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Abstract
This study attempts to investigate whether the mangroves of Maharashtra, India, are acting as a source or sink of carbon. 
Additionally, efforts were made to develop the empirical model using ground-based tree biomass and satellite-based indi-
ces to estimate above-ground biomass (AGB) for the state of Maharashtra for the year 2018–19. Total of 44 geotagged, 
well-distributed sample plots (0.1 ha each) were laid down to measure the tree girth and height (of all the trees) of different 
mangrove species. The available biomass equations were used to estimate the AGB at the plot level. Normalized Difference 
Vegetation Index (NDVI) and plot-wise AGB correlation were tested for minimum, maximum, sum and amplitude of stacked 
monthly NDVI. The strongest correlation of AGB was observed with maximum NDVI and was therefore used in regres-
sion analysis to estimate the AGB and carbon present in mangroves. Carbon values ranged from 2.78 to 249.64 t C ha−1. 
Carbon sequestration was estimated using statistical method by estimating the difference in total carbon content within the 
mangroves between the years 2005–06 and 2018–19. Total carbon content was determined by multiplying per hectare AGB 
with the mangrove area for the respective years. In 2005–06, the carbon pool in the state amounted to 1.08 × 106 tonnes, 
which increased to 1.32 × 106 tonnes by 2018–19. The mangroves in Maharashtra sequestered a total of 0.24 × 106 tonnes of 
carbon from 2005–06 to 2018–19, confirming their role as a carbon sink.
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Introduction

Mangroves are highly productive ecosystems (Alongi, 2015) 
and are considered the largest potential sinks of atmospheric 
carbon (Matsui et al., 2010). They are among the most car-
bon-rich biomes, with an average of 937 t C ha−1 (Alongi, 
2015). Many studies conducted worldwide have observed 
that mangrove forests have significantly higher carbon 
sequestration rates compared to other forest types (Nyanga, 
2020). According to Gibbs et al. (2007), mangroves and their 
associated environments alone capture more than 55% of 
biological carbon, often referred as 'green carbon’.

The ongoing debate regarding whether forests act as 
sources or sinks of carbon dioxide (CO2) continues to this 
day (Devi et al., 2023; Harris et al., 2021; Trumper, 2009). 

The reason behind this is, on one hand, the forest sequesters 
atmospheric CO2, and on the other hand, sequestered CO2 is 
lost when the forests are removed. When the carbon seques-
tration rate is higher than the rate of carbon loss, the forests 
act as a sink of carbon, whereas when the carbon loss rate is 
higher than the rate of carbon sequestration, the forests act 
as carbon source.

The carbon pool can be estimated through the assess-
ment of vegetation biomass. In many studies, it has been 
noted that carbon typically accounst for 43% to 50% of the 
total AGB (Ma et al., 2018). Traditional AGB estimation 
methods were inherently destructive, involving the felling 
of trees to assess component-wise AGB after oven drying. 
Later on methods were developed to estimate bole AGB by 
non-destructive/least destructive methods which involved 
extracting small bole sample using a corer, oven drying, 
and extrapolating the observations to the tree level using 
different observations, i.e. tree girth and height (Tiwari, 
1992; Kale et al., 2015).

The values estimated using these methods provide the 
primary data for AGB estimation. Nevertheless, devel-
oping species and area-specific biomass equations, even 
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with non-destructive approaches, poses a challenge. This 
challenge arises from the need for a large number of bole 
samples across various girth classes, representing diverse 
climatic, edaphic, and topographical conditions. Due to 
these reasons, there is a dearth of species and area-specific 
biomass equations particularly for mangrove species in the 
Indian context. The Forest Survey of India (FSI) has under-
taken significant efforts to formulate tree volume equations 
for different tree species in the country (Brahma, et al., 2021; 
FSI., 1996). Such volume equations have been utilized for 
AGB estimation in numerous studies (Kale et al., 2009; 
Saxena et al., 2003); however, for many tree species, these 
equations are still lacking.

Satellite remote sensing plays a crucial role in mapping 
mangrove ecosystems, primarily because traversing through 
mangroves for field-based investigations is challenging due 
to harsh environment. The synoptic view provided by the 
remote sensors helps in regular monitoring of mangroves 
(Blasco et al., 2001; Kumar et al., 2013). Wang et al. (2019) 
conducted a comprehensive review of remote sensing of 
mangroves from 1956 to 2018, emphasizing its role in map-
ping, estimating biophysical parameters, and characterizing 
ecosystem processes within mangroves.

While most of the earlier studies primarily focused on 
mapping the extent of mangroves, recent research, particu-
larly from 2012 onwards, has shifted its emphasis towards 
climate change (Mandal & Bar, 2018), Leaf Area Index 
(LAI) (Gnanamoorthy et al., 2021), carbon flux (Zhao et al., 
2022), Light Use Efficiency (LUE) (Lele et al., 2021), and 
evapo-transpiration (Zhu et al., 2020) estimations. Numer-
ous satellite datasets, including Landsat since 1972 (Goward 
et  al., 2006), SPOT   since 1985 (Chevrel et  al., 1981), 
IKONOS since 1999 (Dial et al., 2003), MODIS since 2000 
(Justice et al., 2002), Quick Bird since 2001 (Toutin et al., 
2002), World View since 2007 (Poli et al., 2009), Gaofen 
since 2013 (Chen et al., 2022), and Sentinel since 2015 
(Nagler et al., 2015), have been utilized in various studies 
related to mangrove mapping, biophysical parameter estima-
tion, and climate change research (Wang, 2019).

With the availability of free satellite datasets such as 
Sentinel 2 having 10 m resolution and a revisit time of 
5 days, high-resolution temporal and spatial mapping of 
mangroves has become more feasible. Moreover, Senti-
nel 2 data have been found to be more accurate in predict-
ing AGB using vegetation indices than that of Landsat 8 
(Nguyen & Nguyen, 2021). Additionally, satellite data 
from LISS IV, which includes visible and, near-infrared 
(NIR) with a spatial resolution of 5.8 m, have been proved 
extremely valuable in carrying out mangrove community 
zonation mapping. Furthermore, the synthesized LISS IV 
band (Rout et al., 2019) has been found highly effective in 
distinguishing between mangrove and non-mangrove veg-
etation. Precise mangrove classification is crucial to ensure 

the accurate estimation of carbon stocks. Satellite remote 
sensing has been extensively used in developing empirical 
biomass models for pixel level biomass estimation. Differ-
ent satellite-derived indices such as Normalized Difference 
Vegetation Index (NDVI), Ratio vegetation index (RVI), and 
Enhanced vegetation index (EVI) have been found highly 
correlated with ground-based AGB observations (Li et al., 
2007; Alatorre et al., 2012) and improves the estimation 
accuracy(Opelele et al., 2021; Singh et al., 2023; Sun et al., 
2015), thus can be effectively used in regional level AGB 
estimation using empirical models.

Carbon budget studies are important because of their 
linkage with changing climate. Mangrove can be part of the 
REDD + mechanism to bring additional financial resources 
to the mangroves and develop comprehensive management 
and conservation activities (Ajonina et al., 2014). Such goals 
can be achieved based on the robust and accurate carbon 
budget studies.

The present research is aimed at the estimation of carbon 
pools of mangroves of Maharashtra, developing an empiri-
cal model for ha−1 AGB estimation and studying the carbon 
pool for 2005–06 and 2018–19, to understand whether the 
mangroves of Maharashtra are source or sink of carbon.

Study Area

The study was carried out in the mangrove vegetation 
of Maharashtra, which lies along the west coast of India 
between 15° 45’ to 20° 00’ N latitudes and 68° 00’ to 73° 
30’ E longitudes having a coast line of 720 km. (Ajai et al., 
2012) (Fig. 1).

The shoreline is oriented more or less north–south, 
bounded by the Arabian Sea in the west and the Western 
Ghats in the east. The coastal track is relatively broader in 
the north and narrows down in the south and is characterized 
by pocket beaches flanked by rocky cliffs of Deccan basalt. 
Highly dissected coastal topography forms the principal gov-
erning feature along southern Maharashtra coastal districts 
with numerous faults (Ajai et al., 2012). About 70% of the 
coast has patches of mangrove vegetation spreading inwards 
around 44 creeks (Gnanappazham, 2020). There are about 
34 pocket beaches along the coast line (Gunasekaran et al., 
2022). The shoreline stretches from Zai Creek bordering 
Gujarat in the North to the Terekhol River bordering Goa 
in the South. All the six coastal districts have coastal/riv-
erine mangrove vegetation, spread across 35 talukas with 
Raigarh district having maximum mangrove vegetation 
(41.64%) followed by Mumbai (15.49%), Thane (14.73%), 
Palghar (13.53%), Ratnagiri (10.21%) and Sindhudurg dis-
trict (4.4%) as on 2018–19. The dominant mangrove species 
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being Avicennia marina (Forssk.) Vierh., Sonneratia alba J. 
Smith, and Avicennia officinalis L.

Materials and Method

Indian Remote Sensing satellite (IRS)—Linear Imaging Self 
Scanning Sensors (LISS) IV (low-tide) data (including the 
LISS IV SWIR synthetic band) for the year 2018–19 and 
IRS—LISS III data of 2005–06 were used for mangrove 
extent mapping and carbon sequestration estimation. Atmos-
pherically corrected Sentinel 2 data (2018–19) with a spatial 
resolution of 10 m were used for spectral response modelling 
and developing an empirical model for per pixel biomass 
estimation.

Mangrove Mapping

The IRS P6 LISS IV low tide satellite images were used 
for mapping mangrove class (dense and Open) using the 
on-screen digitization method at 1:25,000 scale, based on 

the basic elements of visual interpretation like tone, tex-
ture, shape, size and association. The synthetic IRS LISS IV 
SWIR data were used mainly to separate out the mangrove 
and non-mangrove vegetation. The SACRS2 (Scheme for 
Atmospheric Correction of Resourcesat-2 (RS2) AWiFS 
data) package developed by Space Application Centre, ISRO 
was used for processing LISS IV data and converting digital 
numbers to reflectance before merging SWIR band (Pan-
dya et al., 2014, Rout et al., 2019).

A total of 20 mangrove species and 95 mangrove asso-
ciates were encountered in the study area (supplementary 
material (1)). These mangrove species in different asso-
ciation were delineated into 32 mangrove communities. 
The reference of field-based investigations and Google 
Earth images  (Google, 2022) was taken to delineate the 
communities. These communities were homogenized to 
prepare the mangrove extent map covering dense and open 
mangrove categories for the year 2018–19. This map was 
overlaid on the cloud free IRS LISS III satellite data of the 
year 2005–06 to delineate the change in mangrove extents 
in accordance with the methodology adopted by Roy et al. 

Fig. 1   Maharashtra state- districts and taluka map having mangrove vegetation (source-District boundary, Survey of India, 2023)
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(2016) and Meiyappan et al. (2017). For all the interpreta-
tions, low-tide LISS III satellite data were used, however, 
wherever low tide data were not available, historical avail-
able Google Earth low tide images were referred for con-
forming the mangrove extents . The tidal status of satellite 
data used were confirmed using the historical tide timings 
using the application available at https://​tides​4fish​ing.​com/​
lunar-​calen​dar app.

The variations in the tide have a significant effect on 
mangrove delineation, as the mangrove gets completely 
or partially inundated during high tide, the spectral sig-
natures of mangroves get altered (Xia et al., 2018). This 
also affects the interpretation of mangrove spatial extent, 
thereby influencing  the estimation of mangrove area (Sup-
plementary material 2.jpeg).

In addition to this, Landsat-8 OLI (30 m) imageries 
for the year 2018–19 were also used for validation pur-
pose. Multi-date high-resolution Google Earth Pro image-
ries were referred for confirmation of doubtful areas, and 
demarcation of closely associated classes like orchards and 
salt marsh.

Field Investigations

Field investigations were carried out for ground truthing 
and laying random fixed sample plots (0.1 ha) for making 
observations related to tree AGB estimation between Octo-
ber 2019—October 2022. Total 0.01% sampling of the total 
mangrove area (376 km2) was carried out which required 
a minimum of 38 plots. In the present study, a total of 44 
sample plots were laid down (Fig. 2).

Parameters like image tone and texture variability, dis-
tance from the coast, salinity status, fresh water availability 
and geomorphology were considered to lay down the ground 
sample plots. Plots were planned in such a way that maxi-
mum tonal variability owing to different species and their 
associations were addressed. Attempts were made to lay the 
sample plot during the low tide. Once the desired location 
was reached, the centre tree was marked (C1) with the metal 
plate attached to a loose string. Corner trees of the plot were 
marked as C2, C3, C4 and C5, respectively (Supplementary 
material 3.jpeg). A detailed inventory of all the identified 
mangrove trees, shrubs and herbs was carried out. In case of 
doubtful identity, species photographs were taken to carry 
out identification in laboratory.

All the trees falling inside the plots were identified to the 
species level and measured for their height (m) and CBH 
(circumference at breast height (cm)). The visual evidence 
of disturbance, i.e. lopping/grazing/fire, was recorded. The 
vegetation type as observed on the field was also recorded.

The preliminary mangrove map prepared was validated 
on the ground for different mangrove classes and necessary 

corrections were made. Total 500 + way points throughout 
the mangrove areas were collected, and their attributes were 
recorded. These were used for post-field validation of the 
mangrove (open and dense class) and non-mangrove classes 
(Fig. 2).

Biomass and Carbon Pool Estimation

The tree AGB was estimated using the available allometric 
equations available in the literature (Table 1).

The plot-wise AGB provides the biomass for 0.1 ha which 
was averaged to ha−1 AGB separately for dense and open 
mangroves. The carbon stock was estimated using the equa-
tion Cag = 0.50 Wag (where Cag is the above-ground carbon 
stock, and Wag is the AGB) (Brown, 1997; Petersson et al., 
2012).

For the present study, whenever possible, species-
specific equations were utilized from the literature, tak-
ing into account the unique characteristics and attributes 
of individual mangrove species, however, in cases where, 

Fig. 2   Sample plots and waypoints distribution

https://tides4fishing.com/lunar-calendar
https://tides4fishing.com/lunar-calendar
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species-specific equations were not available, generalized 
equations available were used for the estimation of carbon 
stocks across diverse mangrove species. The wood den-
sity of different mangrove species was obtained from the 
World Agro Forestry Database (Chave et al., 2009). Since 
understory vegetation (seedlings and herbs) is negligible in 
mangrove systems, they were not considered for ecosystem 
carbon stock estimations (Kauffman and Donato 2011; Har-
ishma et al., 2020).

Biomass Modelling

Out of a total of 44 plots, 36 plots were used for developing 
the empirical model. The per pixel AGB was estimated using 
the spectral response modelling approach by experiment-
ing the relationship between plot-wise AGB and different 
NDVI variants. The Google Earth Engine (GEE) (Gorelick, 
et al., 2017) was used for obtaining monthly atmospherically 
corrected NDVI values for the months of October, Novem-
ber, December, January, February, March, April and May 
(2018–2019) (by applying sensor independent atmospheric 
correction algorithm (SIAC)) for Sentinel 2A dataset avail-
able in the Google Earth Engine archives). The bands used 
to calculate NDVI indices were B4 (red) and B8 (NIR). Only 
dataset having less than 10% cloud percentage were used. 
Whenever more than one satellite data were available for 
each month, the date in which the maximum value of the 
NDVI was available was used for monthly stacking. Dif-
ferent NDVI variants, i.e. maximum, minimum, sum and 
amplitude NDVIs, were obtained from the stacked NDVIs 
of October 2018 to May 2019. Maximum NDVI is the maxi-
mum NDVI value obtained from all the months considered 

together, whereas, minimum and sum NDVI are minimum 
and aggregated NDVI values respectively obtained from all 
the months considered together. The amplitude NDVI is the 
difference between the minimum and maximum NDVI val-
ues obtained when all the months were considered together. 
All the NDVIs were resampled to 30 m x 30 m pixel size to 
have an exact match with the ground-based plot dimension 
(Fig. 3).

The plot-wise AGB values were regressed against the 
different NDVI estimates. The linear, power and exponen-
tial models were explored to develop the empirical model. 
The best model was used to estimate per pixel AGB using 
the relevant regression equation.

Carbon Sequestration Estimation

The per hectare average carbon present in dense and open 
mangrove obtained by averaging plot-wise carbon ha−1 
was extrapolated in the respective classes for the years 
2005–06 and 2018–19 to obtained carbon for the year 
2005–06 and 2018–19 respectively (Nguyen et al., 2019; 
Nguyen & Nguyen,  2021). The class-wise difference 
between carbon amounts for the duration provided class-
wise carbon sequestration by mangroves. Based on this, 
it was determined whether the mangroves of Maharashtra 
are acting as a source or sink of carbon.

The overall methodology is presented in Fig. 3
In order to make additional validation of the car-

bon sequestration, MODIS Gross Primary Productivity 
(MODIS-GPP) product was used. The GPP products for all 
land areas are available since year 2001 (https://​earth​explo​

Table 1   The Allometric 
equations used for estimation 
of AGB

D – Diameter at breast height (cm); H-maximum height of measured tree (feet), p – wood density (cm−3); 
Avicennia officinalis L. (p = 0.59 gcm−3), Aegiceras corniculatum (L.) Blanco (p = 0.51 gcm−3), Bruguiera 
cylindrica (L.) Blume (p = 0.72gcm−3), Excoecaria agallocha L. (p = 0.39 gcm−3), Heritiera littoralis Dry-
and. ex Aiton (p = 0.79 gcm−3), Sonneratia alba J. Smith (p = 0.078 gcm−3) (Chave et al. 2005)

No Allometric equation 
(above-ground biomass)

Species Reference

1 0.1848D2.3524 Avicennia marina (Forssk.) Vierh Dharmawan and Siregar (2008)
2 0.1466D2.3136 Rhizophora mucronata Lam Dharmawan and Siregar (2008)
3 0.0275 D3.22 Rhizophora apiculata Bl Pambudi (2011)
4 0.251pD2.46 Avicennia officinalis L Komiyama (2005)
5 0.168pD2.47 Aegiceras corniculatum (L.) Blanco Chave et al. (2005)
6 0.251pD2.46 Bruguiera cylindrica (L.) Blume Komiyama (2005)
7 0.168pD2.47 Excoecaria agallocha L Chave et al. (2005)
8 0.168pD2.47 Heritiera littoralis Dryand. ex Aiton Chave et al. (2005)
9 0.163D2.37 Lumnitzera racemosa Willd Nam (2009)
10 0.105D2.68 R. mucronata Lam Zanne et al. (2009)
11 0.0825*(D2H)0.89966*p Sonneratia alba J. Smith Kauffman et al. (2011)
12 0.280(D2H)0.693 Sonneratia apetala Buch.-Ham Wang et al (2015)
13 0.0341D1.03 Kandelia candel (Perr.) C.B.Rob Wang et al (2015)

https://earthexplorer.usgs.gov
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rer.​usgs.​gov). The products were accessed using Google 
Earth Engine and annual GPP sum was computed for year 
2005–06 and 2018–19. The annul sum for the mangrove 
area was evaluated using the respective mangrove mask 
for the year 2005–06 and 2018–19.

Results and Discussion

Mangrove Mapping and Carbon Sequestration

The interpretation of derived map revealed that total man-
grove area in the Maharashtra state in the year 2018–19 
was 376.13 km2. Total mangrove area under dense (den-
sity > 40%) and open mangroves (density < 10–40%) for-
ests in the year 2018–19 was 210.50 km2 and 165.71 km2, 
respectively (Fig. 4a and b). In Maharashtra the dominant 
mangrove species is Avicennia marina (Forssk.) Vierh., 
followed by Sonneratia alba  J. Smith and Rhizophora 
mucronata Lam. The dominant mangrove species in north-
ern Maharashtra is Avicennia marina  (Forssk.) Vierh. 
(78%), followed by Sonneratia apetala Buch.-Ham. (11%) 
and Sonneratia alba J. Smith. (7%), whereas, the dominant 
species in southern Maharashtra is Avicennia officinalis L. 
(31%) followed by Sonneratia alba J. Smith (27%) and 
Rhizophora mucronata Lam (17%) (Supplementary mate-
rial 1.dox).

From 2005–06 to 2018–19, there was an increase of 71.75 
km2 of mangrove area. The dense mangrove increased from 

176.77 km2 in 2005–06 to 210.50 km2 in 2018–19. The 
open mangrove increased from 127.69 km2 in 2005–06 to 
165.71 km2 in 2018–19. The open mangrove transformed to 
dense mangrove is 37.84 km2, whereas, the dense mangrove 
converted to open mangrove is 23.31 km2. New areas that 
came under mangrove cover were 93.65 km2 out of which 
open mangrove is 66.56 km2 and dense mangrove is 27.26 
km2. Total area lost to natural and anthropogenic factors 
was 22.02 km2 out of which 13.96 km2 were open and 8.06 
km2 were dense mangroves. The primary causes for the loss 
of mangrove are developmental activities, aquaculture, rec-
lamation, habitat loss and erosion, whereas, an increase in 
mangrove area is attributed to siltation (Mendiratta et al., 
2015) and sea water inundation of cropland areas as it 
formed new grounds for the establishment of the mangroves. 
Along with this plantation and protection by  the forest 
department also contributed to an increase in mangrove area.

The total carbon sequestered by the mangroves from the 
year 2005–05 to 2018–19 is 0.24 × 106 tonnes, out of these 
open mangroves sequestered 0.10 × 106 tonnes of carbon, 
whereas, dense mangroves sequestered 0.15 × 106 tonnes of 
carbon (Table 2). It is therefore the mangroves are found to 
be the net sink of carbon.

The value of carbon estimated in the present study 
is in accordance with similar studies carried out in 
the mangrove forest. In recent studies Ragavan et  al. 
(2021), reported an  average vegetation carbon stock of 
290.26 ± 319.96 ± 27.28 t C ha−1 for the Andaman region. 
Rani et al. (2023) reported carbon from Kochi with a range 

LISS 4 
(2018-19)

Monthly Sentinel 2 
(2018-19)

Ground based observations -Sample Plots (0.1 ha)  

Mangrove Community 
Zonation

NDVI  Estimates

Field Observations 
(CBH, Height, Species name)

Mangrove Extent 
(2018-19)

Plot-wise Biomass

Average Biomass (t/ha)

LISS 3 
(2005-06)

Mangrove Extent 
(2005-06)

Biomass Estimation 2018-19

Mangroves  Carbon Source or Sink?

Regression 
modelling

Satellite data

Selec�on of observa�on points represen�ng different 
Sample plot loca�ons (roi)

Defining �me range for Sen�nel 2 dataset 
(October 2018-May 2019)

Defining a func�on to add the Vegeta�on index  (NDVI)  to 
image and calculate the NDVI of a 3x3 pixel neighborhood 

around a roi

Applying condi�on for cloud percentage (<10%) and
Applying SIAC Atmospheric correc�on

Google Earth Engine environment

Fig. 3   Approach for AGB estimation

https://earthexplorer.usgs.gov
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of AGB of 171.68 ± 104.42 t C ha−1 and Banerjee et al. 
(2021) reported total carbon (TC) in a range of 51.35 ± 6.77 
to 322.47 ± 110.79 t C ha−1 from Bhitarkanika Wildlife 
Sanctuary, which is in an acceptable range of the currently 
estimated carbon study.

The carbon pools of AGB estimated by Kauff-
man et  al. (2011) in the Micronesian mangrove for-
ests was 104.4  t C  ha−1 at Palau and 169.2 t C ha−1 at 
Yap. whereas,  Donato et  al. (2011) estimated  an aver-
age  1127.664 t C ha−1 in Indo-pacific region mangroves. 
These were much higher than the above-ground carbon pools 
estimated in the present study (highest carbon of 249.69 t 
C ha−1). Majority of these mangroves forests (like Anda-
man, Bhitarkanika, Kochi, etc.,) are quite different and dense 
compared to mangrove cover of Maharashtra. It is important 
to note that some sites in Northern Maharashtra are dense 
but short-heighted (1–3 feet) Avicennia marina (Forssk.) 

Vierh that covers a sizable area on the ground and may have 
an effect on overall AGB values of the region.

The AGB increase was corroborated using MODIS- 
GPP product. Annual sum of GPP for the mangrove area 
for the year 2006 was found to be 558,880 t C, while in 
2018 it was 688,170 t C. The difference in GPP thus indi-
cated an increase in mangrove productivity between 2006 
and 2018 by 129,290 t C. The GPP increase is possible 
by the  increase in mangrove area and also an  increase 
in carbon sequestration by existing mangroves. Overall, 
an increase in GPP and an increase in AGB of mangroves 
suggest that the mangroves of Maharashtra are functioning 
as carbon sink.

Fig. 4   a Mangrove extent in 2005–06 in Maharashtra. b Mangrove extent in 2018–19 in Maharashtra

Table 2   Carbon sequestration 
patterns in the mangroves of 
Maharashtra

Year 2005–06 Year 2018–19 Difference

Carbon in open mangrove (25.14 ha−1) 0.32 × 106 0.42 × 106 0.10 × 106

Carbon in dense mangrove 43.07 ha−1) 0.76 × 106 0.91 × 106 0.15 × 106

Total carbon (tonnes) 1.08 × 106 1.32 × 106 0.24 × 106



742	 Journal of the Indian Society of Remote Sensing (April 2024) 52(4):735–746

Biomass Modelling

The attempts were made to establish the correlation between 
plot-wise AGB and NDVI. Out of the different NDVI vari-
ants experimented, the maximum NDVI exhibited the best 
relationship with plot-wise AGB (Fig. 5). On examining 
the scatter plot it was observed that the biomass was well 
correlated with maximum NDVI, when the power model 
was used. The R2 obtained for the power model was highest 
(R2 = 0.43) among all studied model for maximum NDVI. 
The AGB-maximum NDVI correlation pattern analysis and 
R2 values were considered for finalizing the model.

The plots located in the close proximity of non-mangrove 
areas were avoided for the development of the empirical 
model. The equation used for regional level AGB estimation 
was of the form:

where Y = biomass in kg, and x is maximum NDVI.
This relationship was used to extrapolate the AGB values 

to the complete study area.

Y = 350574x
8.5344

The performance of empirical models developed using 
different NDVI variants is listed in Table 3. The maximum 
NDVI (which depicted a higher correlation with AGB) 
represents the full grown status of mangroves post-mon-
soon. Thus, the maximum NDVI can be used as a proxy to 

R² = 0.4004

y = 350574x8.5344

R² = 0.4304

R² = 0.2678
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Fig. 5   Correlation of biomass with NDVI variants

Table 3   The empirical models experimented

NDVI variant Empirical model R2 (Coefficient of 
determination)

Maximum NDVI Linear R2 = 0.27
Exponential R2 = 0.40
Power R2 = 0.43

Minimum NDVI Linear R2 = 0.21
Exponential R2 = 0.30
Power R2 = 0.40

Amplitude NDVI Linear R2 = 0.01
Exponential R2 = 0.001
Power R2 = 0.0003

Sum NDVI Linear R2 = 0.003
Exponential R2 = 0.019
Power R2 = 0.007
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investigate the canopy changes (and therefore the biomass) 
at different locations, at different periods of time.

Carbon in the mangroves of Maharashtra for the year 
2018–19 varied between 2.78 and 249.64 tonnes (Fig. 6). 
Mangroves of southern Maharashtra stored a  higher 
amount of carbon compared to mangroves of northern 
Maharashtra. This is attributed to a higher level of distur-
bance in the mangroves of northern Maharashtra as com-
pared to mangroves of southern Maharashtra. High amount 
of carbon was observed in the areas of Achra, Vaghotan, 
Dorle and Sagave villages, whereas, comparatively less 
amount of carbon was observed in the areas around Thane 
creek, Mhasala and Nhava-Sheva, Pen. In general, the 
island mangroves have a higher amount of carbon in both 
northern and southern Maharashtra as less anthropogenic 
disturbance has been observed in these regions.

Conclusion

The study explores the utility of LISS-IV data for mangrove 
community zonation, use of NDVI variants for estimation of 
mangrove AGB and study the patterns of mangrove above-
ground carbon pools in Maharashtra. Amongst all variants, 
maximum NDVI has been found most suitable for estimation 
of AGB using satellite data.

Carbon pool in mangroves in the state depicts a clear 
pattern that mangroves in the southern Maharashtra store a 
higher amount of carbon compared to mangroves of 
the northern part of the state. This is also evident from the 
fact that there are diverse and dense patches of mangroves 
in the southern region compared to northern Maharashtra. 
The highest (more than 20 t C ha−1) amount of carbon in 
the mangroves was found at Ganpatipule, Jaigad, Guhagar, 
Dapoli Taluka at Ratnagiri district, areas along Muchkundi 

Jhow Island, Palghar District 

Mhasala, Raigarh District

Achra, Sindhudurg District

Legend 
Carbon in ton/ha
Value

High : 22.4658

Low : 0.0001

Fig. 6   Carbon map derived using maximum NDVI empirical model of Maharashtra for year 2018–19
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and Vashisthi river in Ratnagiri district and at Kudal Taluka 
in Sindhudurg district of the state. The study highlights an 
increase in overall mangrove cover of the state and an associ-
ated rise in carbon sequestration, suggesting that the man-
groves in Maharashtra are serving as potential carbon sink.

The per ha carbon map generated in the present study will 
help administrators and policy makers to formulate policies 
and prioritize areas for the management and protection of 
mangroves.

Mangroves of Maharashtra are playing an important 
role in harvesting the atmospheric carbon and abatement 
of climate change. It is therefore, they can effectively con-
tribute in United Nation’s sustainable goal no. 13 (Climate 
Action). With effective afforestation the sinks can further be 
increased. Several studies have highlighted that mangroves 
sequester high amount of carbon dioxide and it is therefore, 
important to carry out further research on the development 
of the species and area-specific AGB equations for the man-
groves found along the Western Ghats of India. This will 
ensure high accuracy carbon budgeting of mangrove eco-
systems of the Arabian Sea.
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