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Abstract
Accurate assessment of aboveground biomass (AGB) is crucial for understanding carbon budgets, climate change impacts, and 
evaluating forest responses to environmental shifts. In this study, AGB was estimated in Sikkim State of India by leveraging 
the capabilities of machine learning (ML) and integrating multi-sensor satellite data. Specifically, the random forest (RF) 
and categorical boosting algorithm (CatBoost) models were utilised. Field estimated AGB ranges from 1.99 to 530.02 Mg/
ha with an average of 252.58 Mg/ha, utilised for model prediction and validation. The RF model slightly outperformed 
the CatBoost model, with a coefficient of determination (R2) of 0.71 and root mean square error (RMSE) of 72.98 Mg/ha, 
compared to the CatBoost model’s R2 of 0.67 and RMSE of 80.69 Mg/ha, The former showed a greater capacity to combat 
overfitting. Synthetic aperture radar variables have emerged as significant predictors because of their contribution to the 
structural properties of plants. This study acknowledges the limitations and challenges due to data availability, especially for 
ground truth measurements, which pose constraints on the accuracy and representativeness of AGB estimates. Uncertainties 
associated with AGB estimation, such as variations in vegetation structure and species composition, also affected model 
performance. Despite these limitations, this study emphasises the significance of multi-sensor data integration and ML 
models in AGB estimation and highlights their potential applications in forest management and climate change mitigation 
efforts in the Himalayan mountainous region.
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Introduction

To address the growing threat of global warming, the Paris 
Agreement (Nations 2016) emphasised the urgent need for 
major reductions in global greenhouse gas emissions to 

maintain global temperatures within 2 °C throughout the 
twenty-first century. This commitment was reinforced at 
the recent Conference of the Parties (COP) 27 meeting, 
which brought together world leaders and stakeholders to 
discuss climate change challenges and set ambitious emis-
sion reduction and sustainable development targets. These 
activities require accurate mapping of the aboveground bio-
mass (AGB). They enable the development and execution 
of effective forest management plans, contributing to global 
efforts to reduce climate change. Evaluating forest carbon 
dynamics necessitates accurate estimation of AGB, espe-
cially in tropical forest ecosystems. Tropical forests seques-
ter large amounts of atmospheric carbon dioxide  (CO2) 
through photosynthesis, recognised as essential carbon sinks 
(Xiao et al., 2019). The carbon stored in the aboveground 
components of forests contributes to global carbon cycles, 
making the accurate estimation of AGB crucial for accurate 
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carbon accounting and climate change mitigation strategies 
(Avitabile et al., 2016; Baccini et al., 2019).

In recent years, remote sensing (RS) techniques have 
emerged as significant tools for AGB estimation research. 
In particular, the employment of satellite data derived from 
Sentinel-2 (optical), Sentinel-1 (C-band), and PALSAR-2 
(L-band) Synthetic Aperture Radar (SAR) data provides 
complementary information that improves AGB prediction 
accuracy in prior investigations (Ghosh & Behera, 2018; 
Prakash et  al., 2022). Optical data, Sentinel-2, capture 
information about the spectral properties of vegetation and 
are utilised to estimate vegetation indices (VIs) associated 
with AGB (Lu et al., 2016; Wang et al., 2019). C-band SAR 
data, such as Sentinel-1 data, are sensitive to forest structure, 
including vegetation density and vertical structure (Forkuor 
et al., 2020). By capturing signals from the forest and lower 
vegetation layers, L-band SAR data, such as PALSAR-2, 
penetrate the tree canopy and offer extra signals for AGB 
estimation (Behera et  al., 2016). Integrating multiple 
datasets enabled overcoming constraints associated with 
single data sources and enhancing the precision of machine 
learning (ML) models.

AGB estimation is typically achieved using various 
variables derived from different sensors. These sensors 
include LiDAR, optical, and radar sensors. Using these 
sensors allows the collection of data on forest structure, 
canopy cover, and other relevant parameters. The study by 
Laurin et al. (2014a) highlights the significance of optical 
spectral bands in characterising vegetation properties. 
The red-edge spectral band, in particular, is sensitive to 
chlorophyll content and canopy structure, which are known 
to affect variations in AGB. This finding emphasises the 
potential of optical data in accurately assessing AGB 
through its spectral bands. In recent years, researchers 
have established the potential of VIs derived from spectral 
bands to estimate AGB accurately (Mutanga et al., 2023). 
To accomplish this, numerous VIs have been employed as 
predictors. Among these indices, normalised difference 
vegetation index (NDVI), enhanced vegetation index (EVI), 
red-edge vegetation index (REVI), chlorophyll vegetation 
index (CVI), and soil-adjusted vegetation index (SAVI) are 
the most frequently employed (Forkuor et al., 2020; Ghosh 
& Behera, 2018; Jha et al., 2021). Various researchers have 
employed these indices, and it was found that the estimation 
of AGB can be improved by utilising a combination of 
spectral bands and VIs obtained from optical data (Fassnacht 
et al., 2016).

Similarly, microwave data provide useful information 
for estimating AGB in areas with dense vegetation and 
challenging weather conditions (Guerra-Hernández et al., 
2022) where optical datasets are unavailable. The Sentinel-1 
VV band measures the intensity of radar backscattering 
signal, providing information about vertical vegetation 

structure and allowing for AGB variation estimation. The 
VH band records interactions between radar signals and 
vegetation canopy, supplementing the information in the VV 
band (Ghosh et al., 2018). PALSAR-2 HH and HV bands 
provide information about the forest canopy structure. The 
HH band measures backscatter intensity to canopy density 
and vertical structure, whereas the HV band measures 
vegetation scattering and penetration depth (Yu & Saatchi, 
2016).

Numerous studies have explored AGB estimation in 
tropical forests using various data sources and methodologies 
(Singh et al., 2022; Vaglio Laurin et al., 2014a, 2014b). Over 
the past decade, ML algorithms have emerged as powerful 
tools for the accurate estimation of AGB. ML models, such 
as random forest (RF) and support vector machine (SVM), 
are widely employed owing to their ability to handle large 
and complex datasets. For instance, the RF model utilises 
an ensemble of decision trees to model the relationships 
between input features, such as spectral and synthetic 
aperture radar (SAR) data and targeted values (Ghosh et al., 
2021; Prakash et al., 2022). In contrast, SVM aims to find 
the optimal hyperplane that separates different AGB classes 
in a high-dimensional feature space (Zhang et al., 2014). 
These ML algorithms leverage training data to identify 
underlying patterns and relationships, thereby enabling 
accurate AGB predictions for new observations (Singh 
et al., 2023). Furthermore, few studies have been conducted 
on the categorical boosting technique (CatBoost) for AGB 
estimation. This is due to its ability to handle categorical 
variables and its potential for improved performance (Luo 
et al., 2021). CatBoost employs a boosting technique to train 
a collection of weak models iteratively and combines their 
predictions to generate a robust final model.

This study uses optical as well as microwave SAR data 
(C- and L-band) and ML algorithms to estimate AGB in 
Sikkim Himalaya. No study has employed the collaborative 
use of optical and SAR data for AGB prediction, particularly 
in the Sikkim Himalaya region, at a finer spatial resolution. 
This study aims to develop precise and reliable models for 
estimating AGB through data synergy and evaluate AGB’s 
predictability using RF and CatBoost ML algorithms where 
the number of field samples is limited.

Material and Methods

Study Area Description

Sikkim is in the Himalayan range of north-eastern India 
(Fig. 1). Spanning an area of 7096  km2, it is the second-
smallest state in India. Sikkim is located between latitudes 
27°5′ and 28°9′ north and longitudes 87°9′ and 88°56’ east. 
The elevation in the region varies from 300 to over 8586 m 
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above the mean sea level. It experiences mean precipita-
tion between 2700 and 3200 mm, while the average yearly 
temperature fluctuates from 28 °C in the summer to sub-
zero temperatures in the winter (FSI, 2019). Forests cover a 
significant portion of Sikkim, accounting for 47.08% of the 
total area, with very dense forests occupying 15.53% of the 
land. Open forests encompass 9.69%, and moderately dense 
forests cover 21.86% (FSI, 2021).

Field Inventory Data

Field sampling was conducted to ensure representation 
across different parts (north, south, east, west, and central) 
of Sikkim by accommodating 49 elementary sampling units 
(ESUs). In our study, 49 sample plots were established 
based on statistical considerations and research objectives. 
Of these, 60% (31 plots) were allocated for model training, 
whereas the remaining 40% (18 plots) were dedicated to 
model testing and validation. This partitioning strategy 
was chosen to ensure a robust assessment of the model's 
generalisation capabilities. To obtain accurate field 
inventory data, each ESU was measured at 0.04 hectares 
(20 m × 20 m). Within these plots, the circumference at 
breast height (CBH) of each tree species was measured using 
measuring tape, while individual tree height was determined 
using a Laser Range Finder. The sampling process employed 
stratified random sampling, with plots selected based 

on criteria such as canopy composition, density, forest 
type, slope, and accessibility (Sharma et al., 2019). This 
approach allows for a comprehensive representation of forest 
ecosystems. Four distinct forest types were sampled, namely 
Tropical moist deciduous (TMD), Tropical semi-evergreen 
(TSE), Subtropical evergreen (STE), and Temperate 
evergreen (TE). By incorporating these field points or 
sample plots, this study aimed to capture the variability in 
AGB across different forest types. To compute tree volume 
within each plot, regional and species-specific volume 
equations (FSI, 1996) were used for Shorea robusta, Tectona 
grandis, Schima wallichii, and Castanopsis indica, while 
miscellaneous volume equations were employed for other 
species (Eqs. 1–5). Using wood-specific gravity values, the 
stand volumes were converted to AGB.

(1)Shorea robusta = V∕D2 = −0.32546∕D2 + 9.78645

(2)
Tectona grandis = V∕D = 0.0341∕D − 0.65623 + 7.881D

(3)
Schima wallichii = 0.28069 + 4.6198D − 1.65381 logD

(4)
Castanopsis indica = V∕D2 = 0.001184 + 0.1812∕

D2 − 0.02348∕D

Fig. 1  Study area depicts the 
geographical extent in Sikkim 
State with SRTM elevation map
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where D = trunk diameter (in cm), V = volume  (m3) under 
bark, and ρ = density (in g/cm3).

Satellite Data and Pre‑Processing

The Sentinel-2 satellite, equipped with the advanced 
multispectral Instrument (MSI), facilitates the capture 
of high-resolution images worldwide. Operating within 
the visible to shortwave infrared range, it provides useful 
data for our research. To ensure the utmost accuracy, we 
exclusively utilised cloud-free Sentinel-2 Level-2A products, 
which offer meticulously atmospherically corrected surface 
reflectance bands. These bands are accessible at spatial 
resolutions of 10 and 20  m, enabling us to scrutinise 
intricate details with precision. Harnessing the potential 
of these images, we derived several vegetation indices 
(VIs), encompassing NDVI, SAVI, EVI, modified soil-
adjusted vegetation index (MSAVI), difference vegetation 
index (DVI), ratio vegetation index (RVI), atmospherically 
resistant vegetation index (ARVI), and modified simple ratio 
(MSR).

Furthermore, the Sentinel-1 satellite complemented our 
study by providing dual-polarisation C-band SAR data, 

(5)
Mixed species = V = 0.3555 − 0.037D + 0.001259D2 which included vertical–vertical (VV) and vertical-hori-

zontal (VH) polarisations, with a fine spatial resolution of 
10 m. Leveraging the VH and VV images, we conducted 
mathematical operations to generate a ratio image and the 
square root of their product image. To ensure consistency, 
both the Sentinel-2 and Sentinel-1 datasets underwent 
processing in Google Earth Engine (GEE), incorporat-
ing resampling techniques to achieve a uniform 20 × 20 m 
resolution. We meticulously synchronised the acquisition 
dates of the images with the field observation time, ensur-
ing accurate temporal alignment. These comprehensive 
datasets served as the foundation for subsequent process-
ing and modelling of AGB, as illustrated in Fig. 2.

In addition, our study made use of the yearly mosaic 
ALOS-2/PALSAR-2 L-band data, which provided valuable 
insights. The dataset consisted of co-polarised horizon-
tal–horizontal (HH) and cross-polarised horizontal–verti-
cal (HV) waves at a spatial resolution of 25 m. Initially, 
the polarised data were stored as 16-bit digital numbers 
(DN). To enhance the precision and accuracy of our analy-
sis, we converted the data to backscatter gamma-naught 
(γ0) values expressed in decibels (dB). To perform this 
conversion, we leveraged Eq. (6) within the GEE plat-
form, utilising the available HH and HV bands presented 
by Shimada et al. (2014). This transformation allowed us 
to derive more meaningful and interpretable information 

Sentinel-2 (MSI, Level-2A)

GEE-Pre-processing 
(Atmospheric correction, Cloud masking, 

resampling)

Spectral Bands

(B2, B3, B4, B5, B6, 
B7, B8, B8A)

Apply 
Volumetric 
Equation

Field Inventory

(Stratified 
random 

sampling and 
CBH, Height of 

20m x 20m)

Input RF and CatBoost model

Model establishment between field biomass 
and variables

Model Comparison and AGB Uncertainty 
Analysis

Seninel-1A
(C-band level 1 GRD)

GEE-Pre-processing 
(Calibration, Filtering, Re-sampling, 

Radiometric correction, Backscattered 
Coefficients retrieval of VH and VV)

Image Transformations 
(S1_VV, S1_VH, S1_Multi(VV_VH), 
S1_Multi(VH_VV), S1_Div(VV_VH),

S1_Div(VH_VV), 
S1_ Avg(VV_VH),

S1_SQRT(VV_VH))

Generation of 
Vegetation Indices

( NDVI, SAVI, 
MSAVI, DVI, RVI, 
ARVI, EVI, MSR)

ALOS-2/PALSAR-2

GEE-Pre-processing 
(Calibration, Filtering, Re-sampling, 

Radiometric correction, Backscattered 
Coefficients retrieval of HH and HV)

Image Transformations 
(P2_HH, P2_HV,  P2_Multi(HH_HV), 
P2_Multi(HV_HH), P2_Div(HH_HV),

P2_Div(HV_HH), 
P2_ Avg(HH_HV),
P2_SQRT(HH_HV) Convert to 

volume to AGB 
using the specific 
wood density or 
specific gravity 
of the species

Prediction of Aboveground Biomass

Fig. 2  The methodology overview highlights integrating Sentinel-2, Sentinel-1, and PALSAR-2 data with machine learning models (RF and 
CatBoost) for estimating aboveground biomass
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from the PALSAR-2 data, enabling a comprehensive anal-
ysis of our study.

where σ0 (sigma naught) is the backscattering coefficient in 
dB, DN is a digital number (raw pixel value), and CF is the 
calibration factor in dB (− 83).

Machine Learning Models

In AGB estimation research, RF is most commonly and 
frequently used (Belgiu & Drăgu, 2016). This ensemble 
learning approach integrates numerous decision trees 
to generate a robust predictive model. Each tree in the 
ensemble was trained on a different subset of the data 
using a random selection of features. Subsequently, the 
final prediction is generated by adding the predictions of 
each tree (Breiman, 2001). The significance of RF lies in 
its capacity to handle large and complex datasets, capture 
nonlinear relationships, and accurately model variable 
interactions. It excels at processing high-dimensional RS 
data, such as spectral and SAR data, which are frequently 
used in AGB estimation. The intricate interdependencies 
between these variables and the target variable AGB 
can be effectively captured by RF, resulting in accurate 
predictions. Additionally, RF is less susceptible to 
overfitting than other ML algorithms. The ensemble 
nature of RF and the use of random subsets of data for 
each tree mitigate the risk of overfitting and improve the 
generalisation performance of the model.

CatBoost, boosting algorithm family, builds a robust 
predictive model by combining a group of weak learners, 
typically decision trees (Dorogush et al., 2018). In recent 
years, the CatBoost algorithm has emerged as a promising 
approach for gradient boosting in ML. A critical advantage 
of CatBoost is its ability to handle categorical variables 
without explicit data preprocessing. This feature makes 
CatBoost particularly well-suited for datasets that contain 
a mix of numerical and categorical features, which are 
commonly encountered in studies involving the estimation 
of AGB. Unlike traditional gradient boosting methods, 
CatBoost’s ability to handle categorical variables allows 
for more efficient and accurate AGB modelling, a critical 
parameter in many ecological and environmental studies. 
The CatBoost algorithm was developed to address feature 
interactions and selection effectively, enabling it to capture 
intricate relationships between variables and the AGB 
target variable. This innovative algorithm was designed 
to automatically identify and select the most relevant 
features, thereby enhancing its ability to capture complex 
relationships between variables and the target variable. 
The CatBoost algorithm is an ML technique that utilises 

(6)�
o = 10 ∗ log10

(
DN2

)
+ CF

advanced methods, including ordered boosting, to enhance 
the model’s capacity to generalise effectively on novel data 
and mitigate overfitting. This study highlights the potential 
of CatBoost as a valuable ML tool. Specifically, the ability 
of the algorithm to effectively handle categorical variables, 
its feature interaction capabilities, and its robustness to 
overfitting were identified as key strengths (Hancock & 
Khoshgoftaar, 2020).

Selection of Predictor Variables

To assess the relationship between variables, we performed 
correlation analysis and feature importance assessment using 
the mean decrease impurity technique. For Sentinel-1 data, 
we examined variables such as backscatter intensity from the 
VV and VH bands and their mathematical transformations. 
Similarly, for Sentinel-2, we included predictor variables 
derived from spectral bands and Vis, such as NDVI, SAVI, 
MSAVI, DVI, RVI, ARVI, EVI, and MSR. Additionally, 
for PALSAR-2, we selected backscatter HH and HV bands 
and their transformations. Using correlation analysis, we 
identified the correlation between predictor variables and 
targeted AGB. Variables with higher absolute correlation 
coefficients were considered potentially more influential in 
estimating AGB (Table 1).

To further evaluate the importance of these variables, 
we employed the mean decrease impurity technique within 
an ML algorithm, such as RF and CatBoost. This tech-
nique quantifies the contribution of each predictor variable 
in reducing impurity during the construction of decision 
trees within the ensemble. The mean decrease in impurity 
score measures the extent to which the model’s prediction 
accuracy decreases when a particular variable is randomly 
permuted. Higher mean decrease impurity scores indicate 
greater importance of a variable in predicting AGB. By cal-
culating the mean decrease impurity scores for each predic-
tor variable across multiple iterations, we obtained a ranking 
of the variables based on their importance in AGB estima-
tion. This allowed us to identify the most influential vari-
ables that contribute significantly to the prediction of AGB 
using Sentinel-1, Sentinel-2, and PALSAR-2 data (Fig. 3a 
and b).

Evaluation of Models

We employed the train–test split method and K-fold cross-
validation to evaluate the performance of the ML model. 
The dataset was divided into training and testing subsets, 
with the K-fold approach allowing us to overcome over-
fitting. Utilising the caret package in R (Kuhn, 2008), we 
conducted tenfold cross-validation, training on 60% of the 
data and validating on 40%. Performance metrics such as 
root mean square error (RMSE), coefficient of determination 
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(R2), mean absolute error (MAE), and bias were employed 
to assess the models. The RMSE measures the average dif-
ference between the predicted and observed AGB values, 
with lower values indicating better performance. R2 meas-
ures the proportion of variance explained by the model, with 
higher values indicating a stronger relationship. MAE cal-
culated the average absolute difference, and bias indicated 
the average difference between predicted and observed val-
ues. Through these evaluations, we obtained comprehensive 
insights into the effectiveness of the models without sacrific-
ing their accuracy or clarity.

(7)R2 = 1 −

∑n

i=1

�
ŷi − yi

�2

∑n

i=1

�
ŷi − yi

�2

(8)RMSE =

�
∑n

i=1

�
ŷi − yi

�2

n

(9)MAE =
1

n

n∑

i=1

|||
(
ŷi − yi

)|||

(10)Bias =

∑n

i=1

�
yi − xi

�

n

Results

Field‑Inventory Analysis

Field measurements and estimated AGB data ranging from 
1.99 to 530.62 Mg/ha were employed for model construc-
tion and validation, with an average AGB of 224.58 Mg/
ha (Fig. 4b). The diverse tree species included Castanopsis 
indica, mixed species, Schima wallichii, Shorea robusta, 
Symplocos taurina, and Tectona grandis (Fig.  4c). The 
diameter at breast height (DBH) characteristics of these 
species were determined through a comprehensive analysis. 
The maximum DBH recorded for Castanopsis indica was 
148.01 cm, the minimum DBH was 27.06 cm, and the aver-
age DBH was 63.71 cm. Similarly, the mixed species had a 
maximum DBH of 157.56 cm, a minimum DBH of 5.41 cm, 
and an average DBH of 29.32 cm. The maximum DBH of 
Schima wallichii was 84.03 cm, the minimum was 5.09 cm, 
and the mean was 26.40 cm. The maximum DBH of Shorea 
robusta was 111.41 cm, the minimum was 5.67 cm, and 
the mean was 25.49 cm. The maximum DBH of Symplocos 
taurina was 21.33 cm, the minimum was 4.77 cm, and the 
mean was 10.49 cm. The average DBH of Tectona grandis 
was 30.03 cm (Fig. 4a).

Table 1  For AGB estimation models, a summary of predictor variables, including Sentinel-2 spectral, vegetation indices, Sentinel-1 backscatter, 
and PALSAR-2 backscatter

Variable type Variable Name Number 
of 
variables

Description

Sentinel-2 Spectral bands B2, B3, B4, B5, B6, B7, B8, B8A 8 Blue, Green, Red, Red Edge 1, Red Edge 2, Red 
Edge 3, NIR, Red Edge 4

Sentinel-2 Vegetation indices S2_NDVI
S2_SAVI
S2_DVI
S2_RVI
S2_ARVI
S2_EVI
S2_MSAVI
S2_MSR

8 Normalised difference vegetation index (NDVI)
Soil adjusted vegetation index (SAVI)
Modified soil-adjusted vegetation index (MSAVI)
Difference vegetation index (DVI)
Ratio vegetation index (RVI)
Atmospherically resistant vegetation index 

(ARVI)
Enhanced vegetation index (EVI)
Modified simple ratio (MSR)

Sentinel-1 Backscatter S1_VV, S1_VH, S1_Multi(VV_VH), S1_
Multi(VH_VV), S1_Div(VV_VH),

S1_Div(VH_VV),
S1_ Avg(VV_VH),
S1_SQRT(VV_VH)

8 Sentinel-1A dual polarization backscatter their 
mathematical manipulation like Multiplication, 
Average, Division, Square root

PALSAR-2 Backscatter P2_HH, P2_HV,
P2_Multi(HH_HV), P2_Multi(HV_HH), P2_

Div(HH_HV),
P2_Div(HV_HH),
P2_ Avg(HH_HV),
P2_SQRT(HH_HV)

8 PALSAR-2 dual polarization backscatter and their 
mathematical manipulation like multiplication, 
average, division, square root
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Model‑Based AGB Prediction

The ML models utilised satellite data from Sentinel-2, Sen-
tinel-1, and PALSAR-2. Subsequently, performance metrics 
were employed to assess the accuracy of the models. The 
RF model was utilised on the integrated dataset, resulting 
in a cross-validation RMSE of 72.98 Mg/ha. This value rep-
resents the average discrepancy between the predicted and 
observed AGB values. The  R2 for the model was 0.71, sug-
gesting that the predictors employed in the analysis were 
able to account for approximately 71% of the observed vari-
ability in AGB. The MAE was calculated to be 46.70 Mg/
ha, which signifies the average absolute discrepancy between 
the predicted and observed AGB values, as illustrated in 
Fig. 5a. The RF model exhibited a bias of 4.32 Mg/ha, sug-
gesting a marginal inclination towards either overestimating 
or underestimating AGB.

Similarly, the CatBoost model applied to the integrated 
dataset showed a cross-validation RMSE of 80.69 Mg/ha, 
reflecting the overall model performance. The R2 value for 
the CatBoost model was 0.67, indicating that the predictors 
could explain approximately 67% of the variability in 
AGB. The MAE of the CatBoost model was calculated as 
52.30 Mg/ha, representing the average absolute difference 
between predictor variables and targeted variable. The 
bias of the CatBoost model was 5.63 Mg/ha, indicating 
the presence of a slight systematic deviation in the AGB 
estimation (Fig. 5b). The RF model exhibited slightly better 

performance than the CatBoost model with lower RMSE, 
higher R2, lower MAE, and lower bias. However, both 
models achieved reasonably good accuracy in capturing 
variations in AGB (Table 2).

Variable Importance Analysis

The variable importance analysis identified several 
significant predictors that strongly influenced the models 
used for estimating AGB. The variables that made the 
most significant contributions to the models were ranked 
based on their respective levels of importance. P2_HV, 
P2_SQRT(HH_HV), S1_Multi(VV_VH), NDVI, P2_HH, 
B5, B6, EVI, SAVI, MSAVI, S1_VV, S1_VH, S1_Avg(VV_
VH), B8, S2_ARVI, S1_Div(VV_VH), B8A, and P2_
Div(HH_HV) were found to be more significant variables. 
The significance of radar backscatter measurements in 
estimating AGB was highlighted by incorporating variables 
such as P2_HV and P2_SQRT(HH_HV) obtained from 
PALSAR-2 data, as depicted in Fig.  3. The variables 
mentioned above have facilitated a deeper understanding of 
the interplay between radar signals and vegetation, thereby 
aiding in characterising vegetation structure and biomass 
distribution.

Similarly, Sentinel-2 spectral bands such as B5, B6, and 
B8 were of moderate importance because of their sensitiv-
ity to vegetation and canopy reflectance properties. VIs like 
NDVI, EVI, SAVI, and MSAVI were critical in capturing 

Fig. 3  Variable importance of a RF and b CatBoost ML models
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Fig. 4  a DBH of different species, b field-based AGB analysis and its frequency. It shows the AGB distribution and frequency of field sampling 
points, c percentage of individual species composition

Fig. 5  a The RF and b CatBoost model predicted vs field-estimated AGB
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vegetation vigour and chlorophyll content, allowing for a 
more accurate estimation of AGB variations. Furthermore, 
the use of radar variables such as S1_Multi(VV_VH) and 
S1_Avg(VV_VH) demonstrated the importance of analysing 
different polarisations and their interactions. P2_HV was the 
most important variable, contributing 92.36% to the overall 
model performance, thus capturing the variations in AGB. 
The variable P2_SQRT(HH_HV) followed closely with a 
percentage importance of 89.36%, indicating its strong influ-
ence. S1_Multi(VV_VH) and NDVI were important vari-
ables, contributing 86.98% and 85.6%, respectively. These 
variables capture information from Sentinel-1 and Sentinel-2 
sensors and are valuable for understanding model perfor-
mance. Other variables such as P2_HH, B5, B6, EVI, SAVI, 
MSAVI, S1_VV, S1_VH, S1_Avg(VV_VH), B8, S2_ARVI, 
S1_Div(VV_VH), B8A, and P2_Div(HH_HV) exhibited 

varying degrees of importance, contributing to the overall 
model performance.

AGB mapping and Uncertainty Analysis

This study conducted the AGB mapping and validation 
process for the RF and CatBoost model’s performance 
in estimating AGB. The RF model ranges from 51.37 to 
477.63 Mg/ha (Fig. 6a), while the CatBoost model ranges 
from 61.37 to 467.63  Mg/ha (Fig.  6b). These ranges 
demonstrate the ability of both models to capture a wide 
range of AGB. In our study, we employed the coefficient 
of variation (CV) as a key measure to assess AGB uncer-
tainty. The CV was calculated as the ratio of the standard 
deviation to the mean of the AGB estimates, quantifying 
the relative variability in the data. The observed range of 
CV values from 0 to 20% within our study area provides 
valuable insights into variability in our AGB estimates. 

Table 2  Details of regression error values using RF, CatBoost models run for AGB estimation

Satellite data Model AGB range 
(Mg/ha)

Cross validation 
RMSE (Mg/ha)

Coefficient of 
determination  (R2)

Mean absolute 
error (MAE)

Bias (Mg/ha)

Sentinel-2 + Sentinel-1 + PALSAR-2 RF 51–477 72.98 0.71 46.70 4.32
Sentinel-2 + Sentinel-1 + PALSAR-2 CatBoost 61–467 80.69 0.67 52.30 5.63

Fig. 6  a RF Predicted map. b CatBoost predicted map. This map presents the predicted AGB values obtained from the RF and CatBoost model
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A CV of 0% indicated highly consistent and stable AGB 
estimates, reflecting homogeneity in forest conditions and 
AGB distribution. Conversely, a CV of 20% suggested 
a higher degree of variability, signifying diverse forest 
types, topography, and other factors influencing AGB dis-
tribution. Therefore, CV serves as a robust tool for quan-
tifying and communicating the uncertainty in our AGB 
estimations, offering a valuable perspective on the reli-
ability of our AGB mapping efforts (Fig. 7).

Discussion

ML Models and Feature Importance

Both RF and CatBoost models exhibited strong performance 
in AGB estimation, as indicated by their respective R2 
values of 0.71 and 0.67. These values suggest that the input 
variables and model predictions explain approximately 71 
and 67% of the variance, respectively. Additionally, RMSE 
of 72.98 Mg/ha and 80.69 Mg/ha highlights the models’ 
ability to minimise prediction errors. The efficacy of ML 
models resides in their capacity to effectively manage 
nonlinear associations and capture intricate interactions 
among numerous predictor variables. These models can 

effectively estimate AGB across the study area by leveraging 
the rich information provided by multi-sensor data. The 
variable importance analysis further underscores the 
significance of various spectral indices, radar backscatter 
values, and VIs in influencing AGB estimates.

The results of the variable importance analysis indicated 
that certain variables had a more significant influence on 
AGB estimation than others. For instance, P2_HV, P2_
SQRT(HH_HV), and S1_Multi(VV_VH) emerged as the 
most important predictors, highlighting the importance of 
polarimetric SAR data in AGB modelling. These variables 
capture the interaction between radar waves and forest 
structure, allowing for a more accurate estimation of AGB. 
NDVI, P2_HH, and B5 also demonstrated considerable 
importance, emphasising the significance of spectral 
reflectance and VIs in capturing vegetation density and 
AGB variations. However, it is essential to address the 
site-specific nature of these findings. The importance 
of variables in AGB estimation can vary across different 
geographical locations and ecosystems. The most influential 
variables may depend on local environmental conditions, 
vegetation types, and forest structure (Ghosh et al., 2022a, 
2022b). While our study emphasises the relevance of these 
variables in our specific study area, we acknowledge that 
their significance can differ in other contexts. Variability in 
variable importance underscores the diverse nature of forests 
and landscapes worldwide.

Identifying these influential variables will provide 
valuable insights for future research and practical 
applications. By understanding the relative importance 
of different variables, researchers and practitioners can 
optimise their data collection strategies, prioritise relevant 
features for AGB estimation, and streamline the modelling 
process (David et  al., 2022). Furthermore, variable 
importance analysis helps to identify potential data gaps and 
areas for improvement. This enables researchers to focus 
on acquiring or enhancing specific data types or variables 
that significantly impact accuracy. Variable importance 
analysis is not only restricted to our study but has been 
extensively employed in various AGB estimation studies. 
Similar findings regarding the importance of SAR data, 
spectral indices, and vegetation-related variables were 
reported by other researchers (Li et al., 2020; Nandy et al., 
2021; Rosenqvist et  al., 2014). This consensus further 
strengthens the reliability and generalisability of our results 
and highlights the consistent role of these variables in AGB 
modelling across different regions and ecosystems.

Sampling Variations in Density Classes 
within Species Distribution

In our study, we laid 49 ESUs across the site, strategically 
chosen based on the heterogeneity observed in AGB 

Fig. 7  Coefficient of variation (CV) map. This map visualises the 
coefficient of variation, CV as a key measure to assess AGB uncer-
tainty
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distribution. Our sampling approach considered the 
minimum and maximum ranges, encompassing dominant 
species and their associates, resulting in estimated AGB 
values ranging from 2 to 552 Mg/ha. Our sampling efforts 
might have slightly underestimated the maximum AGB in 
Sikkim, as denser forests and additional sampling could 
potentially reveal higher values. Our RF and CatBoost 
models, which predicted AGB, demonstrated robust 
performance, yielding estimates within the ranges of 
51–478 and 61–468  Mg/ha, respectively. However, we 
acknowledge the inherent diversity of forests, even within 
a single geographical region, such as Sikkim. Variations in 
tree species, age, health, and local environmental conditions 
contribute to differences in forest density and structure, 
thereby influencing the AGB estimates. Recognising these 
nuances is crucial for refining AGB estimation models. 
Despite the challenges posed by the topographically complex 
terrain of Sikkim, our study aimed to generate an indicative 
and maiden AGB map for the state, with a primary focus 
on demonstrating the integration of SAR data and ML 
algorithms for predicting the AGB.

To ensure a robust model, we adopted a 60–40 split 
strategy, allocating 60% (31 ESUs) for model training and 
40% (18 ESUs) for testing and validation. This approach 
aims to balance the model's accuracy and generalisation. 
While this study serves as a technological demonstration, 
showcasing the potential of SAR data and ML algorithms in 
AGB prediction, we recognise that more extensive sampling 
could enhance AGB estimates. Future studies should 
consider incorporating a broader array of environmental 
variables, expanding datasets to include various density 
classes within species formations, and employing more tree-
based allometric equations to minimise bias. In conclusion, 
our study lays the foundation for an indicative AGB map 
of Sikkim, emphasising the technological demonstration 
of SAR data and ML algorithms. However, we advocate 
future research to address the challenges posed by the 
region's topography by including more comprehensive 
data collection, increasing the sample size, and refining 
environmental variables. These improvements will 
undoubtedly contribute to more accurate and nuanced AGB 
predictions across different forest types and conditions in 
Sikkim.

Comparison to Similar Studies

Our findings are consistent with previous research, which 
also observed similar patterns in the AGB estimation. 
Recent studies, such as those conducted by Dang et al. 
(2019) and Ghosh et al., (2022a, 2022b), have emphasised 
the effectiveness of integrating ML models with multi-
sensor data for accurate AGB estimation. For example, 
Guerra-Hernández et al. (2022) utilised an RF model with 

ICESat-2, Sentinel-1, Sentinel-2, ALOS2/PALSAR-2, and 
topographic data to estimate AGB in tropical forests. Their 
results demonstrated reasonable agreement with ICESat-2- 
and ALS-based AGB observations, with R2 = 0.63 and 0.64 
and RMSE values of 11.10 and 12.28 Mg/ha, respectively. 
Another study by Luo et al. (2021) employed various ML 
models to estimate AGB using Landsat data, among which 
CatBoost exhibited the highest accuracy. The RMSE values 
obtained were 26.54 Mg/ha for coniferous forests, 24.67 Mg/
ha for broad-leaved forests, 22.62 Mg/ha for mixed forests, 
and 25.77 Mg/ha for all forests. These findings corroborate 
our results and further underscore the efficacy of ML models 
in accurately estimating AGB. Furthermore, Ghosh et al. 
(2018) and Malhi et al. (2021) support variable importance, 
emphasising the significance of VIs, radar backscatter 
values, and VIs in accurately estimating the AGB. 
Collectively, these comparisons highlight the robustness and 
reliability of our approach, substantiating the advancements 
achieved in AGB estimation through the integration of ML 
models and multi-sensor data. This study has limitations 
in terms of the sample size used for model training, 
which may have constrained the representation of AGB 
variability across the Sikkim Himalaya region. To enhance 
the predictive capabilities of ML models, future research 
could consider incorporating a more comprehensive range 
of environmental variables and increasing the sample size. 
This leads to an improved accuracy in the predictions made 
by the model.

Conclusion

This study highlights the performance of the ML RF and 
CatBoost models in accurately estimating AGB in the Indian 
state of Sikkim. Using multi-sensor data from Sentinel-2, 
Sentinel-1, and PALSAR-2, we achieved high accuracy, with 
the RF model exhibiting an R2 of 0.71 and an RMSE of 
72.98 Mg/ha and the CatBoost model producing an R2 of 
0.67 and an RMSE of 80.69 Mg/ha. The variable importance 
analysis revealed significant predictors, such as P2_HV, 
P2_SQRT(HH_HV), S1_Multi(VV_VH), NDVI, EVI, and 
spectral bands B5 and B6, emphasising the importance 
of SAR data, spectral reflectance, and vegetation-related 
parameters. The similarity between our findings and prior 
research strengthens their validity and applicability. The 
precise mapping and estimation of AGB made possible by 
ML algorithms and RS data has significant implications for 
ecological studies, carbon accounting, and nature-based 
solutions within the context of climate change. These 
findings provide valuable insights for forest management, 
carbon credit programmes, and developing nature-based 
solutions.
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