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Abstract
This article suggests a novel convolutional neural network (CNN) layering structure based on the pyramidal-shaped CNN 
model in the state of the art of remote sensing images. The suggested system outperforms the traditional CNN pre-trained 
models. Consequently, a detailed analysis of several CNN models has indeed been utilized. Furthermore, a comprehensive 
comparison has been acquired between the proposed Pyramidal Net model and nine different well-known pre-trained models 
to assess the efficacy of the developed framework. Ten distinct classes have been trained, tested, and validated from two 
different standardized datasets; NWPU-RESISC45 (Northwestern Polytechnical University Remote Sensing Image Scene 
Classification) and UC (University of California) Merced Land Use datasets. The utilized system performance has been 
evaluated based on several metrics: accuracy, recall, precision, IOU, and F1-score. Experimental findings demonstrate that 
the proposed Pyramidal Net CNN model has achieved an accuracy of 97.1%, recall: 0.96, precision: 0.96, IOU: 0.928, and 
F1-score: 0.96. The proposed model in comparison with other pre-trained CNN architectures has improved the classification 
accuracy by a percentage up to 30% taking into consideration a superior training time of 840 s for 5950 images with 10 
different classes.

Keywords Deep learning · Satellite imagery · Object detection · Pre-trained CNN

Introduction

Object detection in remote sensing images is an essential 
image-processing step for a range of applications such as 
industrial applications, agriculture, and military application 
(d’Acremont et al., 2019). The identification of land uses and 
objects using remote sensing images acquired by satellites is 

essential for regulating and tracking life form activities (Lin 
& Wu, 2019). Recently, due to the massive quantity of data 
provided by remote sensing photographs, deep learning has 
been crucial in remote sensing image applications such as 
object segmentation, target identification, object recognition, 
image augmentation, and image preprocessing (Liu et al., 
2022). Various deep learning convolutional neural network 
(CNN) models have been developed and utilized in the realm 
of satellite imagery; these different models’ architecture can 
extract various deep characteristics and produce varying 
experimental outcomes (Ran et al., 2019). The employment 
of various feature extraction methods, which are capable 
of deep computational methods from the dataset, is largely 
responsible for CNN’s current learning capabilities, which 
makes the deployment of CNN algorithms in the processes 
of remote sensing object detection a great performance 
enhancement for the system accuracy (Khan et al., 2020). 
To get the maximum benefit from the remote sensing images 
based on CNN models when utilized in the applications the 
article mentioned above, the applied CNN models should 
be developed to have the highest accuracy possible and be 
able to extract the very tiny object's features accurately. This 
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article developed a new CNN pyramidal model that focuses 
on improving the process of object detection from remote 
sensing images while taking into consideration the training 
time to be very small in comparison with the other existing 
CNN models. The suggested CNN architecture was com-
pared with nine different pre-trained convolutional models 
and outperformed them. The suggested structure includes 
three main transitions, which are illustrated in Fig. 1: (i) 
gathering and preparation of datasets, (ii) development of 
CNN architecture, (iii) the proposed CNN model is evalu-
ated, examined, and contrasted with several pre-trained mod-
els. This article's major contribution is:

1. Proposing a robust CNN model that is developed and 
employed in the state of the art of an optimized layering 
structure and fine-tuned hyper-parameters.

2. Utilizing the impact of traditional pre-trained CNN 
models on the classification process of objects in remote 
sensing images.

3. Comparing the performance of the suggested CNN 
algorithms and nine well-known pre-trained models 
based on standardized datasets.

The remainder of this paper is structured as follows: Sec-
tion "Literature Review" summarizes the literature review. 
Section "Approach Preprocessing" goes through the pro-
posed approaches in depth. Section "The Proposed CNN 
Model Approach" provides the suggested method’s experi-
mental outcomes. The section "Experimental Results and 
Discussion" brings the research to a conclusion.

Literature Review

Classification

Kumar et al. (2021) examined the outcome of pre-training 
16 different convolutional neural network algorithms on 
the ImageNet database and tuned these models for the 

challenge of recognizing numerous items in very high-
resolution pictures. They indicated that using pre-trained 
algorithms would reduce the demand for vast volumes of 
very-high-resolution pictures.

Li et  al. (2019) used four DNNs to construct 
comparable classification approaches in metropolitan 
built-up environments (CNN, SMDTR-CNN, CapsNet, and 
SMDTR-CapsNet). In terms of various metrics, the offered 
methodologies’ accomplishments have been confirmed.

Liang et  al. (2020) utilized a two-stream satellite 
imagery picture categorization system. Furthermore, the 
merging of CNN and GCN helps the developed system 
to simultaneously learn object-based spatial aspects 
and global-based visual characteristics. The framework 
acquires the appearance properties of the entire picture and 
the spatial dependence between items at the same time, 
thereby reducing visual confusion and improving feature 
discrimination.

Xu et al. (2021) proposed an improved classification 
approach for land categorization using remote sensing 
pictures that combine recurrent neural network (RNN) and 
random forest (RF). Object and pixel categorization are used 
for classification.

Cheng et  al. (2020) described the primary issues of 
satellite images categorization and conducted and presented: 
(i) auto-encoder-based satellite images classification; (ii) 
CNN-based satellite image object detection methods; and 
(iii) methods for detecting satellite photographs using 
generative adversarial networks.

Dong et al. (2020) developed an approach for classifying 
very-high-resolution satellite pictures depending on the 
merging of a random forest (RF) classifier with the CNN. 
The fusion with the RF had a great enhancement on the task 
of the relevant variables selection.

Ma et al. (2021) presented the SceneNet approach for 
image categorization network architecture discovery 
based on the neural evolution of multi-objective. The 
system searching and architecture coding in SceneNet 
are accomplished by the application of an evolutionary 

Data Gathering & Pre-Processing Models Training                                 Model  Tes
ng

classes

Fig. 1  Main stages of the CNN system
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technique, which may construct an improvement in the 
hierarchical extraction of satellite image information.

Priya and Vani (2019) proposed a convolutional neural 
algorithm for fire detection. The algorithm is based on 
Inception-v3 with the transferred learning-based system that 
has been trained using satellite pictures for the process of 
classifying images into fire and non-fire images.

Unnikrishnan et al. (2019) proposed innovative deep 
learning designs for three different networks (AlexNet, VGG, 
and ConvNet) developed by hyper-tuning the model and 
using 2 bands of data as the input. The redesigned models 
using the 2-band input and a decreased layers number are 
trained and tested in order to categorize photographs into 
distinct groups.

Rohith and Kumar (2022) built a 13-layer CNN 
architecture for the process of classifying raw remote 
sensing images of the National Remote Sensing Center 
(NRSC) dataset.

Zhao et al. (2019) investigated the feature representation 
capacity of multiple classifiers from the perspective of 
categorization of satellite imagery. Furthermore, 4 pre-
trained CNN algorithms and 3 popular databases are chosen, 
compared, and summarized.

Özyurt (2020) proposed feature extractors, VGG19, 
VGG16, Alexnet, ResNet, SqueezeNet, and GoogleNet 
pre-trained architectures that were employed. They acquire 
features from the architecture’s final fully connected (FC) 
layers, and to produce suitable features, the article used the 
ReliefF approach for the process of selecting features. The 
convolutional neural features are then sent into the support 
vector machine (SVM) classification algorithm rather than 
the FC layers of CNN to measure the performance.

Detection

Zalpour et al. (2020) proposed an oil tank identification 
framework based on oil depot detection by employing deep 
characteristics. First of all, oil stores are retrieved using a 
faster R-CNN. Second, for suitable target selection, a quick 
circle detection algorithm is used. For feature extraction, 
they coupled CNN and HOG. Finally, the SVM classifier is 
utilized for the process of classifying the images.

Chen et al. (2022) used the transfer learning approach in 
order to overcome the overfitting issue. For the purpose of 
finding airplanes in remote sensing photographs, the Domain 
Adaptation faster R-CNN (DA faster R-CNN) algorithm is 
suggested. The DA faster R-CNN detection technique is 
applied to the DOTA dataset for the detection of aircraft for 
the process of addressing the detection challenge resulting 
from the poor quality of remote sensing photos.

Darehnaei et al. (2022) suggested swarm intelligence 
ensemble deep transfer learning (SI-EDTL), for the 

purpose of detecting various vehicles. Faster regional-
based convolutional neural networks (faster R-CNN) are 
employed in this article. The region proposal network 
(RPN) is applied for extracting various regional proposals, 
and CNN is then employed to choose the most evocative 
characteristics of that region to identify objects. They uti-
lized three different faster R-CNN as learning algorithms 
that trained on the ImageNet dataset, along with five trans-
fer classification models in order to categorize the region 
of interest into four vehicle classes taken from the UAV 
dataset.

Feng et al. (2019) utilized faster R-CNN to locate vehicles 
in satellite pictures. They investigated the effects of the 
size of objects and the pooling technique on the regional 
proposal, and then, in order to improve the detection 
accuracy of multi-scale objectives, a new strategy for region 
recommendation was developed. Several tests are used to 
show the efficiency of the developed multi-scale object 
classification algorithm for remote sensing images.

Napiorkowska et  al. (2018) utilized the FCN-VGG 
network to recognize three distinct items or characteristics 
in satellite imagery which are roadways, palm plants, and 
vehicles taken from Deimos-2 and Worldview-3 datasets. 
The outcomes indicate that the suggested strategy is 
successful at locating objects with various colors and forms, 
which conventional satellite imagery approaches such as RF 
or SVM cannot do.

Karnick et  al. (2022) applied a  Multi-Scale Swift 
Detection System, which is a fully convolutional network 
architecture, on the COWC dataset to locate cars. This 
detection technique employs a modified version of 
YOLO known as the YOLT architecture, which scans test 
photographs of arbitrary size using bounding boxes to find 
the vehicles.

Karim et al. (2019) proposed a training approach that 
relies on compressed and down-scaled photographs to assess 
the influence of automobile compression techniques and 
down-scaling on prediction performance.

Sharma et al. (2021) built YOLOrs, which is a novel 
CNN proposed for object recognition in multimodal remote 
sensing pictures. The utilized approach used for vehicle 
detection was compared with various modern techniques to 
prove its strengths.

Zhang et al. (2022) proposed an MFRC detection tech-
nique based on faster R-CNN for the detection of airplanes. 
Three steps were used in developing the suggested frame-
work: to begin, K-means is used to combine the airplane 
enclosing areas while also enhancing the region detection in 
RPN. Second, the pooling layers of the VGG16 network are 
reduced from four to two in order to achieve the characteris-
tic of small-scale airplanes. Finally, Soft-NMS is employed 
to improve the airplane’s frame.



44 Journal of the Indian Society of Remote Sensing (January 2024) 52(1):41–61

1 3

Zhu et al. (2020) proposed an innovative satellite images 
object recognition technique that employs a fusion-based fea-
ture reinforcement component (FB-FRC) to enhance object 
feature discrimination. Two fusion techniques are proposed 
in detail: (i) a hard fusing approach and (ii) a soft fusing 
technique.

Cui et al. (2021) collected global and local characteristics 
simultaneously, to introduce a detection mechanism that uses 
the dual-channel deep learning (DCDL) method. In order to 
construct local mining and residual calculations on the image 
in the first stage, they used a multiscale convolution residual 
network. Secondly, the local concentration approach is used 
to limit the information by assigning weight factors to local 
attributes. Lastly, 2-layer convolution is applied to achieve 
deep feature mining in order to detect three separated classes 
from the NWPU-RESISC45 dataset.

Segmentation

Diakogiannis et al. (2020) innovated a powerful deep learning 
modeling approach for the segmentation of high-definition 
satellite photographs introduced ResUNet-a; their deep 
learning architecture is built on the encoder/decoder concept, 
with typical convolutions substituted with ResNet modules.

Pang and Gao (2022) introduced the MAGC-Net neural 
network algorithm for pixel-level classification of ocean 
satellite imagery pictures, which is built on a multi-head 
attention technique supervised by Conv-LSTM. The outcome 
demonstrates that the suggested three Conv-LSTM layers 
that analyze deep features in this network utilize the multi-
head attention technique to fully exploit the number of hosts, 
substantially decreasing features and fusion of features 
enhancing.

Table 1 summarizes the most recent research articles that 
discuss the problem of recognizing multiple objects in remote 
sensing images.

The literature review represents that remote sensing 
applications can be categorized into different categories based 
on multiple ways:

(1) Application (classif ication,  detection,  and 
segmentation).

(2) Acquired image quality (high-resolution images, low-
resolution images).

(3) Objects (multiple object detection, single object 
detection).

(4) Image capturing distance from the ground (satellite 
imagery, drone imagery)

In this article, we are utilizing low-resolution multiple-
object satellite images for classification purposes.

Approach Preprocessing

Image Acquisition

Images are collected from two datasets, which are summa-
rized in Table 2: (a) Northwestern Polytechnical University 
(NWPU) published the NWPU-RESISC45 dataset, which 
is released for Remote Sensing Image Scene Classification 
(RESISC). This data collection comprises 31,500 photo-
graphs divided into 45 environment classes, every with 700 
images (Cheng et al., 2017). Dataset samples are illustrated 
in Fig. 2. (b) The UC Merced Land Use dataset contains 21 
land-use types represented by aerial photographs (256 × 256 
dimensions in RGB). The classes consist of 100 photographs 
each (Yang & Newsam, 2010). Figure 3 illustrates the sam-
ples from the dataset.  

Image Preprocessing

Image preprocessing is a large field of study that contains 
many fields including image resizing and image augmen-
tation, which plays a huge role in deep learning applica-
tions and especially in object detection tasks (Kodali & 
Dhanekula, 2021; Marastoni et al., 2021). The proposed 
preprocessing steps are summarized in Fig. 4.

Image Resizing

Image resizing is an important image preprocessing step, 
in which dimensions of input images are resized in order to 
be more suitable for the CNN architecture that the system 
is dealing with. Furthermore, it can enhance the overall 
accuracy and processing time (Kodali & Dhanekula, 2021; 
Pathak & Raju, 2022). This article has applied image 
resizing for all the input images depending on the pre-
defined input size of the involved deep learning pre-trained 
model based on the Python resizing function, which has 
been used in recent articles (Vyas et al., 2022).

Image Augmentation

Image augmentation is an approach applied to expand the 
volume of information by adding slightly changed replicas of 
either current data or newly produced synthetic data from the 
already existing data. It functions as a regularizer and assists 
in preventing overfitting while developing a deep learning 
algorithm (Chlap et al., 2021; Khalifa et al., 2022). In this 
article, data augmentation has been involved by adding an 
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extra version of data to increase both the validation and 
training input data amount by adding some changes to the 
data which was rotation with an angle between zero-degree 
and 180-degree, vertical flip, horizontal flip and zoom in 
with a 0.1 percent of the overall input image dimensions.

Table 1  A complete literature review of recent research articles in state of the art of remote sensing image classification

References Application Technique Strength Challenges

Kumar et al. (2021) Classification 16 Pre-trained CNN models Parameters tunning No new architecture
Li et al. (2019) Classification SMDTR-CNN New layering structure 

(Capsule)
Large training time

Liang et al. (2020) Classification CNN-GCN Features fusion Complexity
Xu et al. (2021) Classification RNN-RF Classification technique Small dataset size
Cheng et al. (2020) Classification Published classification 

techniques
Comprehensive comparison 

of classification methods
No new architecture

Dong et al. (2020) Classification CNN-RF Fusion of CNN and RF for 
feature extraction and 
classification

A large number of epochs

Ma et al. (2021) Classification SceneNet Multi-objective 
optimization

Very Large training time

Priya and Vani (2019) Classification Inception-v3 High accuracy Single class and small dataset
Unnikrishnan et al. (2019) Classification AlexNet, ConvNet, VGG Hyper-tuning the pre-

trained networks
Lack of performance 

indicators
Rohith and Kumar (2022) Classification Thirteen-layer deep CNN 

model
Layering structure Low accuracy

Zhao et al. (2019) Classification Pre-trained CNN models Comparison of feature 
representation methods

No new architecture

Özyurt (2020) Feature selection CNN—Relief—SVM High accuracy Complexity and time
Zalpour et al. (2020) Detection Improved faster R-CNN 

with SVM
Small processing time Single class

Chen et al. (2022) Detection DA faster R-CNN Fast iteration time and 
low brightness domain 
adaptation

Single object detection

Darehnaei et al. (2022) Detection SI-EDTL Combined 3 pre-trained 
models with 5 classifiers

Complexity and processing 
time

Feng et al. (2019) Detection Modified RPN Layering structure Many iterations and lack of 
indicators

Napiorkowska et al. (2018) Detection VGG-8 High accuracy Single object detection
Karnick et al., (2022) Detection YOLT Detect objects at several 

scales
Complexity

Karim et al. (2019) Detection RCNN Impact of image rescaling 
on detection

No new architecture

Sharma et al. (2021) Detection YOLOrs Detect objects at several 
scales

Complexity and processing 
time

Zhang et al. (2022) Detection Faster RNN Boundary box optimization Single object detection
Zhu et al. (2020) Detection FB-FRC Features fusion strategy Complexity
Cui et al. (2021) Recognition DCDL Mining global and local 

features simultaneously
Recognition is for a single 

class
Diakogiannis et al. (2020) Semantic segmentation ResUNet-a Multiple object 

segmentation
Only used with high-

resolution images
Pang and Gao (2022) Segmentation MAGCNet—ConvLSTM Features extraction 

technique
Single object segmentation

Table 2  The dataset details

Dataset No. of classes No. of 
images per 
class

Image size

NWPU-RESISC45 45 700 256 × 256 × 3
UC Merced 21 100 256 × 256 × 3
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Fig. 2  NWPU-RESISC45 dataset samples

Fig. 3  UC Merced dataset samples

Fig. 4  Preprocessing flow chart
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Model Optimization

Optimizers are techniques that adjust the deep learning 
algorithm’s properties including learning rate (Lr) and weights 
to increase the accuracy of the system. Optimizers are critical 
in decreasing the loss caused by the training phase (Manickam 
et al., 2021). This article proposed the Adam optimization 
technique starting with random weights and with a 0.00025 
starting learning rate. Furthermore, the learning rate value 
was reduced by a factor of 0.25 using a learning rate reduction 
method, which is done if accuracy stays constant for multiple 
consecutive epochs with a max. of four overall reductions 
with a min. learning rate of 1 ×  10−6 (Kingma & Ba, 1412).

Pre‑trained CNN Algorithms

CNN has already made incredible progress, mostly in image 
processing techniques, and has rekindled academics’ inter-
est in ANNs. Numerous research papers have been done 
in order to improve CNN's ability to complete tasks. CNN 
advancement may be divided into several categories, such 
as optimizations, regularization, deep learning architectures, 
and design improvements (Lei et al., 2020). This area of the 
site tracks advancements among the most prevalent convo-
lutional networks. This article applied multiple pre-trained 
deep learning techniques in order to compare their accuracy 
with the model innovated within this article including:

• The Vgg16 algorithm is a deep learning network com-
posed of thirteen convolutional combined with three fully 
linked layers. It is divided into 41 pieces, including the 
SoftMax layer, the Max pool, the fully connected layer, 
the Relu layer, and the Dropout layer (Ye et al., 2021). The 
VGG16 input image default dimensions are (224,224,3).

• The Vgg19 algorithm is a deep learning network com-
posed of sixteen convolutional combined with three fully 
linked layers. It is divided into 41 parts, including the 
Max pool, the fully linked layer, the Relu layer, the Drop-
out layer, and the SoftMax layer (Li et al., 2020). The 
VGG19 input image default dimensions are (224,224,3).

• AlexNet was created using deep learning methods. This 
design reduced the number of failures in computer image 
classification. Five convolutional layers, three pooling 
layers, and three fully connected layers are the main 
layers of AlexNet (Dhillon & Verma, 2020). AlexNet 
default picture size of the input image is (224,224,3). The 
equation summarizes the model represented in Eq. (1).

where the output target I (M) and the summed compan-
ion targets X (M) are each independently calculated in 
Eqs. (2) and (3).

(1)A(M) = I(M) + X(M)

• MobileNet is composed of depth-separable convolution 
layers. The depth-wise convolution and point-wise 
convolution make up every depth-wise separable 
convolutional layer. If point-wise convolutions and 
depth-wise convolutions are computed individually, a 
MobileNet has 28 layers. A basic MobileNet contains 4.2 
million parameters (Hou et al., 2020). MobileNet default 
picture size of the input image is (224,224,3). The depth-
wise convolution is represented in Eq. (4).

where K is the depth-wise convolution kernel, F is the 
feature map input, and G is the created feature map.

• ResNet is a more complex design with 152 layers than 
any other known architecture. It is made up of several 
residual blocks. The ResNet default input dimensions are 
(224,224,3). Equations (5–7) represent the ResNet model 
(Sarwinda et al., 2021).

where Ac(S
j

1→n
 , j1→n ) is a converted signal, and Sj

I
 is the 

I-th layer input. Ac(S
j

1→n
 , j1→n ) and Sj

1+n
 are the input of 

the next layer after the activation function Aa is applied.
• DenseNet Traditional n-layer deep network function 

n connections, one between every level and the layer 
after it. DenseNet contains n (n + 1)/2 interconnection 
since each layer links to all the layers in some kind of 
feed-forward way. All previous layers’ local features are 
utilized as inputs to every layer, while its local features 
are employed as inputs in all following layers. DenseNet 
default input dimensions are (224,224,3) (Zhai et al., 
2020). DenseNet improved the system by combining all 
of the image features successively rather than summariz-
ing the resulting feature maps among all preceding lay-
ers, as shown in Eq. (7).where the layer index is denoted 
by n, while the nonlinear operations are denoted by G and 
the feature of the nth layer is represented by f.

(2)I(M) ≡ ‖‖m(o)‖‖2 + L(M, m(o))

(3)
X(M) ≡ ΣN − 1n

= 1[‖‖m (N)‖‖2 + l(M, m(n)) − r

(4)Ĝk,l,m =
∑

i,j

K̂i,j,m ⋅ Fk+i−1,j−1,m

(5)S
j

1+n
= Ac(S

j

1→n
, j1→n)S

j

I
n ≥ I

(6)S
j

1+n
= Aa(S

j

1+n
)

(7)Ac (S
j

1→n
, j1→n) = S

j

1+n
− S

j

I

(8)fn = Gn(
[
f0, f1, f2,…… , fn−1

]
)
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• LeNet is the first publicly available CNNs to get 
widespread recognition for their effectiveness on tasks 
involving computer vision. LeNet is composed of two 
parts: (a) a convolution encoder with 2 convolution layers 
and (b) a dense network with three FC layers. LeNet 
default input dimensions are (32,32,3). Equation  (8) 
shows the process of estimating the output in the LeNet 
model (Bouti et al., 2020).where yn is the output layer, 
xm is the vector of the input, and ∅nm is the vector of the 
weights.

• Xception is a 71-layer convolutional neural model 
used in deep learning applications. The input is routed 
through the entering layers, the mid-layers, which is 
performed 8 times, and lastly the output layers (Jie et al., 
2020). Xception model default input dimensions are 
(299,299,3).

(9)yn =
∑

(xm − ∅nm)
2

• Inception-V3 is composed of asymmetric and symmetric 
construction elements, containing dense layers, pooling 
layers, sequences, dropouts, and fully connected layers. 
Because of the inception modules inside its structure, 
it has a complicated architecture (Kumthekar & Reddy, 
2021). The inception model default input dimensions are 
(299,299,3).

The Proposed CNN Model Approach

To achieve a deep learning algorithm based on CNN with 
enhanced performance and a small amount of error or loss, 
some parameters have to be chosen accurately such as opti-
mization algorithm, layering structuring, filter sizes, batch 
size, activation function, learning rate, and a number of fil-
ters for a given dataset. The utilized CNN model was built 
using several max. pooling, convolutional layers, batch 
normalization, and dense layers. Combining, pairing, and 

Fig. 5  The full layout of the proposed CNN architecture
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layering are employed to construct an appropriate method 
that outperforms the known pre-trained models. Figures 5 
and 6 illustrate the full layout of the suggested CNN algo-
rithm. The proposed CNN structure starts with an input 
layer with an input image dimension of (128,128,3); after 
the input layer, there are five convolutional layers combined 
with 2 max-pooling and 2 batch normalization layers; all 
the convolution layers are implemented with (same) pad-
ding and RelU activation function as follows:

 (1) Convolutional layer with a kernel size of 3 × 3 and 128 
filters implemented with (same) padding and RelU 
activation function.

 (2) Convolutional layer with a kernel size of 3 × 3 and 256 
filters implemented with (same) padding and RelU 
activation function.

 (3) Max. pooling layer with a kernel size of 4 × 4.
 (4) Batch normalization.
 (5) Convolutional layer with a kernel size of 3 × 3 and 128 

filters implemented with (same) padding and RelU 
activation function.

 (6) Convolutional layer with a kernel size of 3 × 3 and 256 
filters implemented with (same) padding and RelU 
activation function.

 (7) Convolutional layer with a kernel size of 3 × 3 and 512 
filters implemented with (same) padding and RelU 
activation function.

 (8) Max-pooling layer with a kernel size of 4 × 4.
 (9) Batch normalization.
 (10) Flattened layer with size equal to 2048 units.
 (11) The fully connected part of the suggested model 

consists of three dense layers using the Relu activation 
function of 1024, 512, and 256 units in the same order.

 (12) Batch normalization.
 (13) A dense layer of 10 units and SoftMax activation 

function acts as the output layer or the classifier.

The rest of the parameters are included in the results 
Section  “Parameters”. The number of nodes in the 
SoftMax layer matches the number of classes that the 
suggested method is capable of supporting. The loss of all 
the models in this article is measured based on the sparse 
categorical cross-entropy, and the activation function 
used is Adam. The suggested CNN model is based on the 
pyramid shape as shown in Fig. 5 and aims to enhance 
the performance of object classification in satellite 
imagery images to outperform the traditional pre-trained 
deep learning algorithms concentrating on accuracy 
and training processing time. The proposed method is 
named Pyramidal Net due to its pyramidal shape. The 
modification in the proposed model can be referred to the 
unique and optimized layering structure, which includes 

the selection of the number of filters, kernel size, and 
optimization technique. The encoding decoding part of the 
number of filters improves the feature extracting purposes, 
which increase the overall performance of the system.

Experimental Results and Discussion

Experiments Dataset Description

The firstly employed dataset includes 10 different classes from 
the NWPU-RESISC45 dataset, which are airplane, baseball 
court, desert, beach, overpass, roundabout, forest, stadium, 
harbor, and lake. Each class of the ten classes consists of 
700 different images. Furthermore, in order to ensure the 
experimental findings, the UC Merced Land Use dataset has 
been utilized. The secondly employed database consists of 
10 different classes from the UC Merced Land Use dataset, 
which are airplane, baseball court, chaparral, beach, overpass, 
parking lot, forest, tennis court, harbor, and agricultural. Each 
class of the ten classes consists of 100 different images. Those 
10 classes in both datasets are chosen randomly to evaluate 
the model’s performance metrics and compare the proposed 
model with the pre-trained model’s performance. Both 
datasets are divided into 70% training set with 4900 images, 
15% validation set with 1050 images, and 15% for testing with 
1050 images distributed equally for the 10 classes.

Performance Metrics

Object detection from remote sensing image’ operational 
efficiency is measured by assessing the suitable accuracy, 
processing time, and complexity degree. Researchers could 
evaluate how parameter changes impact the model’s perfor-
mance during the training process by exploring deep learn-
ing approaches. True-positive (TP), false-positive (FP), true-
negative (TN), and false-negative (FN) measurements are 
calculated for the measurements (Bouguettaya et al., 2022; 
Singh et al., 2022). As a result, the following evaluation 
metrics have been calculated:

1. Accuracy is measured by the number of instances that 
were correctly detected. Accuracy is calculated by 
dividing the total number of correctly classified objects 
by the total number of classifications performed by the 
algorithm.

2. Precision is calculated as the total number of true posi-
tive classifications divided by all of the algorithm’s posi-
tive classifications.

(10)Accuracy =
TN + TP

TN + TP + FN + FP
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3. The proportion of true positively categorized samples 
to all positively classed samples serves as a measure of 
recall.

4. The F1 score is the weighted mean of precision and 
recall.

5. Intersection Over Union (IOU) is the measure of 
similarity. Furthermore, it can also be called Jaccard, 
and it is equal to the proportion between the total of real 
positive categories and all of the negative classifications.

Parameters

All the results were computed based on the parameters 
described in Table 3. Furthermore, as we discussed earlier 
in the article image augmentation has been utilized in all 
experiments in order to overcome the overfitting problem. 
Table 4 describes the applied augmentation techniques, 
which have been done on the input data. The number of 
epochs is fixed to be 30 epochs for all the utilized models to 
minimize the training time.

(11)precision =
TP

TP + FP

(12)recall =
TP

FN + TP

(13)F1 − score = 2 ×
precision × recall

precision + recall

(14)IOU =
TP

TP + FP + FN

Selection of Optimization Parameters

This section delves into the reasoning behind the article 
optimization parameter selections and investigates their 
impact on the accuracy of the proposed deep learning model 
for the classification of objects from remote sensing imagery. 
Choosing the Adam optimizer was one of the most important 
decisions made within the article. In comparison with the 
other tested optimization algorithms, Adam frequently 
converges faster and produces competitive performance 
with minimum hyper-parameter adjustment. The Adam 
optimizer was chosen based on  theoretical reasons and 
empirical research. A series of tests with varying learning 
rates and batch sizes have been done to determine how 
the Adam optimizer affected the accuracy of the proposed 
object classification model. The proposed model was 
trained with initial learning rates that ranged from 0.001 
to 1 ×  10−7. We discovered that learning rates much above 
the optimal range resulted in unstable convergence and 
overfitting, whereas extremely low learning rates delayed the 
convergence period without appreciably improving accuracy. 
A starting learning rate of 0.00025 produced the optimal 
compromise in convergence speed and accuracy. The batch 
size utilized during training is another important component 
in optimization. Larger batch sizes frequently result in faster 
convergence, but they also raise the possibility of exceeding 
the ideal solution or becoming stranded in inefficient local 
minima. The proposed model tested batch sizes of 16, 32, 50, 
and 64. While bigger batch sizes accelerated convergence, 
they also showed evidence of overfitting on occasion. A 
batch size of 50 provided a good mix between convergence 
speed and generalization.

Experiment

In this article, a novel CNN model has been utilized and 
compared with nine different pre-trained models with respect 
to several performance indicators (accuracy, recall, preci-
sion, IOU, and F1-score) for the process of object detection 
on remote sensing images. The experiment can be catego-
rized into three main stages starting with image resizing and 
augmentation, then the training of nine pre-trained convo-
lutional deep learning algorithms that are VGG16, VGG19, 
AlexNet, DenseNet201, ResNet152V2, LeNet5, MobileNet, 
Xception, and InceptionV3 plus the proposed method, and 
finally the testing and comparison. The image input size of 
each CNN algorithm is represented in Table 5. The article 
has applied the default values of each model provided by 
the keras library, and for the proposed model we tested an 
input size of 224 × 224 × 3, did not make any changes in 
performance and also increased the training time while one 
of the objectives of the proposed model is to increase the 
accuracy with a small training time in comparison with other 

Table 3  Predefined parameters are assigned to the proposed system

Parameter Value

Batch size 50
Starting learning rate 25 ×  10−5

Min. learning rate 1 ×  10−6

Epochs 30
Optimizer Adam
Number of classes 10
Train, validation, and test percentage 70%, 15%, and 15%

Table 4  Augmentation techniques

Augmentation technique Amount

Rotation 0–180
Horizontal flip –
Vertical flip –
Zoom-in 0.1



51Journal of the Indian Society of Remote Sensing (January 2024) 52(1):41–61 

1 3

models. Algorithm 1 introduces the full processes of the 
three stages of the object detection process for the proposed 
model.

Algorithm 1  The Proposed Object Detection Technique

Table 6 introduces a complete comparison study between 
the proposed model and the most recent pre-trained deep 
structures with respect to test loss, test accuracy, train loss, 
train accuracy, validation loss, and validation accuracy tak-
ing into consideration the same number of epochs. Moreo-
ver, both confusion matrices as shown in Figs. 7, 8, 9, 10, 
11, 12, 13, 14, 15 and 16 and accuracy and loss curves in 
Figs. 17, 18, 19, 20, 21, 22, 23, 24, 25 and 26 have been 
utilized and demonstrated. Accordingly, the proposed meth-
odology has the best performance among all the tested pre-
trained CNN models. Even if some pre-trained algorithms 
score a little close to the proposed algorithm as Xception, 
InceptionV3, and VGG16 CNN models, the proposed model 
training time was the smallest among the other pre-trained 
models.                    

Table 5  Input image size of the 
proposed CNN algorithms

Algorithm Input size

VGG 16 (224,224,3)
VGG 19 (224,224,3)
AlexNet (224,224,3)
DenseNet 201 (224,224,3)
ResNet 50 (224,224,3)
MobileNet (224,224,3)
LeNet5 (32,32,3)
Inception V3 (299,299,3)
Xception (299,299,3)
Proposed model (128,128,3)
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In order to ensure the experimental result findings, both 
the proposed pyramidal CNN algorithm and the pre-trained 
algorithms have been applied to both the UC Merced Land 
Use datasets. The experimental results showed that the 

suggested pyramidal model outperforms all other CNN mod-
els that have been evaluated. Furthermore, the pyramidal 
model has a great performance dealing with small-sized 

Table 6  Comparison between different pre-trained CNN algorithms and the proposed model on the NWPU-RESISC45 dataset

CNN model Test loss Test accuracy Train loss Train accuracy Validation loss Validation 
accuracy

Epochs

VGG 16 0.188 0.949 0.073 0.975 0.250 0.935 30
VGG 19 0.407 0.858 0.350 0.881 0.440 0.852 30
AlexNet 0.259 0.908 0.200 0.934 0.298 0.912 30
MobileNet 0.558 0.810 0.488 0.825 0.486 0.834 30
ResNet 152V2 0.415 0.865 0.363 0.886 0.378 0.876 30
DenseNet 201 0.264 0.923 0.125 0.959 0.241 0.929 30
LeNet 1.061 0.648 0.793 0.732 0.834 0.699 30
Xception 0.168 0.948 0.060 0.980 0.214 0.950 30
Inception 0.225 0.937 0.137 0.961 0.214 0.940 30
Proposed model 0.112 0.963 0.023 0.995 0.109 0.971 30

CNN model Precision Recall F1 IOU Image size Training time (S) Lr reduction epochs

VGG 16 0.95 0.95 0.95 0.902 (224,224,3) 2303.5 16,23,27,28
VGG 19 0.86 0.86 0.86 0.751 (224,224,3) 2360.1 5,19,23,26
AlexNet 0.91 0.91 0.91 0.831 (224,224,3) 2365.5 6,17,21,25
MobileNet 0.82 0.81 0.81 0.680 (224,224,3) 1995.6 13,18,19,22
ResNet 152V2 0.87 0.86 0.87 0.762 (224,224,3) 3454.5 6,13,15,20
DenseNet 201 0.92 0.92 0.92 0.857 (224,224,3) 2288.9 4,13,16,20
LeNet 0.70 0.65 0.65 0.479 (32,32,3) 87.1 14,17,18,19
Xception 0.95 0.95 0.95 0.900 (299,299,3) 4749.9 5,11,18,24
Inception 0.94 0.94 0.94 0.882 (299,299,3) 3904.2 6,20,23,25
Proposed model 0.96 0.96 0.96 0.928 (128,128,3) 844.3 13,20,27,29

Fig. 7  VGG16 confusion matrix Fig. 8  VGG19 confusion matrix
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datasets unlike most of the pre-trained models which have 
an overfitting problem as it is represented in Table 7.

In order to guarantee that the proposed model is size 
invariant and able to classify objects with different sizes, 
an additional experiment that categorizes the accuracy in 
terms of the size of the output classes has been done, by 

taking three classes from NWPU-RESISC45 dataset, small 
size object (airplanes), medium size object (stadium) and 
large size object (desert) each with 700 images. These 2100 
images are then split into a 70% training set, a 15% valida-
tion set, and a 15% test set. In this experiment, to avoid 
overfitting all the convolutional layers filters count of the 
proposed model are divided by two. Tables 8 and 9 show the 
performance metrics of the proposed model over this experi-
ment. Finally, Fig. 27 shows the accuracy and loss curves of 

Fig. 9  AlexNet confusion matrix

Fig. 10  MobileNet confusion matrix

Fig. 11  ResNet152V2 confusion matrix

Fig. 12  DenseNet201 confusion matrix
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the experiment, while Fig. 28 shows the confusion matrix 
of the three classes.   

According to Figs. 27 and 28, as well as the performance 
metrics illustrated in Tables 8 and 9, the proposed model 
can be considered as a size-invariant model, because of the 
high accuracy the proposed model had in this experiment. 
Furthermore, in order to ensure that the proposed model 
is illumination-invariant, the article examined the proposed 
model performance on a binary dataset that contains 700 

images with clouds and 700 clear images (without clouds) 
mixed equally from all of the other nine classes used in the 
NWPU-RESISC45 dataset; these 1400 images are then split 
to 70% training set, 15% validation set, and 15% test set. 
Brightness augmentation with a brightness range between 
[0.2–2] was used during dataset preparation to strengthen 
the model's ability to handle shifting lighting conditions. 
This augmentation method adds to the model's robustness 
in varied illumination situations. In this experiment to avoid 

Fig. 13  LeNet confusion matrix

Fig. 14  Xception confusion matrix

Fig. 15  Inception confusion matrix

Fig. 16  Proposed model confusion matrix
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Fig. 17  A VGG16 loss curve, B VGG16 accuracy curve

Fig. 18  A VGG19 loss curve, B VGG19 accuracy curve

Fig. 19  A AlexNet loss curve, B AlexNet accuracy curve

Fig. 20  A MobileNet loss curve, B MobileNet accuracy curve

Fig. 21  A ResNet152V2 loss curve, B ResNet152V2 accuracy curve

Fig. 22  A DenseNet201 loss curve, B DenseNet201 accuracy curve
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overfitting all the convolutional layers filters count of the 
proposed model are divided by two. Figure 29 shows the 
accuracy and loss curves of the experiment, while Fig. 30 
shows the confusion matrix of the two classes. Finally, 
Table 10 shows the performance metrics of the proposed 
model over this experiment.  

According to Figs. 29 and 30, as well as the performance 
metrics illustrated in Table 10, the proposed model can be 
considered as an illumination invariant model, because of 
the high accuracy the proposed model had this experiment.

Finally, to guarantee that the proposed model 
has a positive effect on such remote sensing images 
classification performance the article compared the 
proposed method with some recently published research 
articles in the remote sensing images classification field, 
which is represented in Table 11.

Aspects Contributed to Accuracy Improvement

In order to enhance the performance of the proposed 
model, the article contributed with different parameters 
including the number of filters, layering structure, kernel 
size, and optimization techniques. The unique and opti-
mized layering structure in the suggested model, which 
includes the choice of the number of filters, kernel size, 
and the overall hierarchical representation enhanced fea-
tures extraction, which boosts the system's overall perfor-
mance. Furthermore, a learning rate reduction technique 
has been done to improve convergence and model generali-
zation. In addition, the proposed model applied data aug-
mentation, which increased the proposed model's exposure 
to various data fluctuations, which increased the model's 
robustness. Later Adam was chosen as the optimization 

Fig. 23  A LeNet loss curve, B LeNet accuracy curve

Fig. 24  A Xception loss curve, B Xception accuracy curve

Fig. 25  A Inception loss curve, B inception accuracy curve

Fig. 26  A Proposed model loss curve, B proposed model accuracy 
curve
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algorithm, which sped up convergence and improved the 
use of gradient data.

Challenges

In this section, the main potential limitations and 
challenges that the proposed model may encounter have 
been highlighted:

1. Limited data set variation: One of the limitations the 
proposed model faces is the lack of a dataset that con-

tains variations in seasonal conditions, lighting, and 
environment.

2. Errors in labeling and annotation: The accuracy of the 
proposed model is largely dependent on the caliber of 
the labels applied to the training data. The performance 
of the model as a whole could be affected by inherent 
flaws in labeling or annotation.

3. The ability to transfer to other domains: Although our 
model is designed for object classification in satellite 
pictures, it may need additional tuning or adaptations in 
order to be used in other domains or datasets.

Areas of Improvement

1. Enhance data augmentation: utilize more diverse and 
complex techniques of data augmentation to make 
the model more resistant to variations in satellite 
photographs, such as changes in illumination, weather, 
and seasonal circumstances.

Table 7  Comparison between different pre-trained CNN algorisms and the proposed model on the UC Merced Land Use dataset

CNN model Test loss Test accuracy Train loss Train accuracy Validation loss Validation 
accuracy

Epochs

VGG 16 1.142 0.667 0.920 0.673 1.145 0.596 30
VGG 19 1.278 0.567 0.962 0.633 1.146 0.556 30
AlexNet 0.741 0.787 0.345 0.889 0.413 0.894 30
MobileNet 3.293 0.100 1.315 0.557 3.429 0.100 11
ResNet 152V2 0.890 0.707 0.476 0.857 0.551 0.815 30
DenseNet 201 0.765 0.833 0.089 0.979 0.242 0.940 30
LeNet 1.485 0.460 1.251 0.566 1.272 0.573 30
Xception 2.305 0.100 0.075 0.971 2.314 0.080 11
Inception 5.926 0.113 0.308 0.926 6.204 0.127 11
Proposed model 0.226 0.940 0.036 0.996 0.197 0.947 30

CNN model Precision Recall F1 IOU Image size Training time (S) Lr reduction epochs

VGG 16 0.61 0.67 0.63 0.500 (224, 224, 3) 453.6 5,10,16,19
VGG 19 0.50 0.57 0.50 0.395 (224, 224, 3) 421.0 3,4,17,19
AlexNet 0.82 0.79 0.79 0.648 (224, 224, 3) 285.4 6,12,13,14
MobileNet 0.01 0.10 0.02 0.053 (224, 224, 3) 124.0 7,11
ResNet 152V2 0.74 0.71 0.70 0.546 (224, 224, 3) 502.2 8,12,14,16
DenseNet 201 0.86 0.83 0.83 0.714 (224,224,3) 382.3 4,14,18,19
LeNet 0.49 0.46 0.44 0.299 (32, 32, 3) 14.1 6,8,10,11
Xception 0.01 0.10 0.02 0.053 (299, 299, 3) 266.1 4,11
Inception 0.02 0.11 0.03 0.060 (299, 299, 3) 205.1 6
Proposed Model 0.95 0.94 0.94 0.887 (128, 128, 3) 123.2 10,15,17,19

Table 8  The proposed model performance metrics of the three 
classes dataset individually

Class Precision Recall F1-Score

Airplane 0.98 0.90 0.94
Stadium 0.90 0.99 0.94
Desert 0.98 0.95 0.97

Table 9  The overall performance of the proposed model of the three classes dataset

CNN model Test loss Test accuracy Train loss Train accuracy Validation loss Validation accuracy Epochs

Proposed model 0.14 0.95 0.2467 0.9156 0.2118 0.9206 30
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2. Preprocessing: Before incorporating satellite photo-
graphs into models, create preprocessing methods that 
improve noise reduction, feature extraction, and overall 
data quality.

3. Object localization: Increase the model's capacity to pre-
cisely localize and specify object boundaries inside the 
satellite pictures in addition to classifying objects.

4. Ensemble Models: Explore ensemble learning 
techniques by mixing different models or model variants 
to improve the overall classification accuracy.

Fig. 27  A Proposed model loss curve of the three classes, B proposed 
model accuracy curve of the three classes

Fig. 28  Proposed model confusion matrix of the three classes

Fig. 29  A Proposed model loss curve of a two-class dataset, B pro-
posed model accuracy curve of a two-class dataset

Fig. 30  Proposed model confusion matrix of two-class dataset
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Conclusion

This article introduces a robust CNN model structure for 
object detection from remote sensing images. The article 
focused on building an optimized CNN model with a novel 
structure and suitable hyper-parameters to be able to classify 
remote sensing images with a performance that exceeds the 
pre-trained models’ performances with the smallest possible 
training time. The article evaluates the effectiveness of the pre-
sented models based on both the NWPU-RESISC45 and UC 
Merced Land Use dataset. All findings have concluded that 
the proposed pyramidal CNN model structure has the highest 
detection accuracy with a very small training time in com-
parison with the well-known pre-trained CNN models, and it 
can be utilized efficiently for object detection processes from 
remote sensing images with an accuracy reaching 97.1%. The 
proposed model had a great performance dealing with differ-
ent size object classes and different illumination datasets. Fur-
thermore, the pyramidal model showed a great performance 
dealing with small datasets, unlike the traditional pre-trained 
datasets. Future work may include utilizing more optimization 
algorithms, deep learning models, and classes. In addition, 
improving the proposed CNN structure could be our future 
work of interest.
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