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Abstract
In satellite remote sensing, C-band synthetic aperture radar (SAR) sensors with the frequency of about 5.4 GHz and wave-
length of about 5.5 cm interact heavily with the leaves, twigs and small stems. Hence, it is ideal for monitoring vegetation 
phenology, stratification of canopy closure/openness and biomass assessment of low- to medium-aboveground-biomass 
(AGB) density regions. Earth Observation Satellite-04 (EOS-04) is a C-band SAR mission from the Indian Space Research 
Organisation launched on 14 February 2022. This study presents the applications of EOS-04 data in forest phenological 
studies and biomass estimation in different vegetation conditions. Multi-temporal EOS-04 data were used to track the land 
surface phenology of tropical dry deciduous forests of Betul, Madhya Pradesh, which is mostly dominated by Tectona grandis. 
Phenological metrics were also derived from the tracked land surface phenology. For the mangrove forests of Sundarbans 
delta for two islands, namely Lothian and Dhanchi characterization in terms of canopy density and homogeneity/heterogeneity 
was carried out and AGB was estimated. The AGB values ranged from 29 to 241 Mg/ha, and the validation root mean square 
error (RMSE) was calculated to be 34 Mg/ha. EOS04 data were also used in combination with L-band ALOS PALSAR data 
for the forest biomass estimation in the part of Central India. Synergistic utilization of C- and L-band improves upon the 
individual models in terms of R2 and RMSE. L-band HV backscatter estimates AGB with a correlation coefficient of 0.49 
which improved to 0.57 with the inclusion of C-band and estimates AGB with RMSE of 29 Mg/ha. This study successfully 
demonstrated the usability of EOS-04 for tracking land surface phenology and deriving phenological metrics from it, for 
the characterization of mangrove forests and it AGB estimation and for AGB estimation of forests in low-biomass regions.
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Introduction

Forests are important as they hold about 45% of the ter-
restrial carbon in live aboveground biomass (Bonan, 2008). 
Forests hold more than 60,000 unique tree species and pro-
vide habitat for 68% of mammal species, 75% of bird species 
and 80% of amphibian species (The state of World’s Forests, 
2020). Remote sensing has been a crucial tool for moni-
toring vegetation cover, vegetation structure, disturbances 
in forests, forest biodiversity and biomass (Lechner et al., 
2020); however, the use of optical remote sensing data in 
cloud-prone tropical forest is challenging. SAR sensors have 
the ability to monitor vegetation through clouds and interact 
with different parts of the plants depending on the operat-
ing frequencies. C-band is designated for the portion of the 
electromagnetic spectrum in the microwave range from 4 
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to 8 GHz (Peebles, 1998). C-band SAR satellites mostly 
work at about 5.4 GHz (RADARSAT-2, Sentinel-1, RISAT-
1, etc.). EOS-04 is a C-band (5.4 GHz) SAR satellite mis-
sion launched by ISRO on 14 February 2022 which has full 
polarimetric capabilities. It is a successor to the RISAT-1 
satellite with a similar configuration. EOS-04 SAR payload 
operates in C-band frequency (5.4 Ghz) with capability to 
image in multiple resolutions in single, dual, circular or full 
polarization. Main feature of the mission is that the satel-
lite performs undisturbed systematic acquisition of data in 
descending passes in medium resolution scanSAR (MRS) 
mode and reserves scanning in fine resolution stripmap 
(FRS) mode for ascending passes for user-requested sites. 
So, the same satellite can be used for time series analysis of 
a target area at medium resolution; high-resolution backscat-
ter images can be captured for mapping and delineation-
related studies.

In forest ecosystems, especially in deciduous forests, the 
onset of leaves, colouration, fall of leaves (‘leaf senescence’) 
mark the start and the end of the photosynthetically active 
period. Therefore, phenology plays a major role in the pro-
ductivity and carbon storage activity of the forest ecosystem 
(Richardson et al., 2010). Phenological information in terms 
of multi-temporal satellite data has also been used to map 
tree communities present in forests (Mishra et al., 2021). 
Historically, these events that mark different stages of phe-
nological cycles were recorded by people in situ in the field 
which was a very time-consuming and laborious process and 
the records were subjective to the field personnel taking it 
(Schaber & Badeck, 2002). Then, these events were recorded 
using field instruments like Phenocam (Brown et al., 2016), 
RGB cameras and radiation sensors (Soudani et al., 2021). 
But these values recorded in the field by instruments or 
by human observations were very site specific and do not 
describe the spatial variations in the phenology of the for-
ests. Spectral vegetation indices (SVI) generated from multi-
spectral sensors present on satellites like Sentinel-2A and 
2B (Misra et al., 2020), LANDSAT Series (Mas & Araújo, 
2021), Suomi NPP (Zhang et al., 2018) and Indian remote 
sensing (IRS) (Garg et al., 2008), A series of satellites have 
been used to track the land surface phenology of the for-
ests. But usage of data from optical sensors for land surface 
phenology-related applications is limited by the problem 
of cloud cover, especially during the monsoon season over 
India where a lot of the photosynthetic activity is happen-
ing. C-band SAR is sensitive to plant foliage and is not eas-
ily attenuated by cloud cover, and hence, it can be used to 
capture the complete year phenological cycle of forests. This 
study demonstrated the ability of EOS-04 C-band data to do 
the same and also derive phenological metrics from it.

Mangrove forests are considered to be one of the vital 
coastal ecosystems that continue to be threatened by 
both natural and anthropogenic factors. The Sundarbans 

mangrove forests are located in the Bay of Bengal delta 
created by the confluence of the Ganges, Brahmaputra and 
Meghna rivers. The Indian part of the Sundarbans extends 
across the districts of South 24 Parganas and North 24 Par-
ganas of West Bengal State in India (http:// www. sunda rbanb 
iosph ere. org/ html_ files/ flora. htm). A summary of studies on 
radar remote sensing was reviewed in the field of mangroves 
by Proisy et al. (2001). However, the application of C-band 
SAR for quantifying forest canopy density has not been 
satisfactorily understood. When analysing SAR images to 
distinguish between different types of forest cover, texture 
transforms are crucial (Nelson et al., 2006). In comparison 
with VV-polarized light energy, studies have demonstrated 
that a greater part of HH-polarized microwave energy can 
pass through the forest canopy and reach the ground surface, 
where tidal inundation has a significant impact on scatter-
ing and reflection (Wang et al., 1995). In C band SAR data, 
the HV-polarized component plays an important role in 
volume scattering and is extensively used in forest canopy 
density studies. On surveying the studies, it is found that 
reports on to the characterization of Indian mangrove for-
ests in terms of canopy density using C-band SAR data are 
minimal. Besides, biomass estimation of the Indian Sunda-
rbans forests using C-band SAR data is almost lacking. This 
study demonstrated that using EOS-04 C-band SAR data, 
mangrove forests can be characterized in terms of canopy 
density and their AGB can be estimated spatially.

Along with forest mapping, phonological studies,  the 
quantification of vegetation carbon has received much atten-
tion as it directly impacts the inventory of greenhouse gases, 
considered one of the primary causes of climate change 
(Gibbs et al., 2007). Nearly 80% of the aboveground carbon 
is stored by the forests in the form of biomass (Solomon, 
2007). Forest ecosystems are excellent sink of  CO2, and they 
mop up  CO2 from the atmosphere and store it in the form of 
biomass through the process of photosynthesis (Wani et al., 
2012). Accurate information on biomass stock and its spatial 
distribution and change dynamics is therefore essential to 
plan adaptation and mitigation actions in the land-use sector. 
Remote sensing technology and its datasets (both optical and 
radar) have been extensively used for biomass estimation 
(Rajashekar et al., 2018; Rakesh et al., 2021; Reddy et al., 
2017; Thumaty et al., 2016). Forest biomass is stored in 
multiple vertical stories and microwave is able to penetrate 
deeper into forest canopies depending on operating frequen-
cies and provide information about stored woody biomass. 
The radar backscatter increases with increasing forest AGB 
from low to medium levels, but gradually loses its sensitiv-
ity to higher levels of AGB and asymptotes to a saturation 
level, resulting in a logarithmic or sigmoidal relationship 
between AGB and backscatter, according to previous studies 
(Hayashi et al., 2019; Mermoz et al., 2015). C-band being 
about 5.5 cm interacts mainly with leaves and small twigs 

http://www.sundarbanbiosphere.org/html_files/flora.htm
http://www.sundarbanbiosphere.org/html_files/flora.htm


789Journal of the Indian Society of Remote Sensing (April 2024) 52(4):787–800 

1 3

and is therefore sensitive towards low- to medium-AGB 
regions. L-band with 24 cm wavelength is much more sen-
sitive towards medium-AGB regions. Considering the veg-
etation interaction of C- and L-band, synergistic utilization 
of both to improve the biomass estimation in low–medium-
biomass regions was tested in this study.

Considering the importance of the SAR data for vegeta-
tion studies and systematic availability of the EOS-04 data, 
the present study focuses on the utilization of C-band EOS-
04 data in (1) forest phenological studies, (2) mangrove char-
acterization in terms of canopy density and heterogeneity/
homogeneity and (3) forest biomass estimation. Three ideal 
study sites of the three different objectives were selected in 
order to showcase the EOS-04 application for forest studies 
over India.

Study Site

Land Surface Phenology Tracking Study

A part of forested region near Betul, Madhya Pradesh, was 
used as the study site for monitoring the land surface phe-
nology of the region. The study site extended from 77.3978 
to 77.4553°E and from 21.8350 to 21.8897°N, about 
6km × 6km region consisting mostly of forests. Forests 
here are mostly dry deciduous type (ideal for tracking land 
surface phenology) and dominated by teak (Tectona gran-
dis). Figure 1 shows the location of the site in the state of 
Madhya Pradesh. A forest layer was developed from Reddy 
et al. (2015) by clubbing all the forest classes together and 
is depicted in green colour in Fig. 1.

Mangrove Characterization Study

The study area included the Lothian and Dhanchi Islands 
of Sundarbans, Lothian extending from 21° 36′ N–88° 18′ 
E to 21° 42′ N–88° 21 ′E and Dhanchi extending from 21° 
36′ N–88° 25′ E and 21° 43 ′N–88° 28′ E (Fig. 2). The dif-
ferent mangrove communities present in these two islands 
are Aegialitis–Excoecaria, Avicennia, Excoecaria, mixed 
(Ceriops–Excoecaria–Phoenix), Phoenix, mixed mangroves, 
fringe mangrove communities, besides other eco-morpho-
logical classes (marsh vegetation, saline blank and beach 
vegetation) (Kumar et al., 2021).

Aboveground Biomass Upscaling Study

The study was carried out in the part of Madhya Pradesh in 
the Khandwa district near the Indira Sagar dam. Forests in 
this region are dominated by teak (Tectona grandis), Dio-
spyros melanoxylon, Lagerstroemia parviflora and Madhuca 
longifolia. Figure 3 shows the study area maps along with 
the RISAT image used in the study (HV—backscatter).

Methodology

Land Surface Phenology Tracking Study

All available EOS-04 data in MRS mode were acquired for 
the study site, i.e. 12 images from 27 March 2022 to 20 
November 2022. The data were available for HH and HV 
polarization only. For this study, only HH images were used. 

Fig. 1  Location of study site near Betul, Madhya Pradesh, India. For-
ests are shown in green colour (Color figure online) Fig. 2  Index map of the study area with overlaid RISAT data
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The images came with local incidence angle (LIA) images 
also. All the 12 images were converted from digital number 
values to sigma naught values. Taking the grid of the first 
image as the reference grid, all the other 11 images were res-
ampled to align with the reference grid. The aligning of the 
raster was carried out in R using the ‘raster’ package. All 
the 12 images were stacked together to create a time series 
stack. The time series sigma naught values were then plotted 
for 21° 51′ 46.84″ N, 77° 25′ 33.67″ E (Fig. 4).

Phenological metrics were defined as follows from the 
plot:

1. Maximum Foliage: 

  Maximum foliage is defined as the maximum back 
scatter sigma naught value received throughout the year.

2. Time of Maximum Foliage
  : Time of Maximum Foliage is defined as the date on 

which Maximum foliage value was noted in the time 
series stack.

3. Leaf onset
  : Leaf onset was defined as the backscatter value of 

the first local minimum in the time series stack before 
the event of maximum foliage occurs.

4. Time of leaf onset: 
  Time of leaf onset was defined as the date on which 

Leaf onset occurs in the time series stack.
5. Leaf offset
  : Leaf offset was defined as the backscatter value of 

the first local minimum in the time series stack after the 
event of maximum foliage occurs.

6. Time of leaf offset: 
  Time of leaf onset was defined as the date on which 

Leaf offset occurs in the time series stack.

The above-mentioned rules were applied (Fig. 5) for the 
entire image stack for the Betul study site.

Mangrove Characterization Study

RISAT 1A Fine Resolution Stripmap 1 (FRS 1) having an 
incidence angle of 39.76° was utilized. Data acquired on 
25 February 2022 of ascending mode were used. The data 
characteristics are given in Table 1.

Fig. 3  Location of study area on the map of Madhya Pradesh state of 
India

Fig. 4  a EOS-04 MRS HH sigma naught image of the study site near Betul, Madhya Pradesh. b EOS-04 MRS HV sigma naught image of the 
study site. Red outline indicates the area of which time series sigma naught profile (HH only) is plotted in c (Color figure online)
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The SAR data processing involved downloading, cali-
bration and speckle reduction. The calibration equation 
used was as follows:

where sigma naught (dB)—backscattering coefficient, DN—
digital number, ip—per pixel incidence angle and KdB—cali-
bration constant.

(1)�
◦ = 10log10

(

DN2
)

+ 10log10
(

sinip
)

− KdB

Classification of the Forests Based on Canopy Closure/
Density

Cross-polarization ratio (XPR) was computed using the back-
scattering coefficients of HH and HV channels. Preliminary 
decision rules were developed using the XPR values and 
applied in the decision tree algorithm within the mangrove 
mask for classifying the mangroves into canopy closure/den-
sity classes.

Characterization of the Mangrove Forests in Terms 
of Canopy Homogeneity/Heterogeneity

SAR data of forests are highly textured in nature. This tex-
tural property of SAR data was used to characterize man-
grove forests. Grey-level co-occurrence matrix (GLCM) 
(Clausi, 2002) is a typical technique used for quantify-
ing texture mathematically. GLCM were computed for 
25 × 25 windows of unfiltered HH images. In the current 
investigation, entropy and angular second moment were 
employed. Entropy (E) is used as a measure of heterogene-
ity, and angular second moment (ASM) is used as a meas-
ure of local homogeneity. Texture values were applied 
in the decision tree algorithm on the masked mangrove 
regions for the characterization of the mangroves.

Fig. 5  Flowchart explaining the process to derive phenological metrics

Table 1  Data characteristics

Data characteristics

Imaging mode FRS 1
Polarization Dual, HH, HV
Date of pass 25th Feb 2022
Product type L2A Enhanced Geotiff
Input resolution along 3.00 m
Input resolution across 2.16 m
Line spacing 2.25 m
Pixel spacing 2.25 m
Node Ascending
Orientation Right
Incidence angle 39.76 degrees
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Estimation of Aboveground Biomass

Field Measurements A simple random sampling method 
was used as a ground truth sampling strategy for the meas-
urement of biophysical attributes, such as basal girth, total 
tree height and canopy diameter of mangrove trees. Consid-
ering the mangrove community zonation maps (Ajai et al., 
2012), a minimum of two quadrats was selected per class. 
Based on the accessibility into the forests, GPS-aided field 
visits were carried out for the Lothian and Dhanchi Islands 
for the collection of quadrat-level species information and 
biophysical attributes of mangrove trees.

Calculation of Aboveground Biomass

AGB was calculated as the product of tree volume and 
wood density (Briggs, 1977). Two separate formulae were 
used for estimating tree volume—one for the computation 
of the volume of smaller trees (height ≤ 3.9 m) (Eq. 2) and 
the other for large trees (height > 3.9 m) (Eq. 3)

where b = 1.3 m (Joshi & Ghose, 2014), D = diameter (m) at 
the base and h = height (m) of the plant. Instead of estimat-
ing wood density using a destructive sampling procedure, 
wood density data of mangrove species were collected from 
published works (Ilic et al., 2000; Joshi & Ghose, 2014; 
Martawijaya, 1992) and used in this study. AGB for each 
mangrove species was estimated as the product of the vol-
ume of that tree and the wood density of that species based 
on the equation as follows:

where AGB is the aboveground biomass and WD is the 
wood density of a particular mangrove species.

Modelling of AGB of Forest Trees Using SAR Signatures 
and Field Observations and AGB Estimation

Stepwise linear multiple regression analyses were applied 
to express/represent AGB (dependent variable) in terms of 
independent variables like other biophysical parameter(s) 
and radar backscatter values of the two polarization(s). A 

(2)Volume =

{

�

(

D
2

4

)

× h

}

(3)Volume =

{

�

(

D
2

12

)

× h
3 ÷ (h − b)2

}

(4)AGB = Volume ×WD

statistically significant model at the 0.05 level and with 
the highest R2 was selected and applied on the HH and 
HV channels of each of the mangrove community zonation 
rasters over the study area to obtain the per pixel AGB. 
Finally, AGB was calculated in megagram/hectare (Mg/ha) 
over the Lothian and Dhanchi Islands. The SAR-derived 
AGB values were validated using field-estimated AGB 
values.

Aboveground Biomass Upscaling Study

Data Used

EOS-04 data in MRS mode with HH and HV polarization 
acquired during June-2022 (Table 2) over the part of Mad-
hya Pradesh were used for forest AGB estimation. SAR 
data were converted to sigma naught values using Eq. 1 
speckle filtered to remove the speckle noise.

Field Data

Ground inventory data from 26 plots of 0.1ha size were 
used for biomass estimation. Field-measured variables such 
as diameter, tree height and species scientific name were 
recorded during field inventory. Field inventory data are 
used from the National Field Inventory carried out as part of 
the National Carbon Project, Vegetation Carbon Pool Project 
phase-II during 2018–2019 under the ISRO-Geosphere Bio-
sphere Programme. Forest Survey of India (FSI) developed 

Table 2  EOS-4 datasets used in the study

Data characteristics

Imaging mode MRS
Polarization Dual, HH, HV
Date of pass 28 June 2022
Product type L2A Enhanced Geotiff
Input resolution along 33.12 m
Input resolution across 17.27 m
Line spacing 18 m
Pixel spacing 18 m
Node Descending
Orientation Right
Incidence angle 37.79998 degrees
Centre latitude 22.432741
Centre longitude 76.376874
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volumetric equations and these were used to estimate stem 
volume which was further converted to tree biomass using 
wood density and biomass expansion factors.

where volume is estimated through volumetric equations 
developed by FSI, WD is wood density and BEF is biomass 
expansion factor.

Species specific volume equations were used for the vol-
ume equation database created by FSI (FSI, 1996), wood 
density data were used from the Indian Woods database 
(FRI, 1996) and biomass expansion factors were derived 
from Kaul et al. (2011).

Modelling Forest AGB

Field-measured biomass values from 26 field plots were 
correlated with HH and HV backscatter values. SAR data 
were calibrated and processed for speckle filtering. Field-
measured biomass values were regressed against HH and 
HV backscatter of C- and L-band SAR data. Finally, HV 
backscatter was used as it gives a better correlation coef-
ficient. Multiple linear regression was also performed using 
C- and L-band HV backscatter data.

(5)AGB = Volume ×WD × BEF

Results

Land Surface Phenology Tracking Study

The phenological metrics as derived are shown in Fig. 6. 
Usually, the time of maximum foliage also corresponds 
to the peak monsoon season and hence under complete cloud 
cover. The method used here was able to get the complete 
phenological profile of the vegetation during the monsoon 
season, which is not possible with optical remote sensing 
data-driven spectral vegetation index-based methods.

For the study site, the average sigma naught at leaf onset 
was found to be − 9.9900 dB with a standard deviation of 

Fig. 6  a Sigma naught values of the study site at the time of leaf 
onset, b maximum sigma naught values for the study site throughout 
the time series, c sigma naught values of the study site at the time of 

leaf offset, d date of occurrence of leaf onset event, e date on which 
maximum foliage is achieved, f date of occurrence of leaf offset

Table 3  Derived phenological metrics and their mean and standard 
deviations for the study site

Phenological metrics Mean Standard deviation

Leaf onset  − 9.9900 dB 1.6963 dB
Maximum foliage  − 4.9980 dB 1.7923 dB
Leaf offset  − 8.4729 dB 1.7121 dB
Time of leaf onset 6 May 2022 26.37 days
Time of maximum foliage 28 August 2022 23.06 days
Time of leaf offset 9-November 2022 22.05 days
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Fig. 7  Preliminary classification using decision tree algorithms for mangrove forest density (a, b) and canopy homogeneity/heterogeneity (c, d) 
applied separately on the mask of mangrove region of Lothian and Dhanchi Islands

Fig. 8  Field photographs of dense (a, b) and sparse mangrove (c, d)
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1.6963 dB, that at maximum foliage was found to be − 4.9980 
dB with a standard deviation of 1.7923 dB and that at leaf 
off was found to be − 8.4729 dB with a standard deviation 
of 1.7121 dB. Sigma naught was increased by an average 
of 4.992 dB from leaf onset to maximum foliage and then 
reduced by an average of 3.4749 dB from maximum foliage 
to leaf offset. The date for leaf onset on average was found to 

be 6 May 2022 with a standard deviation of 26.37 days, for 
maximum foliage it was found to be 28 August 2022 with a 
standard deviation of 23.06 days, and for leaf offset, it was 
found to be 9 November 2022 with a standard deviation of 
22.05 days (Table 3). This period between leaf onset and leaf 
offset during which the trees are most photosynthetically 
active was found on average to be about 187 days.

Fig. 9  a SAR-derived above-
ground biomass of mangrove 
area (excluding saline blanks) 
of the two islands. b Correlation 
between SAR-derived and field-
estimated aboveground biomass
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Mangrove Characterization Study

The mangrove forests of the two islands could be classified 
into two broad classes, viz. dense mangrove (forests hav-
ing > 40% of canopy closure) and sparse mangrove (areas 
having < 40% canopy closure) (Fig. 7). XPR values were > 1 
and ≤ 1.6 in sparse mangrove, while values were > 1.6 
and < 1.8 in dense mangrove. Some of the field photographs 
are given in Fig. 8.

The mangrove forests in the study area could be classified 
broadly into 3 classes based on homogeneity/heterogeneity, 
viz. Class 1: highly heterogeneous, Class 2: moderate and 
Class 3: highly homogeneous (Fig. 7). Class 1 was character-
ized by high E and low ASM values (0.01–0.06 ASM and 
3–4.7 E). Class 2 showed moderate/intermediate values of 
both ASM and E (> 0.06–0.10 ASM and 2.7–< 3 E, while 
Class 3 exhibited low E and high ASM values (> 0.10–0.23 
ASM and 1.1–< 2.7 E).

SAR-derived estimates were obtained over the two 
islands (Fig. 9). The mean AGB calculated was 151 Mg/ha 
and the values ranged from 29 to 241 Mg/ha. The ranges 
of AGB values were 180–241 Mg/ha in Avicennia com-
munities, 47–148 Mg/ha in Aegialitis–Excoecaria commu-
nities, 153–237 Mg/ha in Excoecaria patches, 78–105 in 
mixed (Ceriops–Excoecaria–Phoenix) patches, 108–233 
Mg/ha in mixed mangroves, 102–229 Mg/ha in fringe 
mangrove and 29–106 Mg/ha in Phoenix communities. 
The validation root mean square error (RMSE) was cal-
culated to be 34 Mg/ha. Figure 9b shows the correlation 
between the SAR-derived and the field-estimated AGB 
values.

Fig. 10  a Correlation between SAR backscatter and log (biomass), b correlation between observed and model-predicted biomass

Fig. 11  Forest AGB map estimated through EOS-04 C-band and 
ALOS PALSAR L-band data
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Forest Aboveground Biomass Upscaling

In this study, C- and L-band data were explored for forest bio-
mass estimation using field inventory data from 26 plots of 0.1 
ha size. Field-measured biomass values in the site varied from 
26 to 244 Mg/ha. C-band HV backscatter gave a correlation 
coefficient of 0.45 which is hindered mainly due to satura-
tion in high biomass in the area. Same field inventory data 
were also correlated with L-band SAR data ALOS PALSAR 
which gave a correlation coefficient of 0.49. It is observed 
that C-band data gave better correlation in the low-biomass 
regions. However, the L-band gave better separation in the 
medium–high-biomass region (Fig. 10a). Field inventory was 
carried out during 2019 which lead to the time difference of 
nearly 3 years with EOS04 data. However, L-band data from 
ALOS PALSAR-2 were used from the same year (2019). The 
time difference between field inventory and EOS04 data could 
also be one of the attributes for higher uncertainty in the bio-
mass estimation using C-band EOS04 data. The future course 
of work will include concurrent field inventory data to enhance 
AGB mapping. Finally, a combination of C- and L-band data 
was used to spatially estimate the biomass which gave a cor-
relation coefficient of 0.57 with an estimation error of 29 Mg/
ha (Figs. 10b, 11).

C-band correlation equation (EOS04):

L-band correlation equation (ALOS PALSAR-2):

C- and L-band multiple regression:

A similar analysis was carried out in a low-biomass site in 
the part of southern Rajasthan which covered in low-biomass 
regions with field-measured biomass values ranging from 10 
to 121 Mg/ha. HV backscatter in this region could estimate the 
biomass with a correlation coefficient of 0.62.

Discussion

Land Surface Phenology Tracking Study

In the present, we could see that not all of the forest enters 
the leaf onset (Fig. 6d), achieves maximum foliage (Fig. 6e) 
and enters leaf offset (Fig. 6f) at the same time. These vari-
ations in land surface phenology can be due to different spe-
cies composition, microclimatic conditions, terrain and soil 
conditions. A spatial description of land surface phenology 
as described by derived phenological metrics can be used to 

(6)Log(biomass) = 0.292 ∗ HVc - band + 9.0352

(7)Log(biomass) = 0.2417 × HVl - band + 7.8873

(8)
Log(biomass) = 0.1999 × HVl - band + 0.0887 × HVc - band + 8.6911

study the effect these internal and external factors have on 
phenological metrics.

Forest phenology as tracked using EOS-04 datasets or by 
Sentinel-1 satellites (Soudani et al., 2021) reduces the need 
of field-based tracking of such event. Systematic acquisitions 
from EOS-04 data have made such tracking possible. Forest 
phenology has been identified as an important indicator of 
climate change (Tiwari et al., 2021). Long-term systematic 
acquisition from EOS-04 will be used to track changes in phe-
nological metrics over many years and will be used to quantify 
the effects of climate change of forests.

Land surface phenology as tracked at medium to high reso-
lution can be used for mapping of forest tree species or tree 
communities (Kurian et al., 2022). Complete land surface phe-
nology from EOS-04 datasets as compared to multi-spectral 
index-based land surface phenology can be helpful in improv-
ing the results of such studies (Kurian et al., 2022).

Mangrove Characterization Study

Density‑Level Classification of Mangrove Canopy

Dense mangrove (Figs. 7a, b and 8) corresponded to very 
dense and moderately dense forests, while sparse mangrove 
depicted sparse and open forest zones of the forest cover 
classification scheme provided by FSI. Kumar and Patnaik 
(2013) have used dual polarization (HH, HV) RADARSAT-2 
datasets to characterize and discriminate mangrove forests 
of the Sundarbans biosphere reserve. A decision rule-based 
classification was applied on a combination of three-date HH 
with the single-date cross-polarization ratio for discriminat-
ing mangrove forests from other types of land-cover classes. 
However, in this study canopy density classification was not 
performed. Verghese et al. (2016) evaluated the feasibility 
of different polarimetric SAR data decomposition methods 
in canopy density classification of dry deciduous forests 
of Madhav National Park, India, using fully polarimetric 
C-band SAR data of RADARSAT-2.

Classification of the Mangroves Based on Canopy 
Homogeneity/Heterogeneity

Class 1 (Fig. 7c, d) exhibited areas fringing the islands and 
along the creeks, while Class 3 exhibited mangrove areas of 
the ridge region. Chakraborty et al. (2013) demonstrated the 
great potential for using Radar Imaging Satellite-1 (RISAT-
1) C-band SAR for discriminating mangroves from adjoin-
ing land covers, but in this study use of texture measures was 
not attempted. GLCM texture measures: contrast, entropy, 
correlation and variance were used on Sentinel 1 time series 
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SAR data for discriminating certain agricultural crops in the 
Bonaerense valley in the Villarino district of Buenos Aires 
Province, Argentina (Caballero et al., 2020).

SAR‑Derived Aboveground Biomass of Mangroves

In the present study, the AGB values ranged from 29 to 241 
Mg/ha. Ghosh and Behera (2021) reported AGB values 
ranging from 70 to 666 t/ha using Sentinel 1A data of 2018 
for mangroves of Bhitarkanika Wildlife Sanctuary, Odisha. 
Likewise, the AGB values ranged from 0.10 to 213 Mg/ha 
using Sentinel 1A images of 2018 over mangroves of Mun-
dra taluka in the Kachch district of Gujarat (Vaghela et al., 
2021). Pham et al. (2020) reported AGB ranging from less 
than 40 to 339.85 Mg/ha with a validation RMSE of 70.882 
and R2 of 0.577 over mangroves of Ca Mau Province in Viet-
nam. The Sentinel 1A dataset's saturation level was exceeded 
by the mean AGB in this study, which could have led to an 
underestimation in the high AGB plots.

Forest Aboveground Biomass Upscaling

SAR data with cloud penetration and all-weather capabil-
ity along with sensitivity towards physical and geometri-
cal properties of forest stands are being used for retrieval 
of biophysical parameters of forest like forest AGB, tree 
height, etc. SAR data have been used extensively for forest 
biomass estimation over Indian forest (Suresh et al., 2014; 
Thumaty et al., 2016); however, there are not many studies 
which utilizes different frequencies together for forest bio-
mass estimation. In this study, we have demonstrated that 
C-band EOS-04 data can be used for mapping AGB of low 
to medium regions and how it can be effectively combined 
with L-band datasets for better accuracies. SAR backscatter 
in cross-polarization is strongly correlated with forest AGB 
due to volumetric scattering with forest stands. It is observed 
that C-band HV backscatter is strongly correlated with AGB 
in low–medium-biomass ranges. HV backscatter from C- 
and L-band estimates AGB with correlation coefficient of 
0.45 and 0.49 in the study area which further improves to 
0.57 when C- and L-band used together to predict the AGB.

Conclusion

In this study, we have demonstrated that systematic acquisi-
tion of MRS product by EOS-04 can be used to monitor land 
surface phenology (including during the monsoon season) 
and to derive various phenological metrics. Such studies will 
help to track the land surface phenology of the forests at 

the time when the majority of the photosynthetic activity 
is occurring.

With EOS-04 C-band data, mangrove forests were easily 
classified into density classes, viz. dense and sparse man-
grove. GLCM textures on EOS-04 data were used to char-
acterize mangrove forests into 3 classes of homogeneity/
heterogeneity. Mangrove community-wise AGB estimates 
were calculated using the dual polarization EOS-04 data. 
Such studies will be helpful in monitoring the biomass status 
of threatened mangrove ecosystems over time.

EOS-04 data were used to successfully estimate AGB 
in low-density biomass regions and in combination with 
L-band data in low- to medium-AGB regions. A combi-
nation of C-band and L-band data is capable of providing 
improved results as compared to the results of each individu-
ally. RISAT C-band data along with the upcoming NISAR 
mission will enable the synergistic utilization of C-, S- 
and L-band data for improved forest biomass and carbon 
reporting.
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