchronous, near-polar orbit at an alti-
tude of 693 km. For this study, dual polarization (VV + VH) 
data from the Sentinel-1A interferometric wide (IW) ground 
range detection (GRD), acquired on May 3, 2019, was used. 
The data was accessed freely from the ESA Copernicus hub 
(https:// senti nel. esa. int/ web/ senti nel/ senti nel- data- access). 
The data preprocessing was conducted using the Sentinel 
Application Platform (SNAP) (version 8). Once the orbit 
was applied, the SAR data underwent radiometric calibration 
and then thermal noise removal. The data was resampled to 
a pixel size of 30 m to match the size of the sampled field 
plots. To mitigate the speckle noise in the image, a Gamma 
MAP filter with a 9 × 9 pixel window was employed.

Sentinel‑2 Data

Sentinel-2 (S2A and S2B) has a powerful multispectral 
instrument (MSI) for advanced optical remote sensing. It 
offers 13 bands spanning various spectrums in a short 5-day 
revisit cycle. The spectral bands are divided into three sepa-
rate spatial resolutions: 10 m, covering the blue, green, red, 
and near-infrared (NIR) bands; 20 m, including three veg-
etation red edge bands, a narrow NIR band, and two short-
wave infrared (SWIR) bands; and 60 m, which capture the 
coastal aerosol, water vapor, and SWIR-cirrus bands. The 
data acquired from the ESA Copernicus hub for January 18, 
2020 was used. The pre-processing of the data was primar-
ily done with the Sen2cor tool in SNAP for atmospheric 
correction, and then the data was resampled to 30 m pixel 
spacing to align with the field plot dimensions. The data was 
then geocoded using the Shuttle Radar Topography Mission 
(SRTM) digital elevation model.

Predictor Variables

This study utilized the Sentinel-1 SAR as a key component 
in the analysis, using the VV and VH polarizations as pre-
dictor variables. The Principal Component Analysis (PCA) 
was applied to the multispectral bands of Sentinel-2 data 
to minimize dimensionality while preserving the variabil-
ity between them. The initial two principal components, 
PC1 and PC2, accounted for 90% of the dataset variance 
and were selected for subsequent texture processing. The 
Gray-level Co-occurrence Matrix (GLCM) method (Haral-
ick et al., 1973) was utilized, where eight GLCM elements 
were calculated within a 3 × 3 processing window using 
the SNAP toolbox. Additional predictor variables incor-
porated include vegetation indices from Sentinel-2 data, 
such as the Green Normalized Difference Vegetation Index 
(GNDVI) (Gitelson & Merzlyak, 1998), Green Red Veg-
etation Index (GRVI) (Tucker, 1979), and Normalized Dif-
ference Red Edge Index (NDRE1) (Gitelson and Merzlyak, 
1996). These indices were chosen based on the correlation 
test with field-measured AGB, where GNDVI, GRVI, and 
NDRE1 emerged as the leading contributors, excluding 
other indices to prevent the impact of multicollinearity. 
The Leaf Area Index (LAI) was obtained through the bio-
physical processor available in the SNAP toolbox, serv-
ing as an indicator for biophysical parameters and align-
ing with the PROSAIL model (Jacquemoud et al., 2009). 
The assessment also integrated predictor variables like 
the global canopy height product (Potapov et al., 2021), 
elevation, slope, and aspects derived from SRTM data. 
All predictor variables were resampled to 30 m resolu-
tion to correspond with the field plots using the nearest 
neighbourhood method within the resample function of 
the SNAP toolbox. To mitigate the impacts of location 
inaccuracy, three neighbourhood statistics (minimum, 
maximum, and mean) for each variable were computed 
(Carreiras et al., 2013). This approach resulted in a one-
pixel value at each field plot centre, supplemented by three 
neighbourhood statistical values for each plot, resulting 
in a total of four values per variable. Consequently, 112 
predictor variables were available for modelling purposes. 
SAR polarizations, along with physical, spectral, biophysi-
cal, and texture parameters, were utilized in combinations 
as predictor variables within the models. For AGB estima-
tion, four selected ML models were examined, each uti-
lizing various variable combinations: (i) Model 1, which 
estimated AGB using polarizations and physical variables 
(27 in total), (ii) Model 2, which estimated AGB by com-
bining both spectral and biophysical variables (40 in total), 
(iii) Model 3, which estimated AGB using only texture 
variables (68 in total), and (iv) Model 4, which estimated 
AGB by combining polarizations, physical, spectral, bio-
physical, and texture variables (112 in total). The choice 

Table 2  Statistical overview of the field measured AGB in (t/ha) from 
the sampled plots

Forest type No. of plots Min Max Mean S.D

Dry deciduous forest 80 18.36 241.80 97.75 46.51
Moist deciduous forest 26 11.78 224.22 85.81 53.22

https://sentinel.esa.int/web/sentinel/sentinel-data-access
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of predictor variables was guided by findings from previ-
ous research, which suggest that integrating polarization 
channels, textural parameters, and spectral data often leads 
to reliable AGB estimates in different Indian forest eco-
systems. Despite this, the exact combination mentioned in 
the previous studies was not adopted in the analysis. The 
predictor variables used for the study are listed in Table 3. 
A detailed list of employed predictor variables and their 
details is available in the Supplementary File.

Methods and Modelling

The workflow diagram (Fig. 3) provides a visual represen-
tation of the AGB estimation process and implementation 
of the ML models outlined in this study.

The procedure consists of the following phases:

• Pre-processing the satellite images and deriving vital 
predictor variables

• Training the selected ML models in distinct modeling 
scenarios

• Evaluating the efficacy of the models against a test data-
set

• Generating the AGB map based on the best-performing 
model

This approach involved integrating data from Senti-
nel-1 and Sentinel-2 with terrain attributes from SRTM 
data and the canopy height product. The model’s per-
formances were then cross-checked against ground truth 
data for accuracy. In this study, advanced ML algorithms, 
including RF, XGB, and BRT, were implemented to pre-
dict AGB in different modeling scenarios. Custom Python 
3 scripts were utilized for both the modeling and validation 
processes.

Random Forest Model

The RF operates as an ensemble-learning algorithm, 
leveraging an extensive collection of decision trees for 
both regression and classification tasks. Decision trees, a 
widely recognized approach in machine learning, operate 
based on specified instructions or conditions for input vari-
ables, progressing from the tree’s root to its leaves (Quin-
lan, 2014). These trees utilize binary division to assign 
clusters of input variables to each node during the formu-
lation of the regression tree. It’s essential to fine-tune both 
the number of regression trees and the quantity of input 
variables for each node. Predictions are then determined 
by averaging across all tree nodes. The underlying princi-
ple of RF centers on amplifying the reduction in variance, 
by minimizing the correlation among trees (Hastie et al., 
2009). To achieve this, input variables are chosen at ran-
dom during tree development phases.

Extreme Gradient Boosting Model

XGB (Chen et al., 2016) is an advanced ML algorithm 
that has garnered widespread recognition for its superior 
performance in Kaggle competitions. This model, which is 
an optimized version of gradient-boosted regression trees, 
is tailored for enhanced speed and efficiency. It leverages 
the second-order derivative of the loss function to hasten 
convergence and incorporates a regularization compo-
nent to mitigate the risk of overfitting. As a result, XGB 
stands out as a versatile and scalable solution, especially 
adept at managing sparse datasets and achieving rapid 
convergence.

Boosted Regression Tree Model

The BRT model merges the principles of boosting 
with the decision tree algorithm to enhance predictive 

Table 3  Parameters and variables for each model

Models Category based list of variables Combinations

Model 1 r1, r2, r3, r4, r5, r6, r7, r8, r65, r66, r76, r93, r94, r95, r96, r97, r98, r99, r100, r101, r102, r103, 
r104, r105, r106, r107, r108

Polarizations, Physical

Model 2 r9, r10, r11, r12, r45, r46, r47, r48, r81, r82, r83, r84, r85, r86, r87, r88, r89, r90, r91, r92, r93, 
r94, r95, r96, r97, r98, r99, r100, r101, r102, r103, r104, r105, r106, r107, r108, r109, r110, r111, 
r112

Spectral and biophysical, Physical

Model 3 r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, 
r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, 
r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76, r77, r78, r79, 
r80

Texture

Model 4 Variables from Model 1, Model 2, and Model 3 Polarizations, Physical, Spectral 
and biophysical, and Texture
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performance. Boosting contributes to reducing the risk 
of overfitting by selecting random subsets of the training 
data upon which to base the fitting of new trees. Unlike 
the RF model that apply bagging, BRTs employ a boost-
ing approach, assigning varying weights to the input data 
for each successive tree (Biodiversity & Climate Change 
Virtual Laboratory, 2021). This method ensures that data 
points that were inadequately predicted by earlier trees 
are given a greater likelihood of influencing the formation 
of subsequent trees. Such a strategy increases the model’s 
precision by allowing it to correct for errors from previ-
ous trees when constructing the current one.

Tuning Process of ML Models

To identify the optimal settings, a series of tests employ-
ing various tuning parameter values were performed. Refin-
ing the tuning parameters for ML models revealed that 
the accuracy of RF models increased with the addition of 
trees until reaching a consistent level at a ‘ntree’ setting 
of 500. In the case of RF, the impact of the ‘mtry’ param-
eter was more pronounced with fewer trees, diminishing as 
tree numbers grew. Optimal performance for Model 1 was 
achieved with an ‘mtry’ of 10, where  R2 slightly increased 
and RMSE remained stable as the tree count increased. 
Model 2 exhibited a more intricate R2 trend, yet RMSE was 
simpler to delineate, favoring an ‘mtry’ of 5. The optimal 
‘mtry’ parameter for Model 3 was determined to be 3. For 
the Model 4, an ‘mtry’ of 10 delivered the best outcomes, 

Fig. 3  Methodology for estimation of AGB from ML-models
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with R2 and RMSE settling into a consistent range. XGB 
models showed less sensitivity to gamma, but required bal-
ance in child weight as tree depth increased to maintain 
accuracy. Lower learning rates were beneficial, preventing 
overfitting and necessitating more iterations for accuracy, 
with the optimal rate set at 0.01. The optimal subsample 
rates were below the default, set at 0.5, 0.7, 0.6, and 0.8 for 
the Model 1, Model 2, Model 3, and Model 4, respectively. 
The model performance also exhibited a positive correlation 
with lower ‘nrounds’, maintaining stability as boosting itera-
tions increased. Choosing the right ‘nrounds’ was critical 
and differed from RF model selection. In the tuning of the 
BRT model, the learning rates were set within a spectrum 
from 0.001 to 0.03, specifically being 0.009 for Model 1, 
0.001 for Model 2, 0.005 for Model 3, and 0.03 for Model 4 
and ‘ntree’ was set to an optimal value of 500. This methodi-
cal approach of parameter adjustment led to the development 
of an optimal ML models.

Model Validation and AGB Estimation

To estimate AGB, four distinct modeling scenarios were 
evaluated, each employing different sets of variables. The 
field dataset was divided randomly, with 80% for model 
training and the remaining 20% for validation. To deter-
mine the most effective model for each variable combina-
tion, a five-fold cross-validation approach (Kuhn & Johnson, 
2013) was employed on the training dataset. The coefficient 
of determination  (R2), root mean square error (RMSE), and 
mean absolute error (MAE) were analyzed and compared 
across these models to identify and select the most effec-
tive model for mapping AGB. The AGB map was generated 
using the most accurately fitted model, with a spatial resolu-
tion of 30 m across the study area.

Results

This section reveals the findings derived from the study, 
which concentrates on estimating AGB through the appli-
cation of multiple ML models using satellite data. The out-
comes yielded from the application of advanced ML algo-
rithms such as RF, XGB, and BRT with the combinations 
of different datasets have been thoroughly and strategically 
analyzed to identify the effectiveness and accuracy of each in 
estimating AGB. Figure 4 presents a categorical analysis of 
the importance of predictor variables. The spectral variables 
were identified as the most significant, whereas texture and 
polarization variables also exhibit substantial importance. 
Physical variables were found to be the least important in 
this analysis, as indicated by their lower median value and 
the presence of outliers in the data.

Predictive Modeling of AGB

Figure 5 presents the validation results of the predicted AGB 
against the observed values for Model 1, using the selected 
ML algorithms. For the RF model, a moderate correlation is 
observed with an R2 value of 0.52, an RMSE value of 42.25 
t/ha, and a MAE value of 35.89 t/ha. The XGB model exhib-
its an R2 value of 0.51, an RMSE value of 41.64 t/ha, and a 
MAE value of 35.44 t/ha. Lastly, the BRT model presents 
comparable results with an R2 value of 0.47, an RMSE value 
of 43.02 t/ha, and a MAE value of 37.47 t/ha.

Figure 6 illustrates the validation results for the prediction 
of AGB in Model 2, employing various ML algorithms. For 
the RF model, the outcomes indicate a moderate correlation 
with an R2 value of 0.46, an RMSE value of 42.56 t/ha, and 
a MAE value of 37.07 t/ha. In the case of the XGB model, 
the results manifest a correlation with an R2 value of 0.51, 

Fig. 4  Importance of predictor 
variables (category wise)
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an RMSE value of 42.56 t/ha, and a MAE value of 37.70 t/
ha. Conversely, the BRT model demonstrated results with 
an R2 value of 0.44, an RMSE value equal to 40.55 t/ha, and 
a MAE value of 34.76 t/ha.

Figure 7 delineates the validation results of predicted 
AGB against observed values for Model 2 for the selected 
ML models. For the RF model, there’s a moderate correla-
tion observed with an  R2 value of 0.39, supplemented by an 
RMSE value of 44.99 t/ha and a MAE value of 37.40 t/ha. In 
the XGB model, the performance is slightly varied, with an 
R2 value of 0.44, an RMSE value of 42.37 t/ha, and a MAE 
value of 35.71 t/ha. Conversely, the BRT model showcased 
a moderate R2 value of 0.38, an RMSE value of 45.61 t/ha, 
and a MAE value of 36.52 t/ha.

Figure 8 showcases the validation results of AGB pre-
diction in Model 4, utilizing the selected ML models. The 
RF model displays a modest correlation with an R2 value 
of 0.49, an RMSE value of 41.11 t/ha, and a MAE value 
of 35.27 t/ha. On the other hand, the XGB model results 
indicate a strong performance with an R2 value of 0.61, 
coupled with an RMSE value of 37.85 t/ha and a MAE 
value of 32.47 t/ha. The BRT model unveils outcomes with 

an R2 value of 0.41, an RMSE value of 41.81 t/ha, and a 
MAE value of 35.52 t/ha.

The various ML models applied in this study, namely 
RF, XGB, and BRT, exhibited a spectrum of performances 
in predicting AGB across different models. For instance, 
the RF model, showing variability in performance, man-
aged to present reasonable outcomes in certain models. 
The XGB model consistently demonstrated moderate to 
strong correlations in the predictions across all the models. 
The BRT model displayed variability in its performance 
yet yielded satisfactory results in some of the tested mod-
els. The XGB algorithm showed its strongest performance 
in Model 4, yielding the highest R2 value. RF performed 
at its best in Model 4, where it demonstrated a relatively 
lower error in estimating AGB. The BRT algorithm 
showed its optimum performance in Model 2, showing a 
comparatively lower estimation error for AGB.

Figure 9 presents a comparison of the R2, RMSE, and 
MAE across the different models. The diversity in model 
performances underscores the importance of select-
ing an appropriate ML algorithm tailored to the specific 

Fig. 5  Validation plots for the 
predicted AGB for a RF, b 
XGB, and c BRT obtained from 
the model 1
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characteristics and requirements of each dataset and 
model to enhance the accuracy and reliability of AGB 
predictions.

Spatial Mapping of AGB

The distribution map of AGB, depicted in Fig. 10, was pro-
duced at a 30 m spatial resolution derived using the XGB 
algorithm leveraging Model 4 variables. The XGB model 
incorporating Model 4 demonstrated the highest  R2 and the 
lowest RMSE in comparison to other models. The mean 
AGB recorded in the field is 94.83 t/ha, while the mean for 
the predicted AGB is 41.45 t/ha. The predicted AGB within 
the study area spans from a minimum of 23.43 t/ha to a 
maximum of 176.61 t/ha. The AGB map utilizes a gradient 
colour scheme that transitions from yellow to a dark green, 
representing a range of AGB values from 23.43 to 176.61 
t/ha. It depicts AGB density categorized into four distinct 
ranges, each represented by a colour on the legend. Most of 
the mapped area is dominated by AGB values in the range 
of 50–100 t/ha, as indicated by the prevalence of the lime 
colour. Following this, the next most extensive category is 

the 100–150 t/ha range, represented by olive shade, which 
corresponds to regions with relatively higher AGB. The map 
also shows substantial areas within the 23.43–50 t/ha cat-
egory, highlighted in yellow, implying regions with a lower 
biomass density. The darkest green pixels on the map rep-
resent the areas with the highest AGB, ranging from 150 to 
176.61 t/ha.

Discussions

The study’s findings indicate that multiple ML models 
such as RF, XGB, and BRT have varied performance in 
predicting AGB using the selected satellite data, with the 
RF model generally showing moderate to strong correla-
tions. The strongest performance was observed in Model 4 
using the XGB algorithm, achieved the highest  R2 and low-
est RMSE values, indicating its superior accuracy in AGB 
estimation. The spatial distribution of AGB was mapped at 
a 30 m resolution, with the majority of the area displaying 
AGB values in the range of 50–100 t/ha. This illustrates the 
proficiency of ML methods in precisely estimating AGB 

Fig. 6  Validation plots for the 
predicted AGB for a RF, b 
XGB, and c BRT obtained from 
the Model 2
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(Dube & Mutanga, 2015). Non-parametric models excel 
in managing the non-linear relationships between forest 
AGB and satellite data (Liu et al., 2017). Furthermore, the 
ability of the ML algorithms to manage non-linearity and 
assess the significance of predictor variables underscoring 
its effectiveness (Pandit et al., 2018). This research applied 
an allometric equation originally proposed by Chave et al. 
(2005) to estimate the AGB. This method takes into account 
both the DBH and the height of trees within the sample 
plots. In a study conducted by Lambert et al., (2005) found 
that adding tree height to allometric equations, alongside 
DBH, improves the accuracy of tree volume estimates and 
decreases the root mean squared error in predictions of total 
tree biomass. Furthermore, another research conducted by 
Frank et al., (2018) highlighted the importance of including 
tree height in models to better reflect variations across dif-
ferent locations.

Relationship Between Satellite Data and AGB

The integration of optical and SAR data marks an advance-
ment in forest AGB estimation over the use of either data 

source in isolation. While optical imagery provides detailed 
information on the horizontal layout of forests, its pen-
etrative capacity is limited, primarily capturing surface 
features rather than the full vertical profile (Myneni et al., 
2001). SAR data, particularly at longer wavelengths such as 
L-band and P-band, can pierce through the canopy to reveal 
the crucial vertical structure indicative of AGB, which is 
predominantly composed of stem and branch biomass. The 
synergistic use of both optical and SAR data leverages the 
strengths of each. This combined approach, therefore, holds 
significant promise for enhancing the accuracy and reliabil-
ity of AGB measurements. This study selected Sentinel-1 
SAR data at C-band, because it was readily available for the 
geographic location of the study. The study examined the 
VV and VH polarization channels as the predictor variables 
of the SAR data. The accuracy of AGB estimation by SAR 
can be compromised by the terrain and can suffer from sig-
nal saturation in very dense or high-biomass areas (Imhoff, 
1993; Le Toan et al., 1992; Luckman et al., 1997). It has 
been documented that C-band SAR backscatter typically 
reaches saturation at AGB levels ranging from 30 to 50 t/
ha (Lucas et al., 2015). In the case of optical data, NDVI 

Fig. 7  Validation plots for the 
predicted AGB for a RF, b 
XGB, and c BRT obtained from 
the Model 3
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and EVI are commonly utilized vegetation indices, yet in 
this study, NDRE1 and GNDVI were found to be superior 
in estimating AGB in the correlation analysis. This aligns 
with Wang et al. (2007), who found GNDVI more precise 
than NDVI in LAI estimation across various conditions. 
Likewise, these findings are consistent with the research 
conducted by Otsu et al. (2019), who reported the superior 
performance of GNDVI in differentiating between broad-
leaf and needleleaf forests compared to NDVI. Supporting 
this, Yoder and Waring (1994) identified the green spec-
tral band as more correlational with photosynthetic activ-
ity in the tree canopies of miniature Douglas-firs than the 
red spectral band. The difference in efficacy between NDVI 
and GNDVI can be attributed to NDVI being more sensi-
tive to lower chlorophyll concentrations, while GNDVI is 
more effective at detecting higher chlorophyll levels, thereby 
providing greater accuracy in assessing chlorophyll concen-
tration in tree crowns (Gitelson et al., 1996). In this study, 
NDRE1 also emerged as a superior predictor for estimating 
AGB primarily due to its sensitivity in capturing chlorophyll 
content. The sensitivity of the red-edge bands is particularly 
crucial, as the reflectance in these bands is influenced by the 
thickness of the tree canopy layers. Research conducted by 

Horler et al. (1983), and Eitel et al. (2011), has shown that 
the red-edge spectral band is particularly adept at estimat-
ing AGB in areas of dense canopy coverage, providing a 
more accurate measurement than traditional vegetation indi-
ces through its ability to detect chlorophyll absorption and 
reflection in leaves. This finding is supported by Mutanga 
et al. (2012) and Laurin et al. (2018), who have also reported 
a relationship between the reflectance of red-edge bands and 
factors such as canopy density and biomass. Since NDRE1 
effectively captures variations in these red-edge bands, it 
serves as a more accurate indicator of the chlorophyll con-
tent and, by extension, the overall health and biomass of the 
canopy. This sensitivity makes NDRE1 particularly effec-
tive in environments with dense vegetation, where traditional 
indices like NDVI might be less responsive due to satura-
tion. NDRE1’s ability to detect subtle changes in chloro-
phyll content in these dense canopy layers provides a more 
nuanced and accurate estimation of biomass, distinguishing 
it from other vegetation indices and explaining its superior 
performance in the study. In compliance with the previous 
studies (Ali et al., 2015; Ghosh & Behera, 2018; Liu et al., 
2019; Sinha et al., 2015), this study has also demonstrated 
that by integrating SAR parameters with optical (particularly 

Fig. 8  Validation plots for the 
predicted AGB for a RF, b 
XGB, and c BRT obtained from 
the model 4
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Fig. 9  Performance metrics of four models on AGB Prediction using RF, XGB and BRT models- (a) Coefficient of determination (R2), (b) Root 
Mean Square Error (RMSE) in t/ha (c) Mean Absolute Error (MAE) in t/ha

Fig. 10  AGB map predicted 
using best fitted model
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the red-edge (B5) spectral band) and terrain parameters in 
ML models, the saturation threshold for biomass density 
measurements increases, extending up to a higher value.

Efficacy of Machine Learning Approaches in AGB 
Estimation

Earlier studies on biomass estimation predominantly 
employed standard statistical regression techniques, for 
instance, linear regression, which implied a direct linear 
correlation between independent and dependent variables 
(Dong, et al., 2003; Le Toan et al., 1992). However, the 
complexity of the relationship between AGB and satellite 
data is not adequately addressed by these classical meth-
ods. Advanced ML approaches, like RF and XGB, are adept 
at delineating the intricate non-linear relationships present 
within heterogeneous data distributions and effectively 
integrating diverse data sources to enhance the accuracy 
of biomass estimations. Many previous studies revealed 
that combining ML algorithms with multi-sensor RS data 
helps in preventing overfitting and significantly enhances 
estimation accuracy. For instance, a study conducted by 
Behera et al. employed a combination of 71 spectral and 
texture variables, derived from Sentinel-2 in the RF model 
for estimating AGB in the regional landscape of Eastern 
Ghats (Behera et al., 2023). Another study conducted by 
David et al. combined Sentinel-1 SAR and Sentinel-2 mul-
tispectral imagery in the RF model to assess AGB of dryland 
forests of Southern Africa (David et al., 2022). In a related 
study, Singh and the team compared the efficacy of RF and 
Artificial Neural Network (ANN) models to estimate the 
AGB of dry deciduous forests using Sentinel-2 data of dif-
ferent seasons (Singh et al., 2022). In their study, Ghosh and 
Behera used RF and stochastic gradient Boosting modelling 
to assess the AGB of dense tropical forests by harnessing 
70 predictor variables derived from Sentinel-1 and Senti-
nel-2 data (Ghosh & Behera, 2018). Similarly, the present 
study incorporated 112 predictive variables from Sentinel-1, 
Sentinel-2 data along with variables derived from elevation 
data and the height product (Supplementary File). Among 
the three modelling approaches analysed in this study, XGB 
achieved the best results, exhibiting the highest R2 and the 
lowest RMSE, outperforming both the RF and BRT mod-
els. The superior performance of XGB in this study can be 
primarily attributed to its inherent algorithmic strengths. 
XGB represents an enhanced gradient boosting framework 
known for its flexibility and ability to adjust residuals in the 
process of developing new trees from existing ones, unlike 
the RF model where trees are constructed independently 
(Chen & Guestrin, 2016; Friedman, 2002). XGB represents 
a more refined version of gradient boosting systems, excel-
ling in processing a regularized learning objective, a fea-
ture instrumental in mitigating overfitting (Chen & Guestrin, 

2016). However, it’s important to note that challenges like 
overestimation and underestimation, a common issue in ML 
algorithms for AGB estimation, were not entirely resolved 
(Stelmaszczuk-Górska et al., 2015). A key limitation of the 
decision trees, fundamental to both RF and XGB methods, 
is their inability to extrapolate beyond the data present in 
the training set. Moreover, when employing remote sensing 
datasets for biomass estimation, issues of data saturation can 
arise (Mutanga & Skidmore, 2004). Additionally, the limited 
number of plots used in this study restricted the opportunity 
for a more stratified estimation approach, which might be 
based on different biomass levels or forest types. Such an 
approach could potentially reduce estimation errors further. 
Li et al. (2021) observed that XGB surpassed RF in perfor-
mance, and another comparison by Li et al. (2020) revealed 
that XGB excelled beyond both RF and linear regression. 
The findings of this study are also in concordance with the 
research done by Zhang et al. (2021) and Luo et al. (2022), 
which have shown that XGB tends to surpass RF in the 
performance of regression models. The RF algorithm dem-
onstrated greater ease of calibration and resilience against 
overfitting compared to BRT, an advantage linked to the 
bagging technique, which lessens the prediction model’s 
variance. This aligns with the literature indicating superior 
performance of the RF model over BRT (Wang et al., 2018).

Multi‑Sensor Earth Observation Studies in Indian 
Forests

Studies have employed remote sensing methods to investi-
gate the biomass of Indian forests, adopting either single or 
combined use of optical, SAR, and LiDAR data. Reddy et al. 
(2016) explored the spatial distribution of biomass carbon den-
sity in Indian forests from 1930 to 2013 using satellite remote 
sensing data, historical archives, and collateral data. The study 
estimated the total aboveground carbon stock (3070.27 Tg C) 
in 2013, with notable variations observed through different 
periods. In a study carried out by Ghosh and Behera (2018), 
they investigated AGB estimation in dense tropical forests 
using multi-sensor data from Sentinel-1A and Sentinel-2A 
satellites, combined with machine learning algorithms like 
RF and stochastic gradient boosting. Their research, focused 
on Shorea robusta and Tectona grandis species in Katernia-
ghat Wildlife Sanctuary, Uttar Pradesh, demonstrates the effi-
cacy of integrating SAR data, texture images, and vegetation 
indices in enhancing AGB estimation accuracy, highlighting 
the potential of Sentinel satellite data and machine learning 
in forest biomass assessments. Singh et al. (2022) applied a 
methodology employing open-source satellite data and ML 
techniques to monitor AGB at finer scales in Tundi Reserved 
Forest, Jharkhand. Their case study in the dry deciduous tropi-
cal forest of Tundi forest highlighted the superior performance 
of RF and ANN models using wet season Sentinel-2 data, 
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while dry season data proved challenging for AGB estimation, 
underscoring the potential of the methodology in enhancing 
forest carbon stock monitoring. Bhandari and Nandy (2023) 
conducted research that utilized terrestrial laser scanning 
(TLS) and satellite-derived forest canopy density (FCD) and 
spectral indices to predict AGB in the Barkot Reserve Forest 
in Uttarakhand, demonstrating a strong correlation between 
TLS measurements and field data. Their approach, combin-
ing TLS data with FCD classifications from Landsat-8 OLI, 
proved effective in estimating the study area’s AGB with high 
precision. Another study conducted by Singh et al. (2023) 
Barkot Reserve Forest focused on integrating TLS and ALOS 
PALSAR L-band SAR data for AGB estimation using machine 
learning algorithms. The research combined various SAR-
derived parameters with TLS measurements of tree dimen-
sions, finding that the RF algorithm outperformed the ANN 
in AGB prediction, demonstrating the potential of SAR and 
LiDAR data fusion in enhancing forest biomass assessments. 
In research conducted by Behera et al. (2023) on estimating 
regional forest landscape AGB integrated textural and spec-
tral variables from Sentinel-2 with ancillary data, effectively 
overcoming optical remote sensing saturation effects. Utilizing 
an RF model, the study achieved a significant correlation in 
AGB variability, demonstrating the potential of this integrated 
approach for enhancing AGB mapping accuracy and its appli-
cability in developing generalized AGB models. Sainuddin 
et al. (2023a) investigated the use of multifrequency SAR 
data in estimating AGB in the tropical forests of the Western 
Ghats region of Kerala by applying a vector radiative trans-
fer (VRT) theory-based scattering model. The study utilized 
dual-pol SAR data from L-band ALOS-2, S-band NovaSAR, 
and C-band Sentinel-1 to retrieve biophysical parameters like 
tree height and trunk radius, which were then used to estimate 
AGB using a general allometric equation. Validation with 
ground truth data showed the L-band data provided the most 
accurate AGB estimates, demonstrating its superior potential 
in biomass estimation over S- and C-band data. In a study 
conducted by Ayushi et al. (2024), they addressed the com-
plexity of estimating AGB in tropical biodiversity hotspots 
by employing seven machine learning algorithms to analyse 
multisource datasets, including Sentinel-1 and -2, topography, 
soil, and climate. Their findings highlight the effectiveness of 
an ensemble stacking approach, which integrates these diverse 
datasets for AGB prediction, showcasing high accuracy and 
the importance of environmental variables in enhancing esti-
mation precision.

Conclusion

This research has integrated SAR and multispectral imagery 
from satellites along with physical parameters to map AGB 
across the deciduous forests of the Purna regional landscape 

in the Western Ghats. The findings of this study indicate 
that the enhanced accuracy in AGB estimation can be 
achieved through the synergy of different data types—both 
SAR and multispectral sensors. By meticulously applying 
and comparing models like RF, XGB, and BRT, the study 
has unveiled their unique advantages when used in synergy 
with satellite data. The models demonstrated their capabil-
ity to handle the complex, non-linear relationships that exist 
between the satellite-derived variables and AGB, with XGB 
consistently surpassing the performance of RF and BRT in 
accuracy. Model 4, leveraging XGB, emerged as the most 
precise, with its superior performance being reflected in the 
highest  R2 of 0.61 and the lowest RMSE of 37.85 t/ha. The 
spatial analysis at a 30 m resolution highlighted the distribu-
tion of AGB across the landscape, revealing the effectiveness 
of ML methods in capturing the gradations of biomass den-
sities, from low to high AGB ranges. The study demonstrates 
that the fusion of freely accessible SAR and multispectral 
data (from Sentinel-1 and Sentinel-2) has the capacity to 
enhance the accuracy of AGB estimation. SAR backscatter 
data, when combined with selected optical band data, par-
ticularly from red-edge wavelengths, markedly improved the 
efficacy of the estimation process and mitigated the satura-
tion phenomena usually seen in high biomass areas. Indi-
ces such as NDRE1 and GNDVI exhibited stronger linear 
correlations with AGB than traditional indices like NDVI, 
with GRVI and EVI. The precision and timeliness provided 
by these methods are vital for a deeper comprehension of 
tropical forest ecosystems and for the effective management 
of forest resources within protected areas. Moving forward, 
using new technologies and methods could make the estima-
tion of AGB even more accurate. Advancements in sensor 
technology, including the arrival of higher-resolution satel-
lite imagery, promise to provide data with greater detail, 
facilitating a more accurate analysis of AGB. The next gen-
eration of sensors, including LiDAR profilers like ICESat-2, 
GEDI, and MOLI, along with SAR sensors such as NISAR, 
BIOMASS, and ALOS-2, are poised to deliver unparalleled 
precision and resolution in AGB measurements. Exploring 
the potential of convolutional neural networks and other 
deep learning frameworks might reveal patterns and correla-
tions in environmental data that are currently underutilized. 
As the accuracy of AGB estimation continues to improve, 
these methodologies hold great promise for better informed 
and more effective environmental policy and resource man-
agement decisions.
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